Involvement of Lipids in Alzheimer's Disease Pathology and Potential Therapies.
Authors:
Journal: Frontiers in physiology
Publication Type: Journal Article
Date: 2020
DOI: PMC7296164
ID: 32581851
Abstract
Lipids constitute the bulk of the dry mass of the brain and have been associated with healthy function as well as the most common pathological conditions of the brain. Demographic factors, genetics, and lifestyles are the major factors that influence lipid metabolism and are also the key components of lipid disruption in Alzheimer's disease (AD). Additionally, the most common genetic risk factor of AD, APOE ϵ4 genotype, is involved in lipid transport and metabolism. We propose that lipids are at the center of Alzheimer's disease pathology based on their involvement in the blood-brain barrier function, amyloid precursor protein (APP) processing, myelination, membrane remodeling, receptor signaling, inflammation, oxidation, and energy balance. Under healthy conditions, lipid homeostasis bestows a balanced cellular environment that enables the proper functioning of brain cells. However, under pathological conditions, dyshomeostasis of brain lipid composition can result in disturbed BBB, abnormal processing of APP, dysfunction in endocytosis/exocytosis/autophagocytosis, altered myelination, disturbed signaling, unbalanced energy metabolism, and enhanced inflammation. These lipid disturbances may contribute to abnormalities in brain function that are the hallmark of AD. The wide variance of lipid disturbances associated with brain function suggest that AD pathology may present as a complex interaction between several metabolic pathways that are augmented by risk factors such as age, genetics, and lifestyles. Herewith, we examine factors that influence brain lipid composition, review the association of lipids with all known facets of AD pathology, and offer pointers for potential therapies that target lipid pathways.
Reference List
- Abbott N. J. (2000). Inflammatory mediators and modulation of blood-brain barrier permeability.
20
131–147.|||Abbott N. J., Patabendige A. A., Dolman D. E., Yusof S. R., Begley D. J. (2010). Structure and function of the blood-brain barrier.
37
13–25.|||Agrawal M., Ajazuddin, Tripathi D. K., Saraf S., Saraf S., Antimisiaris S. G., et al. (2017). Recent advancements in liposomes targeting strategies to cross blood-brain barrier (BBB) for the treatment of Alzheimer’s disease.
260
61–77. 10.1016/j.jconrel.2017.05.019
|||Alaupovic P. (1996). Significance of apolipoproteins for structure, function, and classification of plasma lipoproteins.
263
32–60. 10.1016/s0076-6879(96)63004-3|||Alexander G. E. (2017). An Emerging role for imaging white matter in the preclinical risk for Alzheimer disease: linking beta-amyloid to myelin.
74
17–19.|||Almeida R. G., Lyons D. A. (2014). On the resemblance of synapse formation and CNS myelination.
276
98–108. 10.1016/j.neuroscience.2013.08.062
|||Almeida R. G., Lyons D. A. (2017). On myelinated axon plasticity and neuronal circuit formation and function.
37
10023–10034. 10.1523/jneurosci.3185-16.2017
|||Amadoro G., Corsetti V., Florenzano F., Atlante A., Ciotti M. T., Mongiardi M. P., et al. (2014). AD-linked, toxic NH2 human tau affects the quality control of mitochondria in neurons.
62
489–507. 10.1016/j.nbd.2013.10.018
|||Anceline M.-L., Ripoche E., Dupuy A.-M., Samieri C., Rouaud O., Berr C., et al. (2014). Gender-specific associations between lipids and cognitive decline in the elderly.
24
1056–1066. 10.1016/j.euroneuro.2014.02.003
|||Anderson G. (2018). Linking the biological underpinnings of depression: role of mitochondria interactions with melatonin, inflammation, sirtuins, tryptophan catabolites, DNA repair and oxidative and nitrosative stress, with consequences for classification and cognition.
80
255–266. 10.1016/j.pnpbp.2017.04.022
|||Ando S., Tanaka Y., Toyoda Y., Kon K. (2003). Turnover of myelin lipids in aging brain.
28
5–13.|||Andreone B. J., Chow B. W., Tata A., Lacoste B., Ben-Zvi A., Bullock K., et al. (2017). Blood-brain barrier permeability is regulated by lipid transport-dependent suppression of caveolae-mediated transcytosis.
94
581.e5–594.e5. 10.1016/j.neuron.2017.03.043
|||Andrew R. J., Kellett K. A., Thinakaran G., Hooper N. M. (2016). A greek tragedy: the growing complexity of alzheimer amyloid precursor protein proteolysis.
291
19235–19244. 10.1074/jbc.r116.746032
|||Aoki C., Fujisawa S., Mahadomrongkul V., Shah P. J., Nader K., Erisir A. (2003). NMDA receptor blockade in intact adult cortex increases trafficking of NR2A subunits into spines, postsynaptic densities, and axon terminals.
963
139–149. 10.1016/s0006-8993(02)03962-8|||Apak R., Ozyurek M., Guclu K., Capanoglu E. (2016). Antioxidant activity/capacity measurement. 3. reactive oxygen and nitrogen species (ROS/RNS) scavenging assays, oxidative stress biomarkers, and chromatographic/chemometric assays.
64
1046–1070. 10.1021/acs.jafc.5b04744
|||Arnoldussen I. A., Zerbi V., Wiesmann M., Noordman R. H., Bolijn S., Mutsaers M. P., et al. (2016). Early intake of long-chain polyunsaturated fatty acids preserves brain structure and function in diet-induced obesity.
30
177–188. 10.1016/j.jnutbio.2015.12.011
|||Asada T., Kariya T., Yamagata Z., Kinoshita T., Asaka A. (1996). ApoE epsilon 4 allele and cognitive decline in patients with Alzheimer’s disease.
47:603. 10.1212/wnl.47.2.603
|||Audagnotto M., Kengo Lorkowski A., Dal Peraro M. (2018). Recruitment of the amyloid precursor protein by gamma-secretase at the synaptic plasma membrane.
498
334–341. 10.1016/j.bbrc.2017.10.164
|||Ayloo S., Gu C. (2019). Transcytosis at the blood-brain barrier.
57
32–38. 10.1016/0006-8993(87)90236-8|||Bacchetti T., Vignini A., Giulietti A., Nanetti L., Provinciali L., Luzzi S., et al. (2015). Higher levels of oxidized low density lipoproteins in Alzheimer’s disease patients: roles for platelet activating factor acetyl hydrolase and paraoxonase-1.
