Urine dicarboxylic acids change in pre-symptomatic Alzheimer's disease and reflect loss of energy capacity and hippocampal volum
Authors:
Journal: PloS one
Publication Type: Journal Article
Date: 2020
DOI: PMC7162508
ID: 32298384
Abstract
Non-invasive biomarkers will enable widespread screening and early diagnosis of Alzheimer's disease (AD). We hypothesized that the considerable loss of brain tissue in AD will result in detection of brain lipid components in urine, and that these will change in concert with CSF and brain biomarkers of AD. We examined urine dicarboxylic acids (DCA) of carbon length 3-10 to reflect products of oxidative damage and energy generation or balance that may account for changes in brain function in AD. Mean C4-C5 DCAs were lower and mean C7-C10 DCAs were higher in the urine from AD compared to cognitively healthy (CH) individuals. Moreover, mean C4-C5 DCAs were lower and mean C7-C9 were higher in urine from CH individuals with abnormal compared to normal CSF amyloid and Tau levels; i.e., the apparent urine changes in AD also appeared to be present in CH individuals that have CSF risk factors of early AD pathology. In examining the relationship between urine DCAs and AD biomarkers, we found short chain DCAs positively correlated with CSF Aβ42, while C7-C10 DCAs negatively correlated with CSF Aβ42 and positively correlated with CSF Tau levels. Furthermore, we found a negative correlation of C7-C10 DCAs with hippocampal volume (p < 0.01), which was not found in the occipital volume. Urine measures of DCAs have an 82% ability to predict cognitively healthy participants with normal CSF amyloid/Tau. These data suggest that urine measures of increased lipoxidation and dysfunctional energy balance reflect early AD pathology from brain and CSF biomarkers. Measures of urine DCAs may contribute to personalized healthcare by indicating AD pathology and may be utilized to explore population wellness or monitor the efficacy of therapies in clinical trials.
Chemical List
- Amyloid beta-Peptides|||Biomarkers|||Dicarboxylic Acids|||tau Proteins
Reference List
- Alzheimer's A. 2016 Alzheimer's disease facts and figures. Alzheimer's & dementia: the journal of the Alzheimer's Association. 2016;12(4):459–509. 10.1016/j.jalz.2016.03.001 .|||Selkoe DJ. Toward a Comprehensive Theory for Alzheimer's Disease. Hypothesis: Alzheimer's Disease Is Caused by the Cerebral Accumulation and Cytotoxicity of Amyloid β-Protein. Annals of the New York Academy of Sciences. 2006;924(1):17–25. 10.1111/j.1749-6632.2000.tb05554.x|||Musiek ES, Holtzman DM. Origins of Alzheimer's disease: reconciling cerebrospinal fluid biomarker and neuropathology data regarding the temporal sequence of amyloid-beta and tau involvement. Curr Opin Neurol. 2012;25(6):715–20. 10.1097/WCO.0b013e32835a30f4|||2016 Alzheimer's Disease Facts and Figures [website]. Alzheimer's Association; 2016 [cited 2016 September 13]. Available from: www.alz.org/facts/overview.asp.|||Caselli RJ, Beach TG, Knopman DS, Graff-Radford NR. Alzheimer Disease: Scientific Breakthroughs and Translational Challenges. Mayo Clin Proc. 2017;92(6):978–94. 10.1016/j.mayocp.2017.02.011|||Reiman EM, Langbaum JB, Tariot PN, Lopera F, Bateman RJ, Morris JC, et al. CAP—advancing the evaluation of preclinical Alzheimer disease treatments. Nature reviews. 