Quick Links

Polyunsaturated Fatty Acid Composition of Cerebrospinal Fluid Fractions Shows Their Contribution to Cognitive Resilience of a Pr

Authors: Alfred N Fonteh|||Matthew Cipolla|||Abby J Chiang|||Sarah P Edminster|||Xianghong Arakaki|||Michael G Harrington

Journal: Frontiers in physiology

Publication Type: Journal Article

Date: 2020

DOI: PMC7034243

ID: 32116789

Affiliations:

Affiliations

    Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States.|||Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States.|||Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States.|||Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States.|||Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States.|||Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States.

Abstract

Alzheimer's disease (AD) pathology is characterized by an early and prolonged decrease in the amyloid peptide (Aβ) levels concomitant with a later increase in phospho-tau concentrations in cerebrospinal fluid (CSF). We propose that changes in lipid metabolism can contribute to the abnormal processing of Aβ in AD. Our aim was to determine if polyunsaturated fatty acid (PUFA) metabolism can differentiate pre-symptomatic AD from normal aging and symptomatic AD. Using neuropsychology measures and Aβ/T-tau in cerebrospinal fluid (CSF), we classify three groups of elderly study participants: cognitively healthy with normal Aβ/T-tau (CH-NAT), cognitively healthy with pathological Aβ/T-tau (CH-PAT), and AD individuals. We determined the size distribution and the concentration of CSF particles using light scattering and quantified PUFA composition in the nanoparticulate (NP) fraction, supernatant fluid (SF), and unesterified PUFA levels using gas chromatography combined with mass spectrometry. Four PUFAs (C20:2n-6, C20:3n-3, C22:4n-6, C22:5n-3) were enriched in NP of AD compared with CH-NAT. C20:3n-3 levels were higher in the NP fraction from AD compared with CH-PAT. When normalized to the number of NPs in CSF, PUFA levels were significantly higher in CH-NAT and CH-PAT compared with AD. In the SF fractions, only the levels of docosahexaenoic acid (DHA, C22:6n-3) differentiated all three clinical groups. Unesterified DHA was also higher in CH-NAT compared with the other clinical groups. Our studies also show that NP PUFAs in CH participants negatively correlate with CSF Aβ while C20:4n-6, DHA, and n-3 PUFAs in the SF fraction positively correlate with T-tau. The profile of PUFAs in different CSF fractions that correlate with Aβ or with T-tau are different for CH-NAT compared with CH-PAT. These studies show that PUFA metabolism is associated with amyloid and tau processing. Importantly, higher PUFA levels in the cognitively healthy study participants with abnormal Aβ/T-tau suggest that PUFA enhances the cognitive resilience of the pre-symptomatic AD population. We propose that interventions that prevent PUFA depletion in the brain may prevent AD pathology by stabilizing Aβ and tau metabolism. Further studies to determine changes in PUFA composition during the progression from pre-symptomatic to AD should reveal novel biomarkers and potential preventive approaches.


