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Abstract
The coexistence of cardiovascular disease and erectile dysfunction is widespread, possibly owing to underlying endothelial 
dysfunction in both diseases. Millions of patients with cardiovascular disease are prescribed phosphodiesterase-5 (PDE5) 
inhibitors for the management of erectile dysfunction. Although the role of PDE5 inhibitors in erectile dysfunction therapy 
is well established, their effects on the cardiovascular system are unclear. Preclinical studies investigating the effect of PDE5 
inhibitors on ischemia–reperfusion injury, pressure overload-induced hypertrophy, and chemotoxicity suggested a possible 
clinical role for each of these medications; however, attempts to translate these findings to the bedside have resulted in mixed 
outcomes. In this review, we explore the biologic preclinical effects of PDE5 inhibitors in mediating cardioprotection. We 
then examine clinical trials investigating PDE5 inhibition in patients with heart failure, coronary artery disease, and ven-
tricular arrhythmias and discuss why the studies likely have yet to show positive results and efficacy with PDE5 inhibition 
despite no safety concerns.
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Introduction

Cardiovascular disease remains the leading cause of death 
internationally. The World Health Organization (WHO) esti-
mated the number of cardiovascular deaths in 2016 to be 
approximately 18 million people, and lifetime risk of car-
diovascular disease exceeds 60% [1, 2]. In the USA, about 
700,000 people die annually of cardiovascular disease [3, 4]. 
The estimated economic burden of heart disease in the USA 
is $219 billion per year [4].

Erectile dysfunction (ED) is a widespread, often under-
reported medical condition. Surveys in the USA have 
estimated the national prevalence of ED at 30% of men 
aged 50–59 years, with rising prevalence associated with 

increasing age [5, 6]. Generally perceived as a vascular 
complication due to poor perfusion, ED is commonly found 
coexisting with other medical comorbidities including car-
diovascular disease, diabetes, and obesity [7].

The discovery of oral phosphodiesterase-5 (PDE5) inhibi-
tors that revolutionized management of ED in the late 1990s 
was an incidental observation during cardiac research [8, 9]. 
Since PDE5 hydrolyzes cyclic guanosine monophosphate 
(cGMP) in the cardiopulmonary vasculature, researchers 
aimed to establish a new anti-anginal agent using PDE5 
inhibitors to prolong cGMP activity and promote vasodila-
tion of the coronary arteries. However, with early uncon-
vincing results suggesting PDE5 is minimally present in 
cardiomyocytes, this pursuit was abandoned [9–12]. During 
these studies, however, patients with ED reported improved 
erectile function, leading to extensive research culminating 
with the United States Food and Drug Administration (FDA) 
ultimately approving PDE5 inhibitors for ED treatment.

PDE5 inhibitors modulate the cardiovascular system 
through the interplay of cGMP and nitric oxide (NO), a 
potent vasodilator facilitating smooth muscle relaxation. 
NO, produced by the vascular endothelium, upregulates 
intracellular cGMP, triggering a cyclical pathway propa-
gating further NO production [13]. PDE5 degrades cGMP, 
reversing the vasodilatory effects described. Therefore, 
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modulation of PDE5 plays a crucial role in circulatory regu-
lation and vascular tone.

Due to the common coexistence of cardiovascular disease 
and ED, the cardiac impact of PDE5 inhibition has since 
been revisited, and daily PDE5 inhibitor use as a dual-
pronged approach as management of ED and cardiovascu-
lar disease has been proposed [14]. This literature review 
examines the background research, preclinical animal stud-
ies, and clinical trials of PDE5 inhibitors in patients with 
cardiovascular disease.

Methods

This is a narrative review of the literature discussing the 
evidence behind and potential implications of use of PDE5 
inhibitors in cardiovascular disease. Data and manuscripts 
reported here were identified through the United States 
National Library of Medicine PubMed/MEDLINE database, 
with keywords including “phosphodiesterase-5 inhibitors,” 
“cardiovascular,” “ischemia–reperfusion,” “myocardial 
infarction,” “volume overload,” “heart failure,” “arrhyth-
mia,” and “cardioprotection”. Ongoing clinical trials were 
identified using the United States Clinical Trials website 
using the search terms “phosphodiesterase-5 inhibitors” and 
“cardiac” and restricting results to “recruiting” or “active, 
not recruiting” status.