46
179–186. 10.3233/JAD-143096
|||Balazs Z., Panzenboeck U., Hammer A., Sovic A., Quehenberger O., Malle E., et al. (2004). Uptake and transport of high-density lipoprotein (HDL) and HDL-associated alpha-tocopherol by an in vitro blood-brain barrier model.
89
939–950. 10.1111/j.1471-4159.2004.02373.x
|||Baldo G., Giugliani R., Matte U. (2014). Lysosomal enzymes may cross the blood-brain-barrier by pinocytosis: implications for enzyme replacement therapy.
82
478–480. 10.1016/j.mehy.2014.01.029
|||Banks W. A. (1999). Physiology and pathology of the blood-brain barrier: implications for microbial pathogenesis, drug delivery and neurodegenerative disorders.
5
538–555. 10.3109/13550289909021284
|||Banks W. A., Farr S., Salameh T. S., Niehoff M. L., Rhea E. M., Morley J. E., et al. (2018). Triglycerides cross the blood–brain barrier and induce central leptin and insulin receptor resistance.
42
391–397. 10.1038/ijo.2017.231
|||Barbagallo C. M., Levine G. A., Blanche P. J., Ishida B. Y., Krauss R. M. (1998). Influence of apoE content on receptor binding of large, bouyant LDL in subjects with different LDL subclass phenotypes.
18
466–472. 10.1161/01.atv.18.3.466|||Bartzokis G. (2011). Alzheimer’s disease as homeostatic responses to age-related myelin breakdown.
32
1341–1371. 10.1016/j.neurobiolaging.2009.08.007
|||Bartzokis G., Lu P. H., Geschwind D. H., Edwards N., Mintz J., Cummings J. L. (2006). Apolipoprotein E genotype and age-related myelin breakdown in healthy individuals: implications for cognitive decline and dementia.
63
63–72.|||Bassett C. N., Montine T. J. (2003). Lipoproteins and lipid peroxidation in Alzheimer’s disease.
7
24–29.|||Bassett C. N., Neely M. D., Sidell K. R., Markesbery W. R., Swift L. L., Montine T. J. (1999). Cerebrospinal fluid lipoproteins are more vulnerable to oxidation in Alzheimer’s disease and are neurotoxic when oxidized ex vivo.
34
1273–1280. 10.1007/s11745-999-0478-1
|||Baum L., Chen L., Masliah E., Chan Y. S., Ng H. K., Pang C. P. (1999). Lipoprotein lipase mutations and Alzheimer’s disease.
88
136–139. 10.1002/(sici)1096-8628(19990416)88:2<136::aid-ajmg8>3.0.co;2-d|||Bazan N. G. (2005). Synaptic signaling by lipids in the life and death of neurons.
31
219–230. 10.1385/mn:31:1-3:219|||Bedse G., Romano A., Lavecchia A. M., Cassano T., Gaetani S. (2015). The role of endocannabinoid signaling in the molecular mechanisms of neurodegeneration in Alzheimer’s disease.
43
1115–1136. 10.3233/jad-141635
|||Belayev L., Hong S. H., Menghani H., Marcell S. J., Obenaus A., Freitas R. S., et al. (2018). Docosanoids promote neurogenesis and angiogenesis, blood-brain barrier integrity, penumbra protection, and neurobehavioral recovery after experimental ischemic stroke.
55
7090–7106. 10.1007/s12035-018-1136-3
|||Belkouch M., Hachem M., Elgot A., Lo Van A., Picq M., Guichardant M., et al. (2016). The pleiotropic effects of Omega-3 docosahexaenoic acid on the hallmarks of Alzheimer’s disease.
38
1–11. 10.1016/j.jnutbio.2016.03.002
|||Bellet M. M., Masri S., Astarita G., Sassone-Corsi P., Della Fazia M. A., Servillo G. (2016). Histone deacetylase SIRT1 controls proliferation, circadian rhythm, and lipid metabolism during liver regeneration in mice.
291
23318–23329. 10.1074/jbc.m116.737114
|||Benton D. (2001). The impact of the supply of glucose to the brain on mood and memory.
59
S20–S21.|||Benton D., Parker P. Y., Donohoe R. T. (1996). The supply of glucose to the brain and cognitive functioning.
28
463–479. 10.1017/s0021932000022537
|||Berg C. N., Sinha N., Gluck M. A. (2019). The effects of APOE and ABCA7 on cognitive function and Alzheimer’s disease risk in african americans: a focused mini review.
13:387. 10.3389/fnhum.2019.00387
|||Bernath M. M., Bhattacharyya S., Nho K., Barupal D. K., Fiehn O., Baillie R., et al. (2019). Serum triglycerides in Alzheimer’s disease: relation to neuroimaging and CSF biomarkers.
[Preprint]. 10.1101/441394|||Betsholtz C. (2014). Physiology: double function at the blood-brain barrier.
509
432–433. 10.1038/nature13339
|||Bhattacharyya R., Barren C., Kovacs D. M. (2013). Palmitoylation of amyloid precursor protein regulates amyloidogenic processing in lipid rafts.
33
11169–11183. 10.1523/jneurosci.4704-12.2013
|||Biondi E. (2007). Statin-like drugs for the treatment of brain cholesterol loss in Alzheimer’s disease.
2
173–176. 10.2174/157488607781668927
|||Birben E., Sahiner U. M., Sackesen C., Erzurum S., Kalayci O. (2012). Oxidative stress and antioxidant defense.
5
9–19. 10.1097/WOX.0b013e3182439613
|||Biringer R. G. (2019). The role of eicosanoids in Alzheimer’s disease.
16:2560. 10.3390/ijerph16142560
|||Black J. B., Premont R. T., Daaka Y. (2016). Feedback regulation of G protein-coupled receptor signaling by GRKs and arrestins.
50
95–104. 10.1016/j.semcdb.2015.12.015
|||Blain J. F., Poirier J. (2004). Cholesterol homeostasis and the pathophysiology of Alzheimer’s disease.
4
823–829. 10.1586/14737175.4.5.823
|||Blain J. F., Aumont N., Theroux L., Dea D., Poirier J. (2006). A polymorphism in lipoprotein lipase affects the severity of Alzheimer’s disease pathophysiology.