Reference List

    Aiello Bowles E. J., Crane P. K., Walker R. L., Chubak J., LaCroix A. Z., Anderson M. L., et al. (2019). Cognitive resilience to Alzheimer’s disease pathology in the human brain. J. Alzheimers Dis. 68 1071–1083.|||Andrew R. J., Fernandez C. G., Stanley M., Jiang H., Nguyen P., Rice R. C., et al. (2017). Lack of BACE1 S-palmitoylation reduces amyloid burden and mitigates memory deficits in transgenic mouse models of Alzheimer’s disease. Proc. Natl. Acad. Sci. U.S.A. 114 E9665–E9674. 10.1073/pnas.1708568114|||Ansari M. A., Scheff S. W. (2010). Oxidative stress in the progression of Alzheimer’s disease in the frontal cortex. J. Neuropathol. Exp. Neurol. 69 155–167. 10.1097/NEN.0b013e3181cb5af4|||Askarova S., Yang X., Lee J. C. (2011). Impacts of membrane biophysics in Alzheimer’s disease: from amyloid precursor protein processing to abeta peptide-induced membrane changes. Int. J. Alzheimers Dis. 2011:134971. 10.4061/2011/134971|||Aveldano M. I., Horrocks L. A. (1983). Quantitative release of fatty acids from lipids by a simple hydrolysis procedure. J. Lipid Res. 24 1101–1105.|||Avila-Munoz E., Arias C. (2015). Cholesterol-induced astrocyte activation is associated with increased amyloid precursor protein expression and processing. Glia 63 2010–2022. 10.1002/glia.22874|||Bazan H. A., Lu Y., Jun B., Fang Z., Woods T. C., Hong S. (2017). Circulating inflammation-resolving lipid mediators RvD1 and DHA are decreased in patients with acutely symptomatic carotid disease. Prostaglandins Leukot. Essent. Fatty Acids 125 43–47. 10.1016/j.plefa.2017.08.007|||Bhattacharyya R., Barren C., Kovacs D. M. (2013). Palmitoylation of amyloid precursor protein regulates amyloidogenic processing in lipid rafts. J. Neurosci. 33 11169–11183. 10.1523/JNEUROSCI.4704-12.2013|||Bhattacharyya R., Fenn R. H., Barren C., Tanzi R. E., Kovacs D. M. (2016). Palmitoylated APP forms dimers. Cleaved by BACE1. PLoS One 11:e0166400. 10.1371/journal.pone.0166400|||Blennow K., Vanmechelen E., Hampel H. (2001). CSF total tau, Abeta42.and phosphorylated tau protein as biomarkers for Alzheimer’s disease. Mol. Neurobiol. 24 87–97.|||Bligh E. G., Dyer W. J. (1959). A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37 911–917.|||Bonda D. J., Wang X., Perry G., Nunomura A., Tabaton M., Zhu X., et al. (2010). Oxidative stress in Alzheimer disease: a possibility for prevention. Neuropharmacology 59 290–294.|||Boros B. D., Greathouse K. M., Gentry E. G., Curtis K. A., Birchall E. L., Gearing M., et al. (2017). Dendritic spines provide cognitive resilience against Alzheimer’s disease. Ann. Neurol. 82 602–614. 10.1002/ana.25049|||Butterfield D. A., Howard B., Yatin S., Koppal T., Drake J., Hensley K., et al. (1999). Elevated oxidative stress in models of normal brain aging and Alzheimer’s disease. Life Sci. 65 1883–1892. 10.1016/s0024-3205(99)00442-7|||Calero O., Hortiguela R., Bullido M. J., Calero M. (2009). Apolipoprotein E genotyping method by real-time PCR, a fast and cost-effective alternative to the TaqMan and FRET assays. J. Neurosci. Methods 183 238–240. 10.1016/j.jneumeth.2009.06.033|||Cardoso C., Afonso C., Bandarra N. M. (2016). Dietary DHA, and health: cognitive function, aging. Nutr. Res. Rev. 29 281–294. 10.1017/s0954422416000184|||Chilton F. H., Patel M., Fonteh A. N., Hubbard W. C., Triggiani M. (1993). Dietary n-3 fatty acid effects on neutrophil lipid composition and mediator production. Influence of duration and dosage. J. Clin. Invest. 91 115–122. 10.1172/jci116159|||Chiu C. C., Su K. P., Cheng T. C., Liu H. C., Chang C. J., Dewey M. E., et al. (2008). The effects of omega-3 fatty acids monotherapy in Alzheimer’s disease and mild cognitive impairment: a preliminary randomized, double-blind placebo-controlled study. Prog. Neuropsychopharmacol. Biol. Psychiatry 32 1538–1544. 