2016;12(1):56–61. 10.1038/nrneurol.2015.177|||Bateman RJ, Benzinger TL, Berry S, Clifford DB, Duggan C, Fagan AM, et al. The DIAN-TU Next Generation Alzheimer's prevention trial: Adaptive design and disease progression model. Alzheimer's & dementia: the journal of the Alzheimer's Association. 2017;13(1):8–19. 10.1016/j.jalz.2016.07.005|||Strozyk D, Blennow K, White LR, Launer LJ. CSF Abeta 42 levels correlate with amyloid-neuropathology in a population-based autopsy study. Neurology. 2003;60(4):652–6. 10.1212/01.wnl.0000046581.81650.d0 .|||Jack CR Jr., Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, et al. Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12(2):207–16. 10.1016/S1474-4422(12)70291-0|||Tapiola T, Alafuzoff I, Herukka SK, Parkkinen L, Hartikainen P, Soininen H, et al. Cerebrospinal fluid -amyloid 42 and tau proteins as biomarkers of Alzheimer-type pathologic changes in the brain. Arch Neurol. 2009;66(3):382–9. 10.1001/archneurol.2008.596 .|||Mishra S, Gordon BA, Su Y, Christensen J, Friedrichsen K, Jackson K, et al. AV-1451 PET imaging of tau pathology in preclinical Alzheimer disease: Defining a summary measure. Neuroimage. 2017;161:171–8. 10.1016/j.neuroimage.2017.07.050 .|||Vlassenko AG, Benzinger TL, Morris JC. PET amyloid-beta imaging in preclinical Alzheimer's disease. Biochim Biophys Acta. 2012;1822(3):370–9. 10.1016/j.bbadis.2011.11.005|||Vlassenko AG, McCue L, Jasielec MS, Su Y, Gordon BA, Xiong C, et al. Imaging and cerebrospinal fluid biomarkers in early preclinical alzheimer disease. Ann Neurol. 2016;80(3):379–87. 10.1002/ana.24719|||Sutphen CL, Jasielec MS, Shah AR, Macy EM, Xiong C, Vlassenko AG, et al. Longitudinal Cerebrospinal Fluid Biomarker Changes in Preclinical Alzheimer Disease During Middle Age. JAMA neurology. 2015;72(9):1029–42. 10.1001/jamaneurol.2015.1285|||Kester MI, Teunissen CE, Sutphen C, Herries EM, Ladenson JH, Xiong C, et al. Cerebrospinal fluid VILIP-1 and YKL-40, candidate biomarkers to diagnose, predict and monitor Alzheimer's disease in a memory clinic cohort. Alzheimers Res Ther. 2015;7(1):59 10.1186/s13195-015-0142-1|||Tarawneh R, D'Angelo G, Crimmins D, Herries E, Griest T, Fagan AM, et al. Diagnostic and Prognostic Utility of the Synaptic Marker Neurogranin in Alzheimer Disease. JAMA neurology. 2016;73(5):561–71. 10.1001/jamaneurol.2016.0086|||Llano DA, Bundela S, Mudar RA, Devanarayan V, Alzheimer's Disease Neuroimaging I. A multivariate predictive modeling approach reveals a novel CSF peptide signature for both Alzheimer's Disease state classification and for predicting future disease progression. PloS one. 2017;12(8):e0182098 10.1371/journal.pone.0182098|||Blennow K. A Review of Fluid Biomarkers for Alzheimer's Disease: Moving from CSF to Blood. Neurol Ther. 2017;6(Suppl 1):15–24. 10.1007/s40120-017-0073-9|||Trushina E, Dutta T, Persson XM, Mielke MM, Petersen RC. Identification of altered metabolic pathways in plasma and CSF in mild cognitive impairment and Alzheimer's disease using metabolomics. PloS one. 2013;8(5):e63644 10.1371/journal.pone.0063644|||Lugli G, Cohen AM, Bennett DA, Shah RC, Fields CJ, Hernandez AG, et al. Plasma Exosomal miRNAs in Persons with and without Alzheimer Disease: Altered Expression and Prospects for Biomarkers. PloS one. 2015;10(10):e0139233 10.1371/journal.pone.0139233|||Zhang F, Wei J, Li X, Ma C, Gao Y. Early Candidate Urine Biomarkers for Detecting Alzheimer's Disease Before Amyloid-beta Plaque Deposition in an APP (swe)/PSEN1dE9 Transgenic Mouse Model. J Alzheimers Dis. 2018;66(2):613–37. Epub 2018/10/16. 