24
1245–1251. 10.1111/j.1460-9568.2006.05007.x
|||Block J. (2019). Alzheimer’s disease might depend on enabling pathogens which do not necessarily cross the blood-brain barrier.
125
129–136. 10.1016/j.mehy.2019.02.044
|||Bolanos-Garcia V. M., Miguel R. N. (2003). On the structure and function of apolipoproteins: more than a family of lipid-binding proteins.
83
47–68. 10.1016/s0079-6107(03)00028-2|||Bos D. J., van Montfort S. J., Oranje B., Durston S., Smeets P. A. (2016). Effects of Omega-3 polyunsaturated fatty acids on human brain morphology and function: what is the evidence?
26
546–561. 10.1016/j.euroneuro.2015.12.031
|||Bourre J. M. (1991). [Vitamin E: protection of membrane polyunsaturated fatty acids against radical peroxidation in the course of cerebral aging, particularly in cerebral capillaries and microvessels].
175
1305–1317.|||Bradbury M. W. (1984). The structure and function of the blood-brain barrier.
43
186–190.|||Bradley W. A., Gianturco S. H. (1986). ApoE is necessary and sufficient for the binding of large triglyceride-rich lipoproteins to the LDL receptor; apoB is unnecessary.
27
40–48.|||Braun V., Hantke K. (2019). Lipoproteins: structure, function, biosynthesis.
92
39–77. 10.1007/978-3-030-18768-2_3|||Brewer G. J., Herrera R. A., Philipp S., Sosna J., Reyes-Ruiz J. M., Glabe C. G. (2020). Age-related intraneuronal aggregation of amyloid-beta in endosomes, mitochondria, autophagosomes, and lysosomes.
73
229–246. 10.3233/jad-190835
|||Brown J., III, Theisler C., Silberman S., Magnuson D., Gottardi-Littell N., Lee J. M., et al. (2004). Differential expression of cholesterol hydroxylases in Alzheimer’s disease.
279
34674–34681. 10.1074/jbc.m402324200
|||Brown R. C., Davis T. P. (2002). Calcium modulation of adherens and tight junction function: a potential mechanism for blood-brain barrier disruption after stroke.
33
1706–1711. 10.1161/01.str.0000016405.06729.83|||Burgess B. L., McIsaac S., Naus K. E., Chan J. Y., Tansley G. H., Yang J., et al. (2006). Elevated plasma triglyceride levels precede amyloid deposition in Alzheimer’s disease mouse models with abundant A beta in plasma.
24
114–127. 10.1016/j.nbd.2006.06.007
|||Burgisser P., Matthieu J. M., Jeserich G., Waehneldt T. V. (1986). Myelin lipids: a phylogenetic study.
11
1261–1272. 10.1007/bf00966121
|||Butler R. N. (1994). ApoE: new risk factor for Alzheimer’s.
49
10–11.|||Butterfield D. A., Castegna A., Lauderback C. M., Drake J. (2002). Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death.
23
655–664. 10.1016/s0197-4580(01)00340-2|||Button E. B., Gilmour M., Cheema H. K., Martin E. M., Agbay A., Robert J., et al. (2019). Vasoprotective functions of high-density lipoproteins relevant to Alzheimer’s disease are partially conserved in apolipoprotein B-depleted Plasma.
20:462. 10.3390/ijms20030462
|||Campbell S. D., Regina K. J., Kharasch E. D. (2014). Significance of lipid composition in a blood-brain barrier-mimetic PAMPA assay.
19
437–444. 10.1177/1087057113497981
|||Cankurtaran M., Yesil Y., Kuyumcu M. E., Ozturk Z. A., Yavuz B. B., Halil M., et al. (2013). Altered levels of homocysteine and serum natural antioxidants links oxidative damage to Alzheimer’s disease.
33
1051–1058. 10.3233/jad-2012-121630
|||Cantor R. S. (2018). Path to the desensitized state of ligand-gated ion channels: why are inhibitory and excitatory receptors different?
122
5368–5374. 10.1021/acs.jpcb.7b10961
|||Caporaso G. L., Takei K., Gandy S. E., Matteoli M., Mundigl O., Greengard P., et al. (1994). Morphologic and biochemical analysis of the intracellular trafficking of the Alzheimer beta/A4 amyloid precursor protein.
14
3122–3138. 10.1523/jneurosci.14-05-03122.1994
|||Cardoso S. M., Santos S., Swerdlow R. H., Oliveira C. R. (2001). Functional mitochondria are required for amyloid beta-mediated neurotoxicity.
15
1439–1441. 10.1096/fj.00-0561fje
|||Carvey P. M., Hendey B., Monahan A. J. (2009). The blood-brain barrier in neurodegenerative disease: a rhetorical perspective.
111
291–314. 10.1111/j.1471-4159.2009.06319.x
|||Castro Dias M., Coisne C., Baden P., Enzmann G., Garrett L., Becker L., et al. (2019). Claudin-12 is not required for blood-brain barrier tight junction function.
16:30. 10.1186/s12987-019-0150-9
|||Chandrasekharan J. A., Sharma-Walia N. (2015). Lipoxins: nature’s way to resolve inflammation.
8
181–192.|||Chang C. Y., Ke D. S., Chen J. Y. (2009). Essential fatty acids and human brain.
18
231–241.|||Chang Y. T., Hsu S. W., Huang S. H., Huang C. W., Chang W. N., Lien C. Y., et al. (2019). ABCA7 polymorphisms correlate with memory impairment and default mode network in patients with APOEepsilon4-associated Alzheimer’s disease.
11:103. 10.1186/s13195-019-0563-3
|||Chappus-McCendie H., Chevalier L., Roberge C., Plourde M. (2019). Omega-3 PUFA metabolism and brain modifications during aging.
94:109662. 10.1016/j.pnpbp.2019.109662
|||Cheignon C., Jones M., Atrian-Blasco E., Kieffer I., Faller P., Collin F., et al. (2017). Identification of key structural features of the elusive Cu-Abeta complex that generates ROS in Alzheimer’s disease.
8
5107–5118. 10.1039/c7sc00809k
|||Cheignon C., Tomas M., Bonnefont-Rousselot D., Faller P., Hureau C., Collin F. (2018). Oxidative stress and the amyloid beta peptide in Alzheimer’s disease.