PDE5 Expression

The general consensus is that cardiomyocytes likely nor-
mally express a minimal, basal level of PDE5 [9–12]. PDE5 
upregulation has been reported in diseased cardiac tissue 
such as in the setting of heart failure [15–18]. However, the 
degree to which PDE5 is upregulated in cardiovascular dis-
ease is unclear and likely varies. The limited effect of PDE5 
inhibitors in the cardiovascular system may be explained, at 
least in part, by the basal level of PDE5 in healthy cardio-
myocytes compared to the degree of upregulation of PDE5 
expression in patients with cardiovascular disease. To some 
extent, it could be reasonable to assume that the conflicting 
data from clinical studies were derived from patients with 
a varying degree of upregulated PDE5 among those with 
cardiovascular disease.

Pharmacokinetics of PDE5 Inhibitors

The most common PDE5 inhibitors are sildenafil, varde-
nafil, and tadalafil, each of which presents differences in 
pharmacokinetics. Sildenafil is categorized as class 1 by 
the Biopharmaceutical Classification System, suggesting 

high solubility and high permeability. Sildenafil is rapidly 
absorbed and reaches peak plasma concentration within 
0.5–2.5 h, and it is primarily metabolized by the cytochrome 
P-450 isoenzyme CYP3A4, with a half-life of approximately 
3–5 h [19]. Vardenafil is considered class 2 by the Biophar-
maceutical Classification System, suggesting low solubility 
and high permeability. Vardenafil is rapidly absorbed achiev-
ing peak plasma concentration within 0.25–3 h, and it is 
also primarily metabolized by CYP3A4, with a half-life of 
approximately 4–5 h [19]. Tadalafil is also a class 2 agent by 
the Biopharmaceutical Classification System, and it is simi-
larly rapidly absorbed reaching peak plasma concentration 
within an average of 2 h. Tadalafil is primarily metabolized 
by CYP3A4 as well, but it has a half-life of approximately 
17–20 h [19].

Preclinical Studies of PDE5 Inhibition 
in Cardiovascular Disease

In preclinical studies, cardioprotective effects of PDE5 
inhibitors have been identified following ischemia–reper-
fusion injury, pressure overload-induced hypertrophy, and 
chemotoxicity. PDE5 inhibition in ischemia–reperfusion 
injury has improved cardiac function and decreased cardio-
myocyte apoptosis and necrosis [20]. In addition, PDE5 is 
upregulated in cardiac pressure overload, with PDE5 being 
directly associated with pro-hypertrophic effects [21]. Via 
cGMP and protein kinase G (PKG) subtype I-alpha, PDE5 
inhibition likely mediates an anti-remodeling response to 
left ventricular pressure overload [22]. Furthermore, doxoru-
bicin-induced chemotoxicity has been significantly reduced 
by PDE5 inhibition, likely by reducing cardiomyocyte death 
via upregulation of NO synthase and activation of PKG [23, 
24]. Taken together, these biologic effects have been particu-
larly revealing given the general consensus that cardiomyo-
cytes normally express minimal PDE5 [9–12].

Preclinical Studies in Myocardial Infarction

Ischemia–reperfusion injury occurs due to an interval of 
ischemia inducing downstream reactive oxygen species 
(ROS) overproduction. This reduces NO release, leading to 
an imbalance causing inflammation and apoptosis despite 
reperfusion [25]. With lower levels of NO available during 
ischemia, less cGMP is produced, contributing to negative 
effects on cardiac function and vascular circulation.

PDE5 inhibitors demonstrated a protective, anti-apoptotic 
effect in isolated cardiomyocytes exposed to ischemia–reper-
fusion injury [20, 23]. The cardioprotective effects of PDE5 
inhibition were mediated, at least in part, by increased NO 
production and activation of protein kinase C [26, 27]. It 
is worth noting that different isoforms of protein kinase 
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C appear to have opposing mechanistic roles in cardiac 
ischemia–reperfusion injury [28]. The interplay of these 
mechanisms leads to downstream phosphorylation of addi-
tional intermediary factors including extracellular signal-
regulated kinases (ERK) and glycogen synthase kinase 3 
beta before ultimately opening ATP-sensitive potassium 
 (KATP) channels [20, 29]. The critical step of opening mito-
chondrial  KATP channels limits against ischemia–reperfusion 
injury through regulation of intracellular calcium and ATP 
and may represent the final step in the mechanism by which 
PDE5 inhibitors convey cardioprotection.