10.3233/JAD-180412 .|||Wang C, Cui Y, Yang J, Zhang J, Yuan D, Wei Y, et al. Combining serum and urine biomarkers in the early diagnosis of mild cognitive impairment that evolves into Alzheimer's disease in patients with the apolipoprotein E 4 genotype. Biomarkers. 2015;20(1):84–8. 10.3109/1354750X.2014.994036 .|||Youn YC, Park KW, Han SH, Kim S. Urine neural thread protein measurements in Alzheimer disease. J Am Med Dir Assoc. 2011;12(5):372–6. 10.1016/j.jamda.2010.03.004 .|||Chatterjee P, Elmi M, Goozee K, Shah T, Sohrabi HR, Dias CB, et al. Ultrasensitive Detection of Plasma Amyloid-beta as a Biomarker for Cognitively Normal Elderly Individuals at Risk of Alzheimer's Disease. J Alzheimers Dis. 2019. Epub 2019/08/20. 10.3233/JAD-190533 .|||Paterson RW, Gabelle A, Lucey BP, Barthelemy NR, Leckey CA, Hirtz C, et al. SILK studies—capturing the turnover of proteins linked to neurodegenerative diseases. Nature reviews. 2019;15(7):419–27. Epub 2019/06/22. 10.1038/s41582-019-0222-0 .|||Boccardi M, Gallo V, Yasui Y, Vineis P, Padovani A, Mosimann U, et al. The biomarker-based diagnosis of Alzheimer's disease. 2-lessons from oncology. Neurobiol Aging. 2017;52:141–52. 10.1016/j.neurobiolaging.2017.01.021 .|||Passi S, Picardo M, De Luca C, Nazzaro-Porro M, Rossi L, Rotilio G. Saturated dicarboxylic acids as products of unsaturated fatty acid oxidation. Biochim Biophys Acta. 1993;1168(2):190–8. 10.1016/0005-2760(93)90124-r .|||Inouye M, Mio T, Sumino K. Dicarboxylic acids as markers of fatty acid peroxidation in diabetes. Atherosclerosis. 2000;148(1):197–202. 10.1016/s0021-9150(99)00263-4 .|||Alleyn M, Breitzig M, Lockey R, Kolliputi N. The dawn of succinylation: a posttranslational modification. Am J Physiol Cell Physiol. 2018;314(2):C228–C32. 10.1152/ajpcell.00148.2017|||Weinert BT, Scholz C, Wagner SA, Iesmantavicius V, Su D, Daniel JA, et al. Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation. Cell Rep. 2013;4(4):842–51. 10.1016/j.celrep.2013.07.024 .|||Klosinski LP, Yao J, Yin F, Fonteh AN, Harrington MG, Christensen TA, et al. White Matter Lipids as a Ketogenic Fuel Supply in Aging Female Brain: Implications for Alzheimer's Disease. EBioMedicine. 2015;2(12):1888–904. 10.1016/j.ebiom.2015.11.002|||Salminen A, Haapasalo A, Kauppinen A, Kaarniranta K, Soininen H, Hiltunen M. Impaired mitochondrial energy metabolism in Alzheimer's disease: Impact on pathogenesis via disturbed epigenetic regulation of chromatin landscape. Prog Neurobiol. 2015;131:1–20. 10.1016/j.pneurobio.2015.05.001 .|||Filon JR, Intorcia AJ, Sue LI, Vazquez Arreola E, Wilson J, Davis KJ, et al. Gender Differences in Alzheimer Disease: Brain Atrophy, Histopathology Burden, and Cognition. J Neuropathol Exp Neurol. 2016. 10.1093/jnen/nlw047 .|||Fonteh AN, Harrington RJ, Huhmer AF, Biringer RG, Riggins JN, Harrington MG. Identification of disease markers in human cerebrospinal fluid using lipidomic and proteomic methods. Disease Markers. 2006;22(1–2):39–64. WOS:000249581800004. 10.1155/2006/202938|||Sun D, Tiedt S, Yu B, Jian X, Gottesman RF, Mosley TH, et al. A prospective study of serum metabolites and risk of ischemic stroke. Neurology. 