14
450–464.|||Chen J., Wei Y., Chen X., Jiao J., Zhang Y. (2017). Polyunsaturated fatty acids ameliorate aging via redox-telomere-antioncogene axis.
8
7301–7314. 10.18632/oncotarget.14236
|||Chen R., Zhang J., Wu Y., Wang D., Feng G., Tang Y. P., et al. (2012). Monoacylglycerol lipase is a therapeutic target for Alzheimer’s disease.
2
1329–1339. 10.1016/j.celrep.2012.09.030
|||Chen X., Hui L., Geiger J. D. (2014). Role of LDL cholesterol and endolysosomes in amyloidogenesis and Alzheimer’s disease.
5:236. 10.4172/2155-9562.1000236
|||Cheng F., Cappai R., Lidfeldt J., Belting M., Fransson L. A., Mani K. (2014). Amyloid precursor protein (APP)/APP-like protein 2 (APLP2) expression is required to initiate endosome-nucleus-autophagosome trafficking of glypican-1-derived heparan sulfate.
289
20871–20878. 10.1074/jbc.m114.552810
|||Cherubini A., Andres-Lacueva C., Martin A., Lauretani F., Iorio A. D., Bartali B., et al. (2007). Low plasma N-3 fatty acids and dementia in older persons: the InCHIANTI study.
62
1120–1126. 10.1093/gerona/62.10.1120
|||Childs C. E., Romeu-Nadal M., Burdge G. C., Calder P. C. (2008). Gender differences in the n-3 fatty acid content of tissues.
67
19–27. 10.1017/s0029665108005983
|||Chiu C. C., Su K. P., Cheng T. C., Liu H. C., Chang C. J., Dewey M. E., et al. (2008). The effects of Omega-3 fatty acids monotherapy in Alzheimer’s disease and mild cognitive impairment: a preliminary randomized double-blind placebo-controlled study.
32
1538–1544. 10.1016/j.pnpbp.2008.05.015
|||Chiurchiu V., Leuti A., Maccarrone M. (2018). Bioactive lipids and chronic inflammation: managing the fire within.
9:38. 10.3389/fimmu.2018.00038
|||Chow V. W., Mattson M. P., Wong P. C., Gleichmann M. (2010). An overview of APP processing enzymes and products.
12
1–12. 10.1007/s12017-009-8104-z
|||Chrast R., Saher G., Nave K. A., Verheijen M. H. (2011). Lipid metabolism in myelinating glial cells: lessons from human inherited disorders and mouse models.
52
419–434. 10.1194/jlr.r009761
|||Chu L. W., Li Y., Li Z., Tang A. Y., Cheung B. M., Leung R. Y., et al. (2007). A novel intronic polymorphism of ABCA1 gene reveals risk for sporadic Alzheimer’s disease in Chinese.
144B
1007–1013. 10.1002/ajmg.b.30525
|||Chun Y. S., Park Y., Oh H. G., Kim T. W., Yang H. O., Park M. K., et al. (2015). O-GlcNAcylation promotes non-amyloidogenic processing of amyloid-beta protein precursor via inhibition of endocytosis from the plasma membrane.
44
261–275. 10.3233/jad-140096
|||Chung S. J., Kim M. J., Kim Y. J., Kim J., You S., Jang E. H., et al. (2014). CR1, ABCA7, and APOE genes affect the features of cognitive impairment in Alzheimer’s disease.
339
91–96. 10.1016/j.jns.2014.01.029
|||Chung W. S., Verghese P. B., Chakraborty C., Joung J., Hyman B. T., Ulrich J. D., et al. (2016). Novel allele-dependent role for APOE in controlling the rate of synapse pruning by astrocytes.
113
10186–10191. 10.1073/pnas.1609896113
|||Clavey V., Lestavel-Delattre S., Copin C., Bard J. M., Fruchart J. C. (1995). Modulation of lipoprotein B binding to the LDL receptor by exogenous lipids and apolipoproteins CI, CII, CIII, and E.
15
963–971. 10.1161/01.atv.15.7.963|||Csernansky J. G., Dong H., Fagan A. M., Wang L., Xiong C., Holtzman D. M., et al. (2006). Plasma cortisol and progression of dementia in subjects with Alzheimer-type dementia.
163
2164–2169. 10.1176/ajp.2006.163.12.2164
|||Cunnane S. C., Schneider J. A., Tangney C., Tremblay-Mercier J., Fortier M., Bennett D. A., et al. (2012). Plasma and brain fatty acid profiles in mild cognitive impairment and Alzheimer’s disease.
29
691–697. 10.3233/jad-2012-110629
|||Cutuli D. (2017). Functional and structural benefits induced by Omega-3 polyunsaturated fatty acids during aging.
15
534–542. 10.2174/1570159x14666160614091311
|||Daiello L. A., Gongvatana A., Dunsiger S., Cohen R. A., Ott B. R. (2015). Association of fish oil supplement use with preservation of brain volume and cognitive function.
11
226–235. 10.1016/j.jalz.2014.02.005
|||Daneman R., Prat A. (2015). The blood-brain barrier.
7:a020412.|||Dash P. K., Moore A. N. (1993). Inhibitors of endocytosis, endosome fusion, and lysosomal processing inhibit the intracellular proteolysis of the amyloid precursor protein.
164
183–186. 10.1016/0304-3940(93)90887-q|||Davison A. N. (1972). Metabolism of myelin lipids in the developing brain.
128
68.|||de Chaves E. P., Narayanaswami V. (2008). Apolipoprotein E and cholesterol in aging and disease in the brain.
3
505–530. 10.2217/17460875.3.5.505
|||de Vries H. E., Kooij G., Frenkel D., Georgopoulos S., Monsonego A., Janigro D. (2012). Inflammatory events at blood-brain barrier in neuroinflammatory and neurodegenerative disorders: implications for clinical disease.
53(Suppl. 6), 45–52. 10.1111/j.1528-1167.2012.03702.x
|||de Wilde M. C., Vellas B., Girault E., Yavuz A. C., Sijben J. W. (2017). Lower brain and blood nutrient status in Alzheimer’s disease: results from meta-analyses.