10.1016/j.pnpbp.2008.05.015|||Chong J., Soufan O., Li C., Caraus I., Li S., Bourque G., et al. (2018). MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 46 W486–W494. 10.1093/nar/gky310|||Chong J., Wishart D. S., Xia J. (2019). Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis. Curr. Protoc. Bioinformatics 68:e86. 10.1002/cpbi.86|||Cole G. M., Frautschy S. A. (2006). Docosahexaenoic acid protects from amyloid and dendritic pathology in an Alzheimer’s disease mouse model. Nutr. Health 18 249–259. 10.1177/026010600601800307|||Cummings J. L., Vinters H. V., Cole G. M., Khachaturian Z. S. (1998). Alzheimer’s disease: etiologies, pathophysiology, cognitive reserve, and treatment opportunities. Neurology 51(1 Suppl. 1) S2–S17; discussion S65–S67.|||Eckert G. P., Chang S., Eckmann J., Copanaki E., Hagl S., Hener U., et al. (2011). Liposome-incorporated DHA increases neuronal survival by enhancing non-amyloidogenic APP processing. Biochim. Biophys. Acta 1808 236–243. 10.1016/j.bbamem.2010.10.014|||Eckman J., Dixit S., Nackenoff A., Schrag M., Harrison F. E. (2018). Oxidative stress levels in the brain are determined by post-mortem interval and ante-mortem vitamin C state but not Alzheimer’s disease status. Nutrients 10:883. 10.3390/nu10070883|||Eto M., Hashimoto T., Shimizu T., Iwatsubo T. (2019). Characterization of the unique in vitro effects of unsaturated fatty acids on the formation of amyloid beta fibrils. PLoS One 14:e0219465. 10.1371/journal.pone.0219465|||Farooqui A. A., Farooqui T., Panza F., Frisardi V. (2012). Metabolic syndrome as a risk factor for neurological disorders. Cell. Mol. Life Sci. 69 741–762. 10.1007/s00018-011-0840-1|||Farooqui A. A., Horrocks L. A. (1998). Plasmalogen-selective phospholipase A2 and its involvement in Alzheimer’s disease. Biochem. Soc. Trans. 26 243–246.|||Filley C. M. (1995). Alzheimer’s disease: it’s irreversible but not untreatable. Geriatrics 50 18–23.|||Fonteh A. N., Chiang J., Cipolla M., Hale J., Diallo F., Chirino A., et al. (2013). Alterations in cerebrospinal fluid glycerophospholipids and phospholipase A2 activity in Alzheimer’s disease. J. Lipid Res. 54 2884–2897. 10.1194/jlr.M037622|||Fonteh A. N., Cipolla M., Chiang J., Arakaki X., Harrington M. G. (2014). Human cerebrospinal fluid fatty acid levels differ between supernatant fluid and brain-derived nanoparticle fractions and are altered in Alzheimer’s disease. PLoS One 9:e100519. 10.1371/journal.pone.0100519|||Freund-Levi Y., Vedin I., Hjorth E., Basun H., Faxen Irving G., Schultzberg M., et al. (2014). Effects of supplementation with omega-3 fatty acids on oxidative stress and inflammation in patients with Alzheimer’s disease: the OmegAD study. J. Alzheimers Dis. 42 823–831. 10.3233/JAD-132042|||Gravaghi C., La Perle K. M., Ogrodwski P., Kang J. X., Quimby F., Lipkin M., et al. (2011). Cox-2 expression, PGE(2) and cytokines production are inhibited by endogenously synthesized n-3 PUFAs in the inflamed colon of fat-1 mice. J. Nutr. Biochem. 22 360–365. 10.1016/j.jnutbio.2010.03.003|||Grimm M. O., Haupenthal V. J., Mett J., Stahlmann C. P., Blumel T., Mylonas N. T., et al. (2016). Oxidized docosahexaenoic acid species and lipid peroxidation products increase amyloidogenic amyloid precursor protein processing. Neurodegener. Dis. 16 44–54. 10.1159/000440839|||Grimm M. O., Kuchenbecker J., Grosgen S., Burg V. K., Hundsdorfer B., Rothhaar T. L., et al. (2011). Docosahexaenoic acid reduces amyloid beta production via multiple pleiotropic mechanisms. J. Biol. Chem. 286 14028–14039. 