Early studies in a rat model showed improved ven-
tricular recovery and decreased myocardial infarction fol-
lowing ischemia–reperfusion injury and PDE5 inhibition 
[30]. In another study, PDE5 inhibition in rabbits showed 
significantly reduced ventricular infarct size following 
ischemia–reperfusion injury [29]. These findings were 
essentially consistent over two time intervals of analysis 
whereby treatment was administered either acutely before 
ischemia or 24 h prior, suggesting that PDE5 inhibition 
could convey a sustained cardioprotective effect against 
ischemia [29].

The mechanism by which PDE5 inhibitors exhibit cardio-
protection remained unclear, with subsequent experiments 
focusing on whether preconditioning could be a contributing 
factor. Several pathways have been proposed to explain this 
cardioprotective concept, with bradykinin among the impor-
tant factors [31, 32]. Bradykinin increased NO production 
resulting in cGMP upregulation and opening of mitochon-
drial  KATP channels in a rabbit model [33]. Further studies 
identified that PDE5 inhibitors reduced ventricular infarct 
size in an animal model of ischemia–reperfusion, at least 
in part, through activation of mitochondrial  KATP channels 
[12]. In addition, selective blockade of mitochondrial  KATP 
channels negated the recovery in infarct size observed with 
PDE5 inhibition, suggesting that activation of mitochondrial 
 KATP channels is crucial to mediating the cardioprotective 
effects of PDE5 inhibitors [29]. Importantly, opening of 
mitochondrial  KATP channels not only protects mitochondria 
from calcium overload induced- and oxidant stress-induced 
injury, but also triggers redox signals that inhibit glyco-
gen synthase kinase (GSK)-3ß-mediated signaling, which 
inhibits opening of the mitochondrial permeability transition 
pore [34–36]. In addition, cardioprotection in the context of 
improved recovery of ventricular contractile function after 
ischemia–reperfusion is not necessarily limited to infarct 
size, as attenuation of myocardial stunning is possibly also 
involved in the post-ischemic reperfusion process [36]; this 
latter effect may also be at play in the discussion of the effect 
of PDE5 inhibitors on heart failure.

Taken together, several studies demonstrated reduced 
myocardial infarction with PDE5 inhibition when given 
either prior to occlusion or at reperfusion, and various 

mechanisms were implicated, including mitochondrial 
 KATP channels, NO, and protein kinase C [12, 27, 29, 37]. A 
pathway independent of NO/cGMP has also been proposed, 
with one study reporting reduced myocardial infarct size in 
eNOS- and iNOS-null animals [37].

While most preclinical studies with PDE5 inhibitors 
demonstrated a reduction in experimental myocardial infarct 
size, not all studies were positive. In one study in rabbits, 
sildenafil did not reduce infarct size but did have a mod-
est effect on improving collateral flow during occlusion and 
reducing specific vascular resistance and reducing left ven-
tricular end diastolic pressure [38]. In a multicenter, rand-
omized, blinded study, sildenafil reportedly failed to reduce 
myocardial infarct size in experimental models of infarct 
size, though final publication of results are still pending [39, 
40]. Importantly, the protocol of sildenafil administration 
employed in this study differed from prior investigations, in 
that bolus injection was given [40] in place of slow infusion 
over an hour as was previously reported [12]. This alterna-
tive approach to sildenafil administration could significantly 
alter the impact of PDE5 inhibition in a hemodynamically 
unstable condition in the setting of myocardial infarction. 
Taken together, the effect of PDE5 inhibitors on reduction 
of myocardial infarct size has shown promise but is overall 
somewhat unclear in experimental animal studies.

Preclinical Studies in Heart Failure

PDE5 is generally believed to be present in minimal amounts 
or even absent in normal cardiomyocytes; however, PDE5 
upregulation has been reported in cardiac tissue in heart 
failure [15–18]. Dysfunction of the cGMP-PKG axis is one 
of the primary processes implicated in the progression of 
heart failure [16, 41]. With upregulation of PDE5 in car-
diac hypertrophy, there is increased conversion of cGMP to 
5′GMP, and therefore decreased PKG [42]. The downstream 
effects of these changes are ultimately upregulation of cAMP 
and increased intracellular calcium [17, 20].