3
416–431. 10.1016/j.trci.2017.06.002
|||Decsi T., Kennedy K. (2011). Sex-specific differences in essential fatty acid metabolism.
94(6 Suppl), 1914S–1919S. 10.3945/ajcn.110.000893
|||Dehouck B., Fenart L., Dehouck M. P., Pierce A., Torpier G., Cecchelli R. (1997). A new function for the LDL receptor: transcytosis of LDL across the blood-brain barrier.
138
877–889. 10.1083/jcb.138.4.877
|||Demeester N., Castro G., Desrumaux C., De Geitere C., Fruchart J. C., Santens P., et al. (2000). Characterization and functional studies of lipoproteins, lipid transfer proteins, and lecithin:cholesterol acyltransferase in CSF of normal individuals and patients with Alzheimer’s disease.
41
963–974.|||Denis I., Potier B., Heberden C., Vancassel S. (2015). Omega-3 polyunsaturated fatty acids and brain aging.
18
139–146.|||Derby C. A., Crawford S., Pasternak R. C., Sowers M., Sternfeld B., Matthews K. A. (2009). Lipid changes during the menopause transition in relation to age and weight.
169
1352–1361. 10.1093/aje/kwp043
|||Desai M. K., Mastrangelo M. A., Ryan D. A., Sudol K. L., Narrow W. C., Bowers W. J. (2010). Early oligodendrocyte/myelin pathology in Alzheimer’s disease mice constitutes a novel therapeutic target.
177
1422–1435. 10.2353/ajpath.2010.100087
|||Devine M. J., Kittler J. T. (2018). Mitochondria at the neuronal presynapse in health and disease.
19
63–80. 10.1038/nrn.2017.170
|||Dienel G. A., Cruz N. F., Adachi K., Sokoloff L., Holden J. E. (1997). Determination of local brain glucose level with [14C]methylglucose: effects of glucose supply and demand.
273
E839–E849.|||Dimas P., Montani L., Pereira J. A., Moreno D., Trotzmuller M., Gerber J., et al. (2019). CNS myelination and remyelination depend on fatty acid synthesis by oligodendrocytes.
8:e44702. 10.7554/eLife.44702
|||Ding R. B., Bao J., Deng C. X. (2017). Emerging roles of SIRT1 in fatty liver diseases.
13
852–867. 10.7150/ijbs.19370
|||do Couto F. S., de Mendonca A., Garcia C., Rocha L., Lechner M. C. (1998). Age of onset in patients with Alzheimer’s disease with different apoE genotypes.
64:817. 10.1136/jnnp.64.6.817
|||Dodelet-Devillers A., Cayrol R., van Horssen J., Haqqani A. S., de Vries H. E., Engelhardt B., et al. (2009). Functions of lipid raft membrane microdomains at the blood-brain barrier.
87
765–774. 10.1007/s00109-009-0488-6
|||Doens D., Valiente P. A., Mfuh A. M., X T Vo A., Tristan A., Carreno L., et al. (2017). Identification of inhibitors of CD36-amyloid beta binding as potential agents for Alzheimer’s disease.
8
1232–1241. 10.1021/acschemneuro.6b00386
|||Duchen M. R. (2012). Mitochondria, calcium-dependent neuronal death and neurodegenerative disease.
464
111–121. 10.1007/s00424-012-1112-0
|||Duka T., Tasker R., McGowan J. F. (2000). The effects of 3-week estrogen hormone replacement on cognition in elderly healthy females.
149
129–139. 10.1007/s002139900324
|||Dunstan J. A., Simmer K., Dixon G., Prescott S. L. (2008). Cognitive assessment of children at age 2(1/2) years after maternal fish oil supplementation in pregnancy: a randomised controlled trial.
93
F45–F50.|||Dyall S. C. (2015). Long-chain Omega-3 fatty acids and the brain: a review of the independent and shared effects of EPA, DPA and DHA.
7:52. 10.3389/fnagi.2015.00052
|||Eckert A., Schulz K. L., Rhein V., Gotz J. (2010). Convergence of amyloid-beta and tau pathologies on mitochondria in vivo.
41
107–114. 10.1007/s12035-010-8109-5
|||Ehehalt R., Keller P., Haass C., Thiele C., Simons K. (2003). Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts.
160
113–123. 10.1083/jcb.200207113
|||El Haj M., Antoine P., Amouyel P., Lambert J. C., Pasquier F., Kapogiannis D. (2016). Apolipoprotein E (APOE) epsilon4 and episodic memory decline in Alzheimer’s disease: a review.
27
15–22. 10.1016/j.arr.2016.02.002
|||Elliott D. A., Weickert C. S., Garner B. (2010). Apolipoproteins in the brain: implications for neurological and psychiatric disorders.
51
555–573. 10.2217/clp.10.37
|||Erk S., Meyer-Lindenberg A., Opitz von Boberfeld C., Esslinger C., Schnell K., Kirsch P., et al. (2011). Hippocampal function in healthy carriers of the CLU Alzheimer’s disease risk variant.
31
18180–18184. 10.1523/jneurosci.4960-11.2011
|||Estus S., Golde T. E., Kunishita T., Blades D., Lowery D., Eisen M., et al. (1992). Potentially amyloidogenic, carboxyl-terminal derivatives of the amyloid protein precursor.
255
726–728. 10.1126/science.1738846
|||Evans B. A., Evans J. E., Baker S. P., Kane K., Swearer J., Hinerfeld D., et al. (2009). Long-term statin therapy and CSF cholesterol levels: implications for Alzheimer’s disease.
27
519–524. 10.1159/000221835
|||Evin G., Li Q. X. (2012). Platelets and Alzheimer’s disease: potential of APP as a biomarker.
2
102–113.|||Evin G., Zhu A., Holsinger R. M., Masters C. L., Li Q. X. (2003). Proteolytic processing of the Alzheimer’s disease amyloid precursor protein in brain and platelets.
74
386–392.|||Eyster K. M. (2007). The membrane and lipids as integral participants in signal transduction: lipid signal transduction for the non-lipid biochemist.
31
5–16. 10.1152/advan.00088.2006
|||Farooqui A. A., Horrocks L. A. (1998). Plasmalogen-selective phospholipase A2 and its involvement in Alzheimer’s disease.