10.1074/jbc.M110.182329|||Harrington M. G., Chiang J., Pogoda J. M., Gomez M., Thomas K., Marion S. D., et al. (2013). Executive function changes before memory in preclinical Alzheimer’s pathology: a prospective, cross-sectional, case-control study. PLoS One 8:e79378. 10.1371/journal.pone.0079378|||Harrington M. G., Edminster S. P., Buennagel D. P., Chiang J. P., Sweeney M. D., Chui H. C., et al. (2019). FOUR-year longitudinal study of cognitively healthy individuals: CSF amyloid/tau levels and nanoparticle membranes identify high risk for alzheimer’s disease. Alzheimers Dement. 15 299.|||Harrington M. G., Fonteh A. N., Oborina E., Liao P., Cowan R. P., McComb G., et al. (2009). The morphology and biochemistry of nanostructures provide evidence for synthesis and signaling functions in human cerebrospinal fluid. Cerebrospinal Fluid Res. 6:10. 10.1186/1743-8454-6-10|||Heras-Sandoval D., Pedraza-Chaverri J., Perez-Rojas J. M. (2016). Role of docosahexaenoic acid in the modulation of glial cells in Alzheimer’s disease. J. Neuroinflammation 13:61. 10.1186/s12974-016-0525-7|||Ho C. F., Ismail N. B., Koh J. K., Gunaseelan S., Low Y. H., Ng Y. K., et al. (2018). Localisation of Formyl-peptide receptor 2 in the rat central nervous system and its role in axonal and dendritic outgrowth. Neurochem. Res. 43 1587–1598. 10.1007/s11064-018-2573-0|||Kametaka S., Shibata M., Moroe K., Kanamori S., Ohsawa Y., Waguri S., et al. (2003). Identification of phospholipid scramblase 1 as a novel interacting molecule with beta -secretase (beta -site amyloid precursor protein (APP) cleaving enzyme (BACE)). J. Biol. Chem. 278 15239–15245. 10.1074/jbc.m208611200|||Kiecolt-Glaser J. K., Epel E. S., Belury M. A., Andridge R., Lin J., Glaser R., et al. (2013). Omega-3 fatty acids, oxidative stress, and leukocyte telomere length: a randomized controlled trial. Brain Behav. Immun. 28 16–24. 10.1016/j.bbi.2012.09.004|||Lee S., Tong M., Hang S., Deochand C., de la Monte S. (2013). CSF and brain indices of insulin resistance, oxidative stress and neuro-inflammation in early versus late Alzheimer’s disease. J. Alzheimers Dis. Parkinsonism 3:128.|||Lucke-Wold B. P., Logsdon A. F., Turner R. C., Rosen C. L., Huber J. D. (2014). Aging, the metabolic syndrome, and ischemic stroke: redefining the approach for studying the blood-brain barrier in a complex neurological disease. Adv. Pharmacol. 71 411–449. 10.1016/bs.apha.2014.07.001|||Lukiw W. J., Bazan N. G. (2008). Docosahexaenoic acid, and the aging brain. J. Nutr. 138 2510–2514. 10.3945/jn.108.096016|||Marlow L., Cain M., Pappolla M. A., Sambamurti K. (2003). Beta-secretase processing of the Alzheimer’s amyloid protein precursor (APP). J. Mol. Neurosci. 20 233–239.|||Marwarha G., Claycombe-Larson K., Lund J., Ghribi O. (2019). Palmitate-Induced SREBP1 expression and activation underlies the increased BACE 1 activity and amyloid beta genesis. Mol. Neurobiol. 56 5256–5269. 10.1007/s12035-018-1451-8|||Matsumoto Y., Yamaguchi T., Watanabe S., Yamamoto T. (2004). Involvement of arachidonic acid cascade in working memory impairment induced by interleukin-1 beta. Neuropharmacology 46 1195–1200. 10.1016/j.neuropharm.2004.02.012|||McKhann G. M., Knopman D. S., Chertkow H., Hyman B. T., Jack CR, Jr, Kawas C. H., et al. (2011). The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 7 263–269. 10.1016/j.jalz.2011.03.005|||Menardi A., Pascual-Leone A., Fried P. J., Santarnecchi E. (2018). The role of cognitive reserve in Alzheimer’s disease and aging: a multi-modal imaging review. J. Alzheimers Dis. 66 1341–1362. 10.3233/JAD-180549|||Mitjavila M. T., Moreno J. J. (2012). The effects of polyphenols on oxidative stress and the arachidonic acid cascade. Implications for the prevention/treatment of high prevalence diseases. Biochem. Pharmacol. 