Further research investigating how intracellular cal-
cium imbalance could contribute to heart failure progres-
sion suggested these detrimental effects could be a result 
of increased endoplasmic reticulum stress, and mecha-
nistic studies identified increased sarcoplasmic reticulum 
calcium ATPase (SERCA) activity to be a mediating fac-
tor [43]; and given the direct relationship, phospholamban 
regulation likely played a role. SERCA improves muscle 
relaxation by lowering cytosolic calcium while restoring 
sequestered calcium availability necessary for subsequent 
muscle contraction [44]. Phospholamban, when dephos-
phorylated, modulates calcium sequestration by inhibiting 
SERCA; therefore, phosphorylation of phospholamban leads 
to increased SERCA activity and improved calcium han-
dling, contributing to improved cardiac contractility [45]. 
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Isolated cardiomyocytes from mice with transverse aortic 
constriction (TAC)-induced heart failure showed worsening 
sarcomere shortening and relaxation along with poor intra-
cellular calcium handling, which recovered with PDE5 inhi-
bition [46] (Fig. 1). Mechanistic study of how PDE5 inhibi-
tion could improve cardiomyocyte calcium cycling showed 
that TAC-induced heart failure led to SERCA-2A and phos-
pholamban suppression, which was reversed with sildenafil 
administration, leading to enhanced phospholamban phos-
phorylation and thereby improved calcium uptake [46]. In 
addition, chronic high-pressure exposure to cardiomyocytes 

increased calcineurin, which inhibits protein phosphatase 
inhibitor-1 activity ultimately leading to decreased phos-
pholamban phosphorylation causing dysregulation of cal-
cium handling [46–48]. A similar mechanism is at play with 
upregulation of protein kinase C noted in the TAC animal 
model, leading to phospholamban dephosphorylation [46]. 
Administration of PDE5 inhibitor showed improved calcium 
handling in TAC-induced heart failure via suppression of 
overexpressed calcineurin and protein kinase C [46]. Taken 
together, PDE5 inhibitors may impart beneficial effects on 
cardiomyocytes in pressure-overload settings by regulating 

Fig. 1  Effect of phosphodiesterase-5 inhibitors in cardiovascular 
disease. Schematic summary of the proposed mechanisms by which 
phosphodiesterase-5 inhibitors exert their cardioprotective effect. 
The PKG-mediated suppression of calcineurin, leading to suppres-
sion of cardiomyocyte hypertrophy, and PKG-mediated phospho-
rylation of phospholamban at Ser16, leading to restored SERCA 
activity, are parallel events. Redox signals from mitochondria with 
activated mitochondrial  KATP channels lead to phosphorylation of 
GSK-3beta-Ser9, which inhibits opening of mitochondrial perme-
ability transition pores, protecting against necrosis. cGMP, cyclic 

guanosine monophosphate; eNOS, endothelial nitric oxide synthase; 
ERK, extracellular signal-regulated kinases; GC, guanylate cyclase; 
GSK3ß-Ser9, glycogen synthase kinase 3 beta serine 9; HF, heart 
failure; iNOS, inducible nitric oxide synthase; LV, left ventricle; 
LVEDD, left ventricular end diastolic diameter; LVH, left ventricular 
hypertrophy; mitochondrial  KATP, mitochondrial ATP-sensitive potas-
sium; NGF, nerve growth factor; NO, nitric oxide; PDE5, phosphodi-
esterase-5; PKG, protein kinase G; SERCA, sarcoplasmic reticulum 
calcium ATPase
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intracellular calcium cycling, thereby facilitating improved 
contractility [43, 46].

Persistent pressure and volume overload in the heart 
inflict maladaptive processes at the molecular, cellular, and 
functional levels, which progress toward cardiac dysfunction 
manifesting as congestive heart failure. Hearts of transgenic 
mice with cardiomyocyte-specific overexpression of PDE5 
exhibited more pronounced left ventricular systolic and 
diastolic dysfunction, increased hypertrophy, and impaired 
inotropy compared to wild-type mice [49]. PDE5 inhibi-
tion showed suppressed chamber and cellular hypertrophy 
in the pressure-overloaded mouse model of heart failure and 
reversed pre-established hypertrophy while restoring cardiac 
function [41]. In addition, early ischemic cardiomyopathy 
treated with PDE5 inhibitor showed significant recruitment 
of eNOS/iNOS and recovery of left ventricular end-diastolic 
diameter and fractional shortening in mice [50].

Preclinical Studies in Ventricular Arrhythmia

PDE5 inhibition has been suggested to reduce the risk of 
ventricular arrhythmias, and the precise mechanism remains 
under investigation [51]. Acute suppression of triggered ven-
tricular arrhythmias with PDE5 inhibition was recently dem-
onstrated in vivo, likely mediated by suppression of cellular 
calcium waves [52].