26
243–246.|||Farooqui A. A., Liss L., Horrocks L. A. (1988). Stimulation of lipolytic enzymes in Alzheimer’s disease.
23
306–308. 10.1002/ana.410230317
|||Feingold K. R., Grunfeld C. (2000). “Introduction to lipids and lipoproteins,” in , eds
Feingold K. R., Anawalt B., Boyce A., Chrousos G., Dungan K., Grossman A., et al. (South Dartmouth, MA: MDText.com, Inc; ).|||Ferreira L. (2019). What human blood-brain barrier models can tell us about BBB function and drug discovery?
14
1113–1123. 10.1080/17460441.2019.1646722
|||Fester L., Zhou L., Butow A., Huber C., von Lossow R., Prange-Kiel J., et al. (2009). Cholesterol-promoted synaptogenesis requires the conversion of cholesterol to estradiol in the hippocampus.
19
692–705. 10.1002/hipo.20548
|||Fidani L., Goulas A., Crook R., Petersen R. C., Tangalos E., Kotsis A., et al. (2004). An association study of the cholesteryl ester transfer protein TaqI B polymorphism with late onset Alzheimer’s disease.
357
152–154. 10.1016/j.neulet.2003.11.071
|||Filippov V., Song M. A., Zhang K., Vinters H. V., Tung S., Kirsch W. M., et al. (2012). Increased ceramide in brains with Alzheimer’s and other neurodegenerative diseases.
29
537–547. 10.3233/jad-2011-111202
|||Filou S., Lhomme M., Karavia E. A., Kalogeropoulou C., Theodoropoulos V., Zvintzou E., et al. (2016). Distinct roles of apolipoproteins A1 and E in the modulation of high-density lipoprotein composition and function.
55
3752–3762. 10.1021/acs.biochem.6b00389
|||Finean J. B., Robertson J. D. (1958). Lipids and the structure of myelin.
14
267–273. 10.1093/oxfordjournals.bmb.a069695
|||Fishman J. B., Rubin J. B., Handrahan J. V., Connor J. R., Fine R. E. (1987). Receptor-mediated transcytosis of transferrin across the blood-brain barrier.
18
299–304. 10.1002/jnr.490180206
|||Fonteh A. (2018). Reasons why Omega-3 polyunsaturated fatty acids produce mixed results in alzheimer’s disease.
7:1.|||Fonteh A. N., Chiang J., Cipolla M., Hale J., Diallo F., Chirino A., et al. (2013). Alterations in cerebrospinal fluid glycerophospholipids and phospholipase A2 activity in Alzheimer’s disease.
54
2884–2897. 10.1194/jlr.m037622
|||Fonteh A. N., Cipolla M., Chiang A. J., Edminster S. P., Arakaki X., Harrington M. G. (2020). Polyunsaturated fatty acid composition of cerebrospinal fluid fractions shows their contribution to cognitive resilience of a pre-symptomatic Alzheimer’s disease cohort.
11:83. 10.3389/fphys.2020.00083
|||Fonteh A. N., Cipolla M., Chiang J., Arakaki X., Harrington M. G. (2014). Human cerebrospinal fluid fatty acid levels differ between supernatant fluid and brain-derived nanoparticle fractions, and are altered in Alzheimer’s disease.
9:e100519. 10.1371/journal.pone.0100519
|||Fonteh A. N., Ormseth C., Chiang J., Cipolla M., Arakaki X., Harrington M. G. (2015). Sphingolipid metabolism correlates with cerebrospinal fluid Beta amyloid levels in Alzheimer’s disease.
10:e0125597. 10.1371/journal.pone.0125597
|||Foster E. M., Dangla-Valls A., Lovestone S., Ribe E. M., Buckley N. J. (2019). Clusterin in Alzheimer’s disease: mechanisms, genetics, and lessons from other pathologies.
13:164. 10.3389/fnins.2019.00164
|||Frank A. T., Zhao B., Jose P. O., Azar K. M., Fortmann S. P., Palaniappan L. P. (2014). Racial/ethnic differences in dyslipidemia patterns.
129
570–579. 10.1161/circulationaha.113.005757
|||Frank B., Gupta S. (2005). A review of antioxidants and Alzheimer’s disease.
17
269–286.|||Frank M. G., Baratta M. V., Sprunger D. B., Watkins L. R., Maier S. F. (2007). Microglia serve as a neuroimmune substrate for stress-induced potentiation of CNS pro-inflammatory cytokine responses.
21
47–59. 10.1016/j.bbi.2006.03.005
|||French H. M., Reid M., Mamontov P., Simmons R. A., Grinspan J. B. (2009). Oxidative stress disrupts oligodendrocyte maturation.
87
3076–3087. 10.1002/jnr.22139
|||Freund Levi Y., Vedin I., Cederholm T., Basun H., Faxen Irving G., Eriksdotter M., et al. (2014). Transfer of Omega-3 fatty acids across the blood-brain barrier after dietary supplementation with a docosahexaenoic acid-rich Omega-3 fatty acid preparation in patients with Alzheimer’s disease: the OmegAD study.
275
428–436. 10.1111/joim.12166
|||Freund-Levi Y., Basun H., Cederholm T., Faxen-Irving G., Garlind A., Grut M., et al. (2008). Omega-3 supplementation in mild to moderate Alzheimer’s disease: effects on neuropsychiatric symptoms.
23
161–169. 10.1002/gps.1857
|||Freund-Levi Y., Eriksdotter-Jonhagen M., Cederholm T., Basun H., Faxen-Irving G., Garlind A., et al. (2006). Omega-3 fatty acid treatment in 174 patients with mild to moderate Alzheimer disease: OmegAD study: a randomized double-blind trial.
63
1402–1408.|||Frieden C., Wang H., Ho C. M. W. (2017). A mechanism for lipid binding to apoE and the role of intrinsically disordered regions coupled to domain-domain interactions.
114
6292–6297. 10.1073/pnas.1705080114
|||Gazzola K., Reeskamp L., van den Born B. J. (2017). Ethnicity, lipids and cardiovascular disease.
28
225–230. 10.1097/mol.0000000000000412
|||Ghosh M., Garcia-Castillo D., Aguirre V., Golshani R., Atkins C. M., Bramlett H. M., et al. (2012). Proinflammatory cytokine regulation of cyclic AMP-phosphodiesterase 4 signaling in microglia in vitro and following CNS injury.