84 1113–1122. 10.1016/j.bcp.2012.07.017|||Montine T. J., Morrow J. D. (2005). Fatty acid oxidation in the pathogenesis of Alzheimer’s disease. Am. J. Pathol. 166 1283–1289. 10.1016/s0002-9440(10)62347-4|||Mosconi L., Pupi A., De Leon M. J. (2008). Brain glucose hypometabolism and oxidative stress in preclinical Alzheimer’s disease. Ann. N. Y. Acad. Sci. 1147 180–195. 10.1196/annals.1427.007|||Munnamalai V., Suter D. M. (2009). Reactive oxygen species regulate F-actin dynamics in neuronal growth cones and neurite outgrowth. J. Neurochem. 108 644–661. 10.1111/j.1471-4159.2008.05787.x|||Negash S., Xie S., Davatzikos C., Clark C. M., Trojanowski J. Q., Shaw L. M., et al. (2013). Cognitive and functional resilience despite molecular evidence of Alzheimer’s disease pathology. Alzheimers Dement. 9 e89–e95. 10.1016/j.jalz.2012.01.009|||Neudorf H., Durrer C., Myette-Cote E., Makins C., O’Malley T., Little J. P. (2019). Oral ketone supplementation acutely increases markers of NLRP3 inflammasome activation in human monocytes. Mol. Nutr. Food Res. 63:e1801171. 10.1002/mnfr.201801171|||Oikawa N., Matsubara T., Fukuda R., Yasumori H., Hatsuta H., Murayama S., et al. (2015). Imbalance in the fatty-acid-chain length of gangliosides triggers Alzheimer amyloid deposition in the precuneus. PLoS One 10:e0121356. 10.1371/journal.pone.0121356|||Oikawa N., Yamaguchi H., Ogino K., Taki T., Yuyama K., Yamamoto N., et al. (2009). Gangliosides determine the amyloid pathology of Alzheimer’s disease. Neuroreport 20 1043–1046. 10.1097/WNR.0b013e32832e4b9d|||Oksman M., Iivonen H., Hogyes E., Amtul Z., Penke B., Leenders I., et al. (2006). Impact of different saturated fatty acid, polyunsaturated fatty acid and cholesterol-containing diets on beta-amyloid accumulation in APP/PS1 transgenic mice. Neurobiol. Dis. 23 563–572. 10.1016/j.nbd.2006.04.013|||Persson K., Eldholm R. S., Barca M. L., Cavallin L., Ferreira D., Knapskog A. B., et al. (2017). MRI-assessed atrophy subtypes in Alzheimer’s disease and the cognitive reserve hypothesis. PLoS One 12:e0186595. 10.1371/journal.pone.0186595|||Pomponi M., Di Gioia A., Bria P., Pomponi M. F. (2008). Fatty aspirin: a new perspective in the prevention of dementia of Alzheimer’s type? Curr. Alzheimer Res. 5 422–431. 10.2174/156720508785908892|||Poreba M., Mostowik M., Siniarski A., Golebiowska-Wiatrak R., Malinowski K. P., Haberka M., et al. (2017). Treatment with high-dose n-3 PUFAs has no effect on platelet function, coagulation, metabolic status or inflammation in patients with atherosclerosis and type 2 diabetes. Cardiovasc. Diabetol. 16:50. 10.1186/s12933-017-0523-9|||Qu Q., Xuan W., Fan G. H. (2015). Roles of resolvins in the resolution of acute inflammation. Cell Biol. Int. 39 3–22. 10.1002/cbin.10345|||Quehenberger O., Armando A., Dumlao D., Stephens D. L., Dennis E. A. (2008). Lipidomics analysis of essential fatty acids in macrophages. Prostaglandins Leukot. Essent. Fatty Acids 79 123–129. 10.1016/j.plefa.2008.09.021|||Raukas M., Rebane R., Mahlapuu R., Jefremov V., Zilmer K., Karelson E., et al. (2012). Mitochondrial oxidative stress index, activity of redox-sensitive aconitase and effects of endogenous anti- and pro-oxidants on its activity in control, Alzheimer’s disease and Swedish Familial Alzheimer’s disease brain. Free Radic. Res. 46 1490–1495. 10.3109/10715762.2012.728286|||Roe C. M., Mintun M. A., D’Angelo G., Xiong C., Grant E. A., Morris J. C. (2008). Alzheimer’s disease and cognitive reserve: variation of education effect with carbon 11-labeled Pittsburgh Compound B uptake. Arch. Neurol. 65 1467–1471. 