Quick Links

Alterations in cerebrospinal fluid glycerophospholipids and phospholipase A2 activity in Alzheimer's disease.

Authors: Alfred N Fonteh|||Jiarong Chiang|||Matthew Cipolla|||Jack Hale|||Fatimatou Diallo|||Alejandra Chirino|||Xianghong Arakaki|||Michael G Harrington

Journal: Journal of lipid research

Publication Type: Journal Article

Date: 2013

DOI: PMC3770101

ID: 23868911

Affiliations:

Affiliations

    Molecular Neurology Program, Huntington Medical Research Institutes, Pasadena, CA 91101-1830.|||||||||||||||||||||

Abstract

Our aim is to study selected cerebrospinal fluid (CSF) glycerophospholipids (GP) that are important in brain pathophysiology. We recruited cognitively healthy (CH), minimally cognitively impaired (MCI), and late onset Alzheimer's disease (LOAD) study participants and collected their CSF. After fractionation into nanometer particles (NP) and supernatant fluids (SF), we studied the lipid composition of these compartments. LC-MS/MS studies reveal that both CSF fractions from CH subjects have N-acyl phosphatidylethanolamine, 1-radyl-2-acyl-sn-glycerophosphoethanolamine (PE), 1-radyl-2-acyl-sn-glycerophosphocholine (PC), 1,2-diacyl-sn-glycerophosphoserine (PS), platelet-activating factor-like lipids, and lysophosphatidylcholine (LPC). In the NP fraction, GPs are enriched with a mixture of saturated, monounsaturated, and polyunsaturated fatty acid species, while PE and PS in the SF fractions are enriched with PUFA-containing molecular species. PC, PE, and PS levels in CSF fractions decrease progressively in participants from CH to MCI, and then to LOAD. Whereas most PC species decrease equally in LOAD, plasmalogen species account for most of the decrease in PE. A significant increase in the LPC-to-PC ratio and PLA2 activity accompanies the GP decrease in LOAD. These studies reveal that CSF supernatant fluid and nanometer particles have different GP composition, and that PLA2 activity accounts for altered GPs in these fractions as neurodegeneration progresses.