60
1839–1859. 10.1002/glia.22401
|||Gilgun-Sherki Y., Melamed E., Offen D. (2001). Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier.
40
959–975. 10.1016/s0028-3908(01)00019-3|||Gilmore-Bykovskyi A. L., Jin Y., Gleason C., Flowers-Benton S., Block L. M., Dilworth-Anderson P., et al. (2019). Recruitment and retention of underrepresented populations in Alzheimer’s disease research: a systematic review.
19
751–770. 10.1016/j.trci.2019.09.018
|||Giltay E. J., Gooren L., Toorians A. W., Katan M. B., Zock P. L. (2004). Docosahexaenoic acid concentrations are higher in women than in men because of estrogenic effects.
80
1167–1174. 10.1093/ajcn/80.5.1167
|||Giulietti A., Vignini A., Nanetti L., Mazzanti L., Di Primio R., Salvolini E. (2016). Alzheimer’s disease risk and progression: the role of nutritional supplements and their effect on drug therapy outcome.
14
177–190. 10.2174/1570159x13666150928155321
|||Glorioso C. A., Pfenning A. R., Lee S. S., Bennett D. A., Sibille E. L., Kellis M., et al. (2019). Rate of brain aging and APOE epsilon4 are synergistic risk factors for Alzheimer’s disease.
2
e201900303. 10.26508/lsa.201900303
|||Gold M., Dolga A. M., Koepke J., Mengel D., Culmsee C., Dodel R., et al. (2014). alpha1-antitrypsin modulates microglial-mediated neuroinflammation and protects microglial cells from amyloid-beta-induced toxicity.
11:165. 10.1186/s12974-014-0165-8
|||Golde T. E., Estus S., Younkin L. H., Selkoe D. J., Younkin S. G. (1992). Processing of the amyloid protein precursor to potentially amyloidogenic derivatives.
255
728–730. 10.1126/science.1738847
|||Gong C. X., Liu F., Grundke-Iqbal I., Iqbal K. (2006). Impaired brain glucose metabolism leads to Alzheimer neurofibrillary degeneration through a decrease in tau O-GlcNAcylation.
9
1–12. 10.3233/jad-2006-9101
|||Goozee K., Chatterjee P., James I., Shen K., Sohrabi H. R., Asih P. R., et al. (2017). Alterations in erythrocyte fatty acid composition in preclinical Alzheimer’s disease.
7:676.|||Grabowska W., Sikora E., Bielak-Zmijewska A. (2017). Sirtuins, a promising target in slowing down the ageing process.
18
447–476. 10.1007/s10522-017-9685-9
|||Grassi S., Giussani P., Mauri L., Prioni S., Sonnino S., Prinetti A. (2019). Lipid rafts and neurodegeneration: structural and functional roles in physiologic aging and neurodegenerative diseases.
61
636–654.|||Grimm M. O., Haupenthal V. J., Mett J., Stahlmann C. P., Blumel T., Mylonas N. T., et al. (2016). Oxidized docosahexaenoic acid species and lipid peroxidation products increase amyloidogenic amyloid precursor protein processing.
16
44–54. 10.1159/000440839
|||Grimm M. O., Rothhaar T. L., Grosgen S., Burg V. K., Hundsdorfer B., Haupenthal V. J., et al. (2012). Trans fatty acids enhance amyloidogenic processing of the Alzheimer amyloid precursor protein (APP).
23
1214–1223. 10.1016/j.jnutbio.2011.06.015
|||Growdon J. H., Hyman B. T. (2014). APOE genotype and brain development.
71
7–8.|||Guan Z., Wang Y., Cairns N. J., Lantos P. L., Dallner G., Sindelar P. J. (1999). Decrease and structural modifications of phosphatidylethanolamine plasmalogen in the brain with Alzheimer disease.
58
740–747. 10.1097/00005072-199907000-00008
|||Guo X., Geng M., Du G. (2005). Glucose transporter 1, distribution in the brain and in neural disorders: its relationship with transport of neuroactive drugs through the blood-brain barrier.
43
175–187. 10.1007/s10528-005-1510-5
|||Hahn G., Ponce-Alvarez A., Deco G., Aertsen A., Kumar A. (2019). Portraits of communication in neuronal networks.
20
117–127. 10.1038/s41583-018-0094-0
|||Halliday M. R., Rege S. V., Ma Q., Zhao Z., Miller C. A., Winkler E. A., et al. (2016). Accelerated pericyte degeneration and blood-brain barrier breakdown in apolipoprotein E4 carriers with Alzheimer’s disease.
36
216–227. 10.1038/jcbfm.2015.44
|||Hameister R., Kaur C., Dheen S. T., Lohmann C. H., Singh G. (2020). Reactive oxygen/nitrogen species (ROS/RNS) and oxidative stress in arthroplasty.
108
2073–2087. 10.1002/jbm.b.34546
|||Han X., M Holtzman D., McKeel D. W., Jr., Kelley J., Morris J. C. (2002). Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer’s disease: potential role in disease pathogenesis.
82
809–818. 10.1046/j.1471-4159.2002.00997.x
|||Hansen D. V., Hanson J. E., Sheng M. (2018). Microglia in Alzheimer’s disease.
217
459–472.|||Hansen S. B. (2015). Lipid agonism: the PIP2 paradigm of ligand-gated ion channels.
1851
620–628. 10.1016/j.bbalip.2015.01.011
|||Hao S., Wang R., Zhang Y., Zhan H. (2018). Prediction of Alzheimer’s disease-associated genes by integration of gwas summary data and expression data.
9:653. 10.3389/fgene.2018.00653
|||Harik S. I., Kalaria R. N. (1991). Blood-brain barrier abnormalities in Alzheimer’s disease.
640
47–52.|||Harold D., Abraham R., Hollingworth P., Sims R., Gerrish A., Hamshere M. L., et al. (2009). Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease.
41
1088–1093.|||Harris J. J., Jolivet R., Attwell D. (2012). Synaptic energy use and supply.
75
762–777. 10.1016/j.neuron.2012.08.019
|||Hartmann D. (2012). A brief history of APP secretases, their substrates and their functions.