10.1001/archneur.65.11.1467|||Sahlin C., Pettersson F. E., Nilsson L. N., Lannfelt L., Johansson A. S. (2007). Docosahexaenoic acid stimulates non-amyloidogenic APP processing resulting in reduced Abeta levels in cellular models of Alzheimer’s disease. Eur. J. Neurosci. 26 882–889. 10.1111/j.1460-9568.2007.05719.x|||Sanchez-Mejia R. O., Mucke L. (2010). Phospholipase A2 and arachidonic acid in Alzheimer’s disease. Biochim. Biophys. Acta 1801 784–790. 10.1016/j.bbalip.2010.05.013|||Serhan C. N., Dalli J., Colas R. A., Winkler J. W., Chiang N. (2015). Protectins and maresins: new pro-resolving families of mediators in acute inflammation and resolution bioactive metabolome. Biochim. Biophys. Acta 1851 397–413. 10.1016/j.bbalip.2014.08.006|||Serini S., Bizzarro A., Piccioni E., Fasano E., Rossi C., Lauria A., et al. (2012). EPA and DHA differentially affect in vitro inflammatory cytokine release by peripheral blood mononuclear cells from Alzheimer’s patients. Curr. Alzheimer Res. 9 913–923. 10.2174/156720512803251147|||Sheppard K. W., Cheatham C. L. (2013). Omega-6 to omega-3 fatty acid ratio and higher-order cognitive functions in 7- to 9-y-olds: a cross-sectional study. Am. J. Clin. Nutr. 98 659–667. 10.3945/ajcn.113.058719|||Skoog I., Waern M., Duberstein P., Blennow K., Zetterberg H., Borjesson-Hanson A., et al. (2015). A 9-year prospective population-based study on the association between the APOE∗E4 allele and late-life depression in Sweden. Biol. Psychiatry 78 730–736. 10.1016/j.biopsych.2015.01.006|||Stephenson D. T., Lemere C. A., Selkoe D. J., Clemens J. A. (1996). Cytosolic phospholipase A2 (cPLA2) immunoreactivity is elevated in Alzheimer’s disease brain. Neurobiol. Dis. 3 51–63. 10.1006/nbdi.1996.0005|||Tan J. Z. A., Gleeson P. A. (2019). The role of membrane trafficking in the processing of amyloid precursor protein and production of amyloid peptides in Alzheimer’s disease. Biochim. Biophys. Acta Biomembr. 1861 697–712. 10.1016/j.bbamem.2018.11.013|||Tan Z. S., Harris W. S., Beiser A. S., Au R., Himali J. J., Debette S., et al. (2012). Red blood cell omega-3 fatty acid levels and markers of accelerated brain aging. Neurology 78 658–664. 10.1212/WNL.0b013e318249f6a9|||Thau-Zuchman O., Ingram R., Harvey G. G., Cooke T., Palmas F., Pallier P. N., et al. (2019). A single injection of docosahexaenoic acid induces a pro-resolving lipid mediator profile in the injured tissue and a long-lasting reduction in neurological deficit after traumatic brain injury in mice. J. Neurotrauma 37 66–79. 10.1089/neu.2019.6420|||Wallin A. K., Blennow K., Andreasen N., Minthon L. (2006). CSF biomarkers for Alzheimer’s disease: levels of beta-amyloid, tau, phosphorylated tau relate to clinical symptoms and survival. Dement. Geriatr. Cogn. Disord. 21 131–138. 10.1159/000090631|||Wang P. Y., Chen J. J., Su H. M. (2010). Docosahexaenoic acid supplementation of primary rat hippocampal neurons attenuates the neurotoxicity induced by aggregated amyloid beta protein(42) and up-regulates cytoskeletal protein expression. J. Nutr. Biochem. 21 345–350. 10.1016/j.jnutbio.2009.01.012|||Wu L., Zhang X., Zhao L. (2018). Human ApoE isoforms differentially modulate brain glucose and ketone body metabolism: implications for Alzheimer’s disease risk reduction and early intervention. J. Neurosci. 38 6665–6681. 10.1523/JNEUROSCI.2262-17.2018|||Zhang Y., Kuang Y., LaManna J. C., Puchowicz M. A. (2013). Contribution of brain glucose and ketone bodies to oxidative metabolism. Adv. Exp. Med. Biol. 765 365–370. 10.1007/978-1-4614-4989-8_51|||Zhao Y., Calon F., Julien C., Winkler J. W., Petasis N. A., Lukiw W. J., et al. (2011). Docosahexaenoic acid-derived neuroprotectin D1 induces neuronal survival via secretase- and PPARgamma-mediated mechanisms in Alzheimer’s disease models. PLoS One 6:e15816. 10.1371/journal.pone.0015816