Increased adrenergic drive has been associated with 
several cardiac pathologies including the development of 
ventricular arrhythmias and sudden cardiac death [53, 54]. 
Effective use of beta blockade has demonstrated reversal of 
left ventricular dysfunction as well as reduction of ventricu-
lar arrhythmias. Therefore, research was undertaken investi-
gating whether PDE5 inhibition could mediate a direct anti-
arrhythmic effect through manipulation of beta-adrenergic 
receptors. While PDE5 inhibition blunted the enhancement 
in sarcomere shortening caused by isoproterenol in adult 
cardiomyocytes, such modulation of sarcomere shortening 
in cardiomyocytes isolated from genetically engineered mice 
lacking ß3 adrenergic receptors with PDE5 inhibition was 
prevented. This suggests that suppression of myocardial 
beta-adrenergic drive may be a plausible pathway by which 
PDE5 inhibition exerts its anti-arrhythmic effect [51, 55].

Cardiac ischemic injury leads to increased sympathetic 
nerve regeneration and density mediated by nerve growth 
factor (NGF) that has been associated with ventricular 
arrhythmia and sudden cardiac death [56–58]. PDE5 inhi-
bition has been shown to activate  KATP channels, which 
in turn dampens sympathetic drive and inhibits NGF fol-
lowing myocardial infarction [59, 60]. Furthermore, PDE5 
inhibitor-induced mitochondrial  KATP channel activation 
suppressed the over-recruited sympathetic innervation and 
associated arrhythmias [60]. Animals administered PDE5 

inhibitor showed a significant decrease in inducible ventricu-
lar tachycardia and ventricular fibrillation [60].

The mechanism by which PDE5 inhibition imparts an 
anti-arrhythmic effect may be via modulation of beta-adren-
ergic signaling [61, 62], possibly mediated by NGF given the 
studies described. In addition, PDE5 inhibition has demon-
strated protection against ventricular arrhythmias associated 
with the early stages of cardiac ischemia [63]. There may be 
an anti-arrhythmic therapeutic range of PDE5 inhibition, 
since high-dose PDE5 inhibitor administration increased the 
incidence of ventricular fibrillation [30].

Clinical Studies of PDE5 Inhibition 
in Cardiovascular Disease

Studies in Myocardial Infarction

The frequency of coexisting CAD and ED has led to exten-
sive study into the safety of PDE5 inhibitor use in these 
patients. Initial post-marketing reports identified myocardial 
infarction and sudden death in patients recently started on 
PDE5 inhibitors, but direct association between the medi-
cation and cardiac adverse effects was not possible [64]. 
However, myocardial infarctions associated with the use of 
PDE5 inhibitors were rare and may have been related to the 
increase in oxygen demand that occurs with sexual activ-
ity. An early study evaluated the hemodynamic effects of 
PDE5 inhibitor use in men with stable angina and at least 
one known severely occluded coronary artery [65]. Investi-
gators assessed the hemodynamic effects of oral sildenafil 
in 14 men, finding minimal decrease in systemic arterial and 
pulmonary arterial pressures, no significant effect on pulmo-
nary-capillary wedge pressure, right atrial pressure, heart 
rate, or cardiac output. Coronary hemodynamics including 
peak flow velocity and vascular resistance were unchanged. 
Taken together, no significant adverse cardiovascular effects 
were reported in this study [65].

In a Swedish study in men with first myocardial infarc-
tion, treatment with PDE5 inhibitors was associated with a 
lower risk of death and cardiovascular events [66]. Limita-
tions of this study included the control group not receiving 
any treatment for ED, potentially confounding for indica-
tion. This led to a recent subsequent study investigating the 
association between PDE5 inhibition versus prostaglandin 
E1 (PGE1) in men with stable CAD [67]. Results from this 
study showed that in men with stable CAD, treatment with 
PDE5 inhibitor is associated with lower cardiovascular out-
comes including death, myocardial infarction, heart failure, 
and revascularization, compared to treatment with PGE1 
[67]. The study was observational and thus, no inferences 
of causality could be made but the results confirmed the 
earlier findings.
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The effect of PDE5 inhibition on exercise-induced 
ischemia was studied in symptomatic patients with stable 
CAD [68]. Several parameters were evaluated including 
symptom-limited treadmill exercise time, time to first aware-
ness of angina, and time to ischemic threshold during exer-
cise tolerance testing. The exertional metabolic equivalent 
(MET) goal in this study was 5–10 METs. At peak exercise, 
PDE5 inhibition did not demonstrate any significant hemo-
dynamic change in blood pressure or heart rate. Similarly, 
there was no significant change with PDE5 inhibition when 
assessing treadmill time or time to first awareness of angina. 
Patients with PDE5 inhibition did exhibit significantly pro-
longed time to ischemic threshold by approximately 15% 
[68]. Taken together, findings from this study suggest that 
PDE5 inhibitor use in patients with stable, symptomatic 
CAD, does not limit functional capacity at an exertional 
level of 5–10 METs. However, in another study, the effect 
of PDE5 inhibition on exercise tolerance times was neutral 
in patients with stable coronary artery disease [69].