Chemical List

    Glycerophospholipids|||Phospholipases A2

Reference List

    Fahy E., Subramaniam S., Murphy R. C., Nishijima M., Raetz C. R., Shimizu T., Spener F., van Meer G., Wakelam M. J., Dennis E. A. 2009. Update of the LIPID MAPS comprehensive classification system for lipids. J. Lipid Res. 50(Suppl.): S9–S14|||Adibhatla R. M., Hatcher J. F. 2008. Altered lipid metabolism in brain injury and disorders. Subcell. Biochem. 49: 241–268|||Bazan N. G. 2005. Lipid signaling in neural plasticity, brain repair, and neuroprotection. Mol. Neurobiol. 32: 89–103|||Fonteh A. N., Harrington R. J., Huhmer A. F., Biringer R. G., Riggins J. N., Harrington M. G. 2006. Identification of disease markers in human cerebrospinal fluid using lipidomic and proteomic methods. Dis. Markers. 22: 39–64|||Piomelli D., Astarita G., Rapaka R. 2007. A neuroscientist's guide to lipidomics. Nat. Rev. Neurosci. 8: 743–754|||Rapoport S. I. 2001. In vivo fatty acid incorporation into brain phosholipids in relation to plasma availability, signal transduction and membrane remodeling. J. Mol. Neurosci. 16: 243–261|||Kramer R. M., Jakubowski J. A., Deykin D. 1988. Hydrolysis of 1-alkyl-2-arachidonoyl-sn-glycero-3-phosphocholine, a common precursor of platelet-activating factor and eicosanoids, by human platelet phospholipase A2. Biochim. Biophys. Acta. 959: 269–279|||Farooqui A. A., Horrocks L. A. 2004. Brain phospholipases A2: a perspective on the history. Prostaglandins Leukot. Essent. Fatty Acids. 71: 161–169|||Six D. A., Dennis E. A. 2000. The expanding superfamily of phospholipase A(2) enzymes: classification and characterization. Biochim. Biophys. Acta. 1488: 1–19|||Khaselev N., Murphy R. C. 1999. Susceptibility of plasmenyl glycerophosphoethanolamine lipids containing arachidonate to oxidative degradation. Free Radic. Biol. Med. 26: 275–284|||Jonas A. 2000. Lecithin cholesterol acyltransferase. Molecular and Cell Biology of Lipids. 1529: 245–256|||Astarita G., Piomelli D. 2009. Lipidomic analysis of endocannabinoid metabolism in biological samples. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 877: 2755–2767|||Basavarajappa B. S. 2007. Critical enzymes involved in endocannabinoid metabolism. Protein Pept. Lett. 14: 237–246|||Piomelli D., Giuffrida A., Calignano A., Rodriguez De F. F. 2000. The endocannabinoid system as a target for therapeutic drugs. Trends Pharmacol. Sci. 21: 218–224|||Wang J., Ueda N. 2009. Biology of endocannabinoid synthesis system. Prostaglandins Other Lipid Mediat. 89: 112–119|||Tyurina Y. Y., Shvedova A., Kawai K., Tyurin V. A., Kommineni C., Quinn P., Schor N., Fabisiak J., Kagan V. 2000. Phospholipid signaling in apoptosis: peroxidation and externalization of phosphatidylserine. Toxicology. 148: 93–101|||Farooqui A. A., Liss L., Horrocks L. A. 1988. Neurochemical aspects of Alzheimer's disease: involvement of membrane phospholipids. Metab. Brain Dis. 3: 19–35|||Kosicek M., Hecimovic S. 2013. Phospholipids and Alzheimer's disease: alterations, mechanisms and potential biomarkers. Int. J. Mol. Sci. 14: 1310–1322|||Söderberg M., Edlund C., Kristensson K., Dallner G. 1991. Fatty acid composition of brain phospholipids in aging and in Alzheimer's disease. Lipids. 26: 421–425|||Farooqui A. A., Horrocks L. A. 1998. Plasmalogen-selective phospholipase A2 and its involvement in Alzheimer's disease. Biochem. Soc. Trans. 26: 243–246|||Gattaz W. F., Forlenza O. V., Talib L. L., Barbosa N. R., Bottino C. M. 2004. Platelet phospholipase A2 activity in Alzheimer's disease and mild cognitive impairment. J. Neural Transm. 111: 591–601|||Ross B. M., Moszczynska A., Erlich J., Kish S. J. 1998. Phospholipid-metabolizing enzymes in Alzheimer's disease: increased lysophospholipid acyltransferase activity and decreased phospholipase A2 activity. J. Neurochem. 70: 786–793|||Stephenson D. T., Lemere C. A., Selkoe D. J., Clemens J. A. 1996. Cytosolic phospholipase A2 (cPLA2) immunoreactivity is elevated in Alzheimer's disease brain. Neurobiol. Dis. 3: 51–63|||Harrington M. G., Fonteh A. N., Oborina E., Liao P., Cowan R. P., McComb G., Chavez J. N., Rush J., Biringer R. G., Huhmer A. F. 2009. The morphology and biochemistry of nanostructures provide evidence for synthesis and signaling functions in human cerebrospinal fluid. Cerebrospinal Fluid Res. 6: 10.|||McKhann G. M., Knopman D. S., Chertkow H., Hyman B. T., Jack C. R., Jr, Kawas C. H., Klunk W. E., Koroshetz W. J., Manly J. J., Mayeux R., et al. 2011. The diagnosis of dementia due to Alzheimer's disease: recommendation from the National Institute on Aging Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's Dement. 77: 263–269|||Morris J. C. 1997. Clinical dementia rating: a reliable and valid diagnostic and staging measure for dementia of the Alzheimer type. Int. Psychogeriatr. 9(Suppl. 1): 173–176|||Petersen R. C. 2004. Mild cognitive impairment as a diagnostic entity. J. Intern. Med. 256: 183–194|||Bligh E. G., Dyer W. J. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911–917|||Murphy R. C. 2002. Mass Spectrometry of Phospholipids: Tables of Molecular and Product Ions. Illuminati Press, Denver, CO|||Harrison K. A., Davies S. S., Marathe G. K., McIntyre T., Prescott S., Reddy K. M., Falck J. R., Murphy R. C. 2000. Analysis of oxidized glycerophosphocholine lipids using electrospray ionization mass spectrometry and microderivatization techniques. J. Mass Spectrom. 35: 224–236|||Marathe G. K., Prescott S. M., Zimmerman G. A., McIntyre T. M. 2001. Oxidized LDL contains inflammatory PAF-like phospholipids. Trends Cardiovasc. Med. 11: 139–142|||Huang Z., Laliberte F., Tremblay N. M., Weech P. K., Street I. P. 1994. A continuous fluorescence-based assay for the human high-molecular- weight cytosolic phospholipase A2. Anal. Biochem. 222: 110–115|||Huhmer A. F., Biringer R. G., Amato H., Fonteh A. N., Harrington M. G. 2006. Protein analysis in human cerebrospinal fluid: physiological aspects, current progress and future challenges. Dis. Markers. 22: 3–26|||Han X., Gross R. W. 2005. Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom. Rev. 24: 367–412|||Milne S., Ivanova P., Forrester J., Alex B. H. 2006. Lipidomics: an analysis of cellular lipids by ESI-MS. Methods. 39: 92–103|||Zhao Y. Y., Xiong Y., Curtis J. M. 2011. Measurement of phospholipids by hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry: the determination of choline containing compounds in foods. J. Chromatogr. A. 1218: 5470–5479|||Reis A., Spickett C. M. 2012. Chemistry of phospholipid oxidation. Biochim. Biophys. Acta. 1818: 2374–2387|||Wellner N., Diep T. A., Janfelt C., Hansen H. S. 2013. N-acylation of phosphatidylethanolamine and its biological functions in mammals. Biochim. Biophys. Acta. 1831: 652–662|||Ueda N., Tsuboi K., Uyama T. 2010. Enzymological studies on the biosynthesis of N-acylethanolamines. Biochim. Biophys. Acta. 1801: 1274–1285|||Simon G. M., Cravatt B. F. 2006. Endocannabinoid biosynthesis proceeding through glycerophospho-N-acyl ethanolamine and a role for alpha/beta-hydrolase 4 in this pathway. J. Biol. Chem. 281: 26465–26472|||Davidson J. E., Lockhart A., Amos L., Stirnadel-Farrant H. A., Mooser V., Sollberger M., Regeniter A., Monsch A. U., Irizarry M. C. 2012. Plasma lipoprotein-associated phospholipase A2 activity in Alzheimer's disease, amnestic mild cognitive impairment, and cognitively healthy elderly subjects: a cross-sectional study. Alzheimers Res. Ther. 4: 51.|||Amtul Z., Uhrig M., Supino R., Beyreuther K. 2010. Phospholipids and a phospholipid-rich diet alter the in vitro amyloid-beta peptide levels and amyloid-beta 42/40 ratios. Neurosci. Lett. 481: 73–77|||Grimm M. O., Haupenthal V. J., Rothhaar T. L., Zimmer V. C., Grosgen S., Hundsdorfer B., Lehmann J., Grimm H. S., Hartmann T. 2013. Effect of different phospholipids on alpha-secretase activity in the non-amyloidogenic pathway of Alzheimer's disease. Int. J. Mol. Sci. 14: 5879–5898|||Sundaram J. R., Chan E. S., Poore C. P., Pareek T. K., Cheong W. F., Shui G., Tang N., Low C. M., Wenk M. R., Kesavapany S. 2012. Cdk5/p25-induced cytosolic PLA2-mediated lysophosphatidylcholine production regulates neuroinflammation and triggers neurodegeneration. J. Neurosci. 32: 1020–1034|||Desbène C., Malaplate-Armand C., Youssef I., Garcia P., Stenger C., Sauvee M., Fischer N., Rimet D., Koziel V., Escanye M. C., et al. 2012. Critical role of cPLA2 in Abeta oligomer-induced neurodegeneration and memory deficit. Neurobiol. Aging. 33: 1123.e17–1129.e29|||Bazan N. G., Molina M. F., Gordon W. C. 2011. Docosahexaenoic acid signalolipidomics in nutrition: significance in aging, neuroinflammation, macular degeneration, Alzheimer's, and other neurodegenerative diseases. Annu. Rev. Nutr. 31: 321–351|||Cummings J. L. 2001. Treatment of Alzheimer's disease. Clin. Cornerstone. 3: 27–39|||Kidd P. M. 2008. Alzheimer's disease, amnestic mild cognitive impairment, and age-associated memory impairment: current understanding and progress toward integrative prevention. Altern. Med. Rev. 13: 85–115|||Lemkul J. A., Bevan D. R. 2011. Lipid composition influences the release of Alzheimer's amyloid beta-peptide from membranes. Protein Sci. 20: 1530–1545|||Yang X., Sheng W., He Y., Cui J., Haidekker M. A., Sun G. Y., Lee J. C. 2010. Secretory phospholipase A2 type III enhances alpha-secretase-dependent amyloid precursor protein processing through alterations in membrane fluidity. J. Lipid Res. 51: 957–966|||Coulon D., Faure L., Salmon M., Wattelet V., Bessoule J. J. 2012. Occurrence, biosynthesis and functions of N-acylphosphatidylethanolamines (NAPE): not just precursors of N-acylethanolamines (NAE). Biochimie. 94: 75–85|||Farooqui A. A., Litsky M. L., Farooqui T., Horrocks L. A. 1999. Inhibitors of intracellular phospholipase A2 activity: their neurochemical effects and therapeutical importance for neurological disorders. Brain Res. Bull. 49: 139–153|||Farooqui A. A., Ong W. Y., Horrocks L. A. 2004. Neuroprotection abilities of cytosolic phospholipase A2 inhibitors in kainic acid-induced neurodegeneration. Curr. Drug Targets Cardiovasc. Haematol. Disord. 4: 85–96