2019;92(16):e1890–e8. 10.1212/WNL.0000000000007279 .|||Beekly DL, Ramos EM, Lee WW, Deitrich WD, Jacka ME, Wu J, et al. The National Alzheimer's Coordinating Center (NACC) database: the Uniform Data Set. Alzheimer Dis Assoc Disord. 2007;21(3):249–58. 10.1097/WAD.0b013e318142774e .|||Harrington MG, Chiang J, Pogoda JM, Gomez M, Thomas K, Marion SD, et al. Executive function changes before memory in preclinical Alzheimer's pathology: a prospective, cross-sectional, case control study. PloS one. 2013;8(11):e79378 10.1371/journal.pone.0079378|||Wilder C, Moncrieffe K., Nolty A., Arakaki X., Fonteh A.N., Harrington M.G. Boston Naming Test predicts deterioration of cerebrospinal fluid biomarkers in pre-symptomatic Alzheimer’s disease. FASEB J. 2018.|||Costa CG, Guérand WS, Struys EA, Holwerda U, ten Brink HJ, Tavares de Almeida I, et al. Quantitative analysis of urinary acylglycines for the diagnosis of β-oxidation defects using GC-NCI-MS. Journal of Pharmaceutical and Biomedical Analysis. 2000;21(6):1215–24. 10.1016/s0731-7085(99)00235-6|||Lipton RB, Stewart WF, Scher AI. Epidemiology and economic impact of migraine. Curr Med Res Opin. 2001;17 Suppl 1:s4– 10.1016/0006-2952(75)90002-7 .|||Jafar TH, Stark PC, Schmid CH, Landa M, Maschio G, de Jong PE, et al. Progression of chronic kidney disease: the role of blood pressure control, proteinuria, and angiotensin-converting enzyme inhibition: a patient-level meta-analysis. Ann Intern Med. 2003;139(4):244–52. 10.7326/0003-4819-139-4-200308190-00006 .|||Barr DB, Wilder LC, Caudill SP, Gonzalez AJ, Needham LL, Pirkle JL. Urinary creatinine concentrations in the U.S. population: implications for urinary biologic monitoring measurements. Environ Health Perspect. 2005;113(2):192–200. 10.1289/ehp.7337|||Garde AH, Hansen AM, Kristiansen J, Knudsen LE. Comparison of uncertainties related to standardization of urine samples with volume and creatinine concentration. Ann Occup Hyg. 2004;48(2):171–9. 10.1093/annhyg/meh019 .|||Deckers K, Camerino I, van Boxtel MP, Verhey FR, Irving K, Brayne C, et al. Dementia risk in renal dysfunction: A systematic review and meta-analysis of prospective studies. Neurology. 2017;88(2):198–208. 10.1212/WNL.0000000000003482|||Georgakis MK, Dimitriou NG, Karalexi MA, Mihas C, Nasothimiou EG, Tousoulis D, et al. Albuminuria in Association with Cognitive Function and Dementia: A Systematic Review and Meta-Analysis. J Am Geriatr Soc. 2017;65(6):1190–8. 10.1111/jgs.14750 .|||Martens RJ, Kooman JP, Stehouwer CD, Dagnelie PC, van der Kallen CJ, Koster A, et al. Estimated GFR, Albuminuria, and Cognitive Performance: The Maastricht Study. Am J Kidney Dis. 2017;69(2):179–91. 10.1053/j.ajkd.2016.04.017 .|||Montine TJ, Montine KS, McMahan W, Markesbery WR, Quinn JF, Morrow JD. F2-isoprostanes in Alzheimer and other neurodegenerative diseases. Antioxid Redox Signal. 2005;7(1–2):269–75. 10.1089/ars.2005.7.269 .|||Passi S, Picardo M, De Luca C, Nazzaro-Porro M, Rossi L, Rotilio G. Saturated dicarboxylic acids as products of unsaturated fatty acid oxidation. Biochimica et Biophysica Acta (BBA)—Lipids and Lipid Metabolism. 1993;1168(2):190–8. 