A research team in Denmark retrospectively investigated 
the risk of cardiovascular disease in patients who had been 
prescribed PDE5 inhibitors with the end points including 
acute myocardial infarction and the development of heart 
failure [70]. In the first 3 years of PDE5 inhibition, in 
patients who had no prior cardiovascular disease, there was 
a decreased risk of acute myocardial infarction. In addition, 
the study reported a trend toward decreased risk of the devel-
opment of heart failure in the first 3 years of ED therapy. 
Overall, there was a decrease in the risk of cardiovascular 
disease in the first 3 years after initiating treatment for ED 
[70].

Due to the coexistence of cardiovascular disease and ED, 
the high frequency of PDE5 inhibitor therapy for ED, and 
the natural progression of CAD, a subset of patients ulti-
mately require evaluation for coronary artery bypass graft 
(CABG) surgery for CAD management. The safety of PDE5 
inhibitors was investigated in a pilot study of patients under-
going CABG surgery, with results suggesting PDE5 inhibi-
tor use prior to CABG surgery is safe [71]. Given its natural 
biologic effects as described previously, there is evidence to 
suggest adjunctive use of PDE5 inhibitors in patients with 
upcoming CABG surgery could be beneficial [72].

A meta-analysis of randomized, placebo-controlled tri-
als examined whether PDE5 inhibition could indeed impart 
beneficial cardiac effects [73]. Trials were selected reporting 
any cardiovascular outcomes, as either primary or secondary 
endpoints, and independent of the baseline characteristics 
of the study population. Across 24 trials assessed, nearly 
1000 patients were treated with PDE5 inhibitors while 
approximately 750 were given placebo. Given the criteria 
for study selection, a significant percentage of these patients 
had known pulmonary hypertension or congenital heart dis-
ease. Several outcomes were evaluated including parameters 

of cardiac geometry and function as well as overall safety 
and tolerability of PDE5 inhibitors. The outcomes analyzed 
included left ventricular mass index, end-diastolic vol-
ume index, ventricular transverse diameter, cardiac index, 
ejection fraction, E/A ratio, and hemodynamics includ-
ing systemic vascular resistance index. Findings from this 
meta-analysis suggested that chronic PDE5 inhibitor use 
imparts a beneficial cardiac inotropic effect together with 
anti-remodeling properties across different populations [73]. 
These results favor that PDE5 inhibition could promote posi-
tive remodeling and offer potentially promising impact on 
surrogate endpoints.

Due to the systemic effect of PDE5 inhibition on improv-
ing endothelial function, researchers have investigated 
whether using these medications could improve cardiac risk 
factors mediated by endothelial dysfunction including dia-
betes. Since initial proposal of this hypothesis [74], studies 
with PDE5 inhibitors have led to positive clinical outcomes 
in patients with cardiac risk factors including diabetes [75]. 
One trial demonstrated PDE5 inhibition to lower the risk of 
overall mortality in patients with diabetes and a history of 
acute myocardial infarction [76]. A non-randomized study 
reported that PDE5 inhibitors may reduce the occurrence 
of major adverse cardiac events in patients with coronary 
artery disease, diabetes, and erectile dysfunction [77]. 
Taken together, PDE5 inhibition could be cardioprotective 
by improving outcomes in patients with cardiac risk factors 
including diabetes, though these studies offered limitations 
in methodology as well as in assessment of the specifics of 
PDE5 use in the populations studied.

To the best of our knowledge, PDE5 inhibitors have not 
been tested in a systematic fashion in clinical trials of acute 
myocardial infarction. Due to their contraindication in the 
setting of nitroglycerin use, PDE5 inhibitors are unlikely to 
ever be tested in humans with acute myocardial infarction.

Studies in Heart Failure

Clinical studies investigating PDE5 inhibition in heart fail-
ure have yielded mixed results. Exercise capacity was evalu-
ated in patients with HFrEF using cardiopulmonary exer-
cise testing (CPET), with PDE5 inhibition for 3–6 months 
showing sustained improvement in exercise ventilation 
and aerobic efficiency [78]. A trial of patients with HFrEF 
showed improved functional capacity and left ventricular 
echocardiographic parameters, including reversal of mala-
daptive remodeling and left ventricular diastolic function, 
with PDE5 inhibition [79]. Furthermore, PDE5 inhibition 
in patients with HFrEF complicated by secondary pulmo-
nary hypertension improved exercise capacity and quality 
of life, as evidenced by superior peak oxygen uptake  (VO2) 
and 6-min-walk distance, respectively [80]. However, the 
utility of PDE5 inhibitors in HFrEF remains unclear due to 
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conflicting reports (Table 1), such as one study reporting 
no significant functional or quality of life improvement in 
patients with HFrEF, as measured by 6-min walk distance 
and New York Heart Association (NYHA) functional class 
[81].

The effect of PDE5 inhibitors in patients with heart failure 
with preserved ejection fraction (HFpEF) has been similarly 
inconclusive. Patients with HFpEF treated with 6 months of 
PDE5 inhibitor exhibited several beneficial effects including 
improved left ventricular structural changes and improved 
pulmonary pressures [82], while another clinical trial also 
studying patients with HFpEF on 6 months of PDE5 inhibi-
tor did not show significant functional improvement [83]. 
The disparity in outcomes between these two trials could 
be at least partly explained by differing therapy regimens.

A meta-analysis investigating the role of PDE5 inhibition 
in patients with heart failure suggested chronic PDE5 inhi-
bition may modestly improve exercise capacity in patients 
with HFrEF or HFpEF, though significant heterogeneity was 
noted in the studies analyzed [84, 85]. The marginal benefit 
is further tempered because increased mortality with PDE5 
inhibitor use could not be ruled out [84].

Studies in Ventricular Arrhythmia

Given the association between increased adrenergic drive 
and ventricular arrhythmia [53], and the link between 
PDE5 inhibition and suppression of beta-adrenergic drive 
in vivo [60–63], studies have investigated whether PDE5 
inhibition demonstrates similar anti-adrenergic and thereby 
anti-arrhythmic effects clinically. PDE5 inhibition showed 
significantly reduced beta-adrenergic response in healthy 
volunteers, as determined by multiple echocardiographic 
and contractility indices including suppressed ejection frac-
tion and peak power [61]. These results suggest that PDE5 
inhibition could indeed reduce ventricular arrhythmia in the 
clinical setting by suppressing adrenergic drive. However, in 
contrast, there have been reports of patients suffering ven-
tricular arrhythmia after initiating PDE5 inhibitor [86, 87]. 
Subsequent research did not identify any clinically signifi-
cant difference in QT duration in healthy patients prescribed 
PDE5 inhibitors, and there have been conflicting reports 
on the effect of PDE5 inhibitors on cardiac repolarization 
[88–91]. Taken together, the potential utility of PDE5 inhibi-
tors in an anti-arrhythmic role remains unclear.

Studies of PDE5 Inhibition in LVAD Patients

Given the known effects of PDE5 inhibitors on pulmo-
nary hypertension and the evolution of the left ventricular 
assist device (LVAD) as an option for end-stage heart fail-
ure management, studies have investigated the safety and 

impact of PDE5 inhibitors pre- and post-LVAD implanta-
tion. Although PDE5 inhibitor use in patients with LVADs 
is thought to be safe and well-tolerated [92], findings from 
studies evaluating efficacy of PDE5 inhibition pre- and post-
LVAD implantation have been inconclusive. A recent report 
raised concern that pre-LVAD PDE5 inhibition was asso-
ciated with increased right-sided heart failure in the post-
LVAD setting [93]. Another study investigated the effect of 
PDE5 inhibitors on right ventricular dysfunction in the post-
LVAD implantation and found no significant difference in 
clinical outcomes [94]. In addition, patients with right ven-
tricular dysfunction and pulmonary hypertension requiring 
LVAD implantation had improved outcomes with periopera-
tive PDE5 inhibition [95]. A systematic review aiming to 
identify a specific role of PDE5 inhibition in LVAD patients 
to attenuate right ventricular failure noted mixed results and 
weak evidence overall [96].