10.1016/0005-2760(93)90124-r|||Mortensen PB. Urinary excretion of C4—C10-dicarboxylic acids and antiketogenic properties of adipic acid in ketogenic-stimulated rats due to diabetes, long-chain and short-chain monocarboxylic acids. Biochim Biophys Acta. 1981;664(2):335–48. 10.1016/0005-2760(81)90056-4 .|||Mantagos S, Genel M, Tanaka K. Ethylmalonic-adipic aciduria. In vivo and in vitro studies indicating deficiency of activities of multiple acyl-CoA dehydrogenases. J Clin Invest. 1979;64(6):1580–9. 10.1172/JCI109619|||Gregersen N, Kolvraa S, Mortensen PB, Rasmussen K. C6-C10-dicarboxylic aciduria: biochemical considerations in relation to diagnosis of beta-oxidation defects. Scand J Clin Lab Invest Suppl. 1982;161:15–27. 10.3109/00365518209168396 .|||Reid CN, Stevenson M, Abogunrin F, Ruddock MW, Emmert-Streib F, Lamont JV, et al. Standardization of diagnostic biomarker concentrations in urine: the hematuria caveat. PloS one. 2012;7(12):e53354 10.1371/journal.pone.0053354|||Fiala M, Kooij G, Wagner K, Hammock B, Pellegrini M. Modulation of innate immunity of patients with Alzheimer's disease by omega-3 fatty acids. FASEB J. 2017;31(8):3229–39. 10.1096/fj.201700065R|||Bazan NG. Neuroprotectin D1-mediated anti-inflammatory and survival signaling in stroke, retinal degenerations, and Alzheimer's disease. J Lipid Res. 2009;50 Suppl:S400–5. 10.1194/jlr.R800068-JLR200|||Fonteh AN, Cipolla M, Chiang J, Arakaki X, Harrington MG. Human cerebrospinal fluid fatty acid levels differ between supernatant fluid and brain-derived nanoparticle fractions, and are altered in Alzheimer's disease. PloS one. 2014;9(6):e100519 10.1371/journal.pone.0100519|||Chen Y. Quantitative Analysis of the Sirt5-Regulated Lysine Succinylation Proteome in Mammalian Cells. Methods Mol Biol. 2016;1410:23–37. 10.1007/978-1-4939-3524-6_2 .|||Lutz MI, Milenkovic I, Regelsberger G, Kovacs GG. Distinct patterns of sirtuin expression during progression of Alzheimer's disease. Neuromolecular Med. 2014;16(2):405–14. 10.1007/s12017-014-8288-8 .|||Yang Y, Gibson GE. Succinylation Links Metabolism to Protein Functions. Neurochem Res. 2019. 10.1007/s11064-019-02780-x .|||Gibson GE, Xu H, Chen HL, Chen W, Denton TT, Zhang S. Alpha-ketoglutarate dehydrogenase complex-dependent succinylation of proteins in neurons and neuronal cell lines. J Neurochem. 2015;134(1):86–96. 10.1111/jnc.13096|||Bai F, Ma Y, Liu Q. Succinylation as a novel mode of energy metabolism regulation during atrial fibrillation. Med Hypotheses. 2018;121:54–5. 10.1016/j.mehy.2018.09.018 .|||Fukushima A, Alrob OA, Zhang L, Wagg CS, Altamimi T, Rawat S, et al. Acetylation and succinylation contribute to maturational alterations in energy metabolism in the newborn heart. Am J Physiol Heart Circ Physiol. 2016;311(2):H347–63. 10.1152/ajpheart.00900.2015 .|||Yokoyama A, Katsura S, Sugawara A. Biochemical Analysis of Histone Succinylation. Biochem Res Int. 2017;2017:8529404 10.1155/2017/8529404|||Isopi E, Granzotto A, Corona C, Bomba M, Ciavardelli D, Curcio M, et al. Pyruvate prevents the development of age-dependent cognitive deficits in a mouse model of Alzheimer's disease without reducing amyloid and tau pathology. Neurobiol Dis. 2015;81:214–24. 10.1016/j.nbd.2014.11.013 .|||Alvarez G, Ramos M, Ruiz F, Satrustegui J, Bogonez E. Pyruvate protection against beta-amyloid-induced neuronal death: role of mitochondrial redox state. J Neurosci Res. 2003;73(2):260–9. 10.1002/jnr.10648 .