PDE5 Inhibition in Pulmonary Arterial 
Hypertension

PDE5 inhibitors are one of the major drug categories to treat 
pulmonary arterial hypertension, a disease process generally 
characterized by gradual progression of pulmonary vascular 
resistance ultimately leading to right heart failure. Due to the 
beneficial effect on smooth muscle in the context of erectile 
dysfunction, studies have evaluated whether PDE5 inhibitors 
could have similar improvements in the pulmonary vascula-
ture. In contrast to the previously discussed cardiovascular 
disease processes, the success of PDE5 inhibition in pulmo-
nary arterial hypertension has been well established, possi-
bly due to a high basal level of PDE5 in healthy pulmonary 
tissue that is further upregulated in pulmonary hypertension 
[97, 98]. A full discussion on PDE5 inhibitors on pulmonary 
hypertension is beyond the scope of this report, but it is 
important to note that there is strong evidence clearly dem-
onstrating improved functional parameters and quality of life 
measures with the use of sildenafil or tadalafil in patients 
with pulmonary arterial hypertension [99–103].

Conclusions

The coexistence of cardiovascular disease and ED is com-
mon likely due to the vascular changes contributing to both 
disease pathologies. The resultant high frequency of patients 
with cardiovascular disease being prescribed PDE5 inhibi-
tors for ED has led scientists to identify several mechanisms 
by which these medications may exert cardioprotective 
effects, and a number of clinical trials have evaluated the 
role of PDE5 inhibitors in patients with cardiac disease.
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Some but not all studies have demonstrated evidence of 
cardioprotection with PDE5 inhibitors in preclinical mod-
els. Chronic administration of PDE5 inhibitors has shown 
promising results in reducing adverse cardiac outcomes, 
especially in those with underlying risk factors such as dia-
betes. However, these findings have not translated consist-
ently as treatment for patients with congestive heart failure, 
myocardial infarction, or ventricular arrhythmia. Reports 
convincingly showing that PDE5 inhibitors have potential 
as cardiovascular therapy is still infrequent. The reasons 
underlying the lack of translatability of PDE5 inhibitors 
from bench to bedside remain unclear, though they may be 
related to in vitro PDE5 inhibitor dosages being used and 
relevance of animal models, particularly given the known 
challenges of translating the ischemia–reperfusion animal 
model. In addition, variable usage of different PDE5 inhibi-
tors and differences in their respective pharmacokinetics 
could be contributing to conflicting findings. Furthermore, 
the limited effect of PDE5 inhibitors in the cardiovascular 
system may be explained, at least in part, that the conflicting 
data from clinical studies were derived from patients with 
a varying degree of upregulated PDE5 among those with 
cardiovascular disease.

Limitations of data interpretation include the observa-
tional and retrospective nature of some reports, incomplete 
information related to medication adherence in some cases, 
and increased surveillance of blood pressure after initiation 
of PDE5 inhibitors. Caution is needed in data interpretation 
because if ED is considered a risk factor for vascular disease, 
it is difficult to explain an improved outcome with reduction 
in fatal and non-fatal ischemic events when these patients 
are treated with PDE5 inhibitors as compared to patients 
without ED, and there are no randomized trials available to 
clarify the distinction.

The resultant unclear role of PDE5 inhibition in clinical 
cardiac pathologies has contributed to the lack of indications 
for prescribing PDE5 inhibitors in the treatment of cardio-
vascular disease. Importantly, the safety and tolerability of 
PDE5 inhibitors in patients with cardiovascular disease have 
been well established [104], and this review did not iden-
tify significant risks to using PDE5 inhibitors as adjunctive 
therapy in heart failure, coronary disease and myocardial 
infarction, or ventricular arrhythmia, with the exception of 
concurrent nitrate use.

Current clinical trials incorporating PDE5 inhibitors are 
focused on right ventricular dysfunction in patients with 
LVADs, congenital heart disease, or cystic fibrosis; no stud-
ies are investigating the potential utility of PDE5 inhibi-
tors in myocardial infarction, heart failure, or arrhythmia 
(Table 2). Further trials are warranted to better understand 
the role of PDE5 inhibitors in patients with cardiovascular 
disease. Carefully designed dose-dependent and time-course 
studies to optimize clinical PDE5 inhibition could pave the 

path toward large-scale, randomized-controlled clinical trials 
exploring the efficacy of PDE5 inhibitors on cardiac out-
comes in coronary artery disease, heart failure, and ventricu-
lar arrhythmia Results from such investigations could help 
reconcile some of the discrepancies in the literature on the 
role of PDE5 inhibitors in cardiovascular disease.
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