9
138–139. 10.2174/156720512799361628
|||Hasadsri L., Wang B. H., Lee J. V., Erdman J. W., Llano D. A., Barbey A. K., et al. (2013). Omega-3 fatty acids as a putative treatment for traumatic brain injury.
30
897–906. 10.1089/neu.2012.2672
|||Hascalovici J. R., Vaya J., Khatib S., Holcroft C. A., Zukor H., Song W., et al. (2009). Brain sterol dysregulation in sporadic AD and MCI: relationship to heme oxygenase-1.
110
1241–1253. 10.1111/j.1471-4159.2009.06213.x
|||Hawkins R. A., Biebuyck J. F. (1979). Ketone bodies are selectively used by individual brain regions.
205
325–327. 10.1126/science.451608
|||Hedqvist P., Raud J., Palmertz U., Kumlin M., Dahlen S. E. (1991). Eicosanoids as mediators and modulators of inflammation.
21B
537–543.|||Helbecque N., Codron V., Cottel D., Amouyel P. (2008). An apolipoprotein A-I gene promoter polymorphism associated with cognitive decline, but not with Alzheimer’s disease.
25
97–102. 10.1159/000112176
|||Heppner F. L., Ransohoff R. M., Becher B. (2015). Immune attack: the role of inflammation in Alzheimer disease.
16
358–372. 10.1038/nrn3880
|||Hering H., Lin C. C., Sheng M. (2003). Lipid rafts in the maintenance of synapses, dendritic spines, and surface AMPA receptor stability.
23
3262–3271. 10.1523/jneurosci.23-08-03262.2003
|||Herold C., Hooli B. V., Mullin K., Liu T., Roehr J. T., Mattheisen M., et al. (2016). Family-based association analyses of imputed genotypes reveal genome-wide significant association of Alzheimer’s disease with OSBPL6, PTPRG, and PDCL3.
21
1608–1612. 10.1038/mp.2015.218
|||Herskovits A. Z., Guarente L. (2014). SIRT1 in neurodevelopment and brain senescence.
81
471–483. 10.1016/j.neuron.2014.01.028
|||Herz J. (2001). The LDL receptor gene family: (un)expected signal transducers in the brain.
29
571–581. 10.1016/s0896-6273(01)00234-3|||Heverin M., Bogdanovic N., Lutjohann D., Bayer T., Pikuleva I., Bretillon L., et al. (2004). Changes in the levels of cerebral and extracerebral sterols in the brain of patients with Alzheimer’s disease.
45
186–193. 10.1194/jlr.m300320-jlr200
|||Higgs G. A., Moncada S., Vane J. R. (1984). Eicosanoids in inflammation.
16
287–299.|||Hirsch-Reinshagen V., Wellington C. L. (2007). Cholesterol metabolism, apolipoprotein E, adenosine triphosphate-binding cassette transporters, and Alzheimer’s disease.
18
325–332. 10.1097/mol.0b013e32813aeabf
|||Hoglund K., Thelen K. M., Syversen S., Sjogren M., von Bergmann K., Wallin A., et al. (2005). The effect of simvastatin treatment on the amyloid precursor protein and brain cholesterol metabolism in patients with Alzheimer’s disease.
19
256–265. 10.1159/000084550
|||Hoofnagle A. N., Heinecke J. W. (2009). Lipoproteomics: using mass spectrometry-based proteomics to explore the assembly, structure, and function of lipoproteins.
50
1967–1975. 10.1194/jlr.r900015-jlr200
|||Hooper C., De Souto Barreto P., Pahor M., Weiner M., Vellas B. (2018). The relationship of Omega 3 polyunsaturated fatty acids in red blood cell membranes with cognitive function and brain structure: a review focussed on alzheimer’s disease.
5
78–84.|||Hosseini M., Poljak A., Braidy N., Crawford J., Sachdev P. (2020). Blood fatty acids in Alzheimer’s disease and mild cognitive impairment: a meta-analysis and systematic review.
60
101043. 10.1016/j.arr.2020.101043
|||Hottman D. A., Chernick D., Cheng S., Wang Z., Li L. (2014). HDL and cognition in neurodegenerative disorders.
72(Pt.A), 22–36. 10.1016/j.nbd.2014.07.015
|||Hu X., Xu B., Ge W. (2017). The role of lipid bodies in the microglial aging process and related diseases.
42
3140–3148. 10.1007/s11064-017-2351-4
|||Huang Y., Mahley R. W. (2014). Apolipoprotein E: structure and function in lipid metabolism, neurobiology, and Alzheimer’s diseases.
72(Pt. A), 3–12. 10.1016/j.nbd.2014.08.025
|||Hudry E., Van Dam D., Kulik W., De Deyn P. P., Stet F. S., Ahouansou O., et al. (2010). Adeno-associated virus gene therapy with cholesterol 24-hydroxylase reduces the amyloid pathology before or after the onset of amyloid plaques in mouse models of Alzheimer’s disease.
18
44–53. 10.1038/mt.2009.175
|||Hulbert A. J., Faulks S. C., Harper J. M., Miller R. A., Buffenstein R. (2006). Extended longevity of wild-derived mice is associated with peroxidation-resistant membranes.
127
653–657. 10.1016/j.mad.2006.03.002
|||Hussain G., Wang J., Rasul A., Anwar H., Imran A., Qasim M., et al. (2019). Role of cholesterol and sphingolipids in brain development and neurological diseases.
18:26. 10.1186/s12944-019-0965-z
|||Hutchinson E. (2010). Blood-brain barrier: plugging the leak.
11:789.|||Igarashi M., Ma K., Gao F., Kim H. W., Rapoport S. I., Rao J. S. (2011). Disturbed choline plasmalogen and phospholipid fatty acid concentrations in Alzheimer’s disease prefrontal cortex.
24
507–517. 10.3233/jad-2011-101608
|||Ihara M., Polvikoski T. M., Hall R., Slade J. Y., Perry R. H., Oakley A. E., et al. (2010). Quantification of myelin loss in frontal lobe white matter in vascular dementia, Alzheimer’s disease, and dementia with Lewy bodies.
119
579–589. 10.1007/s00401-009-0635-8
|||Ikeshima-Kataoka H., Yasui M. (2016). Correlation between astrocyte activity and recovery from blood-brain barrier breakdown caused by brain injury.
27
894–900. 10.1097/wnr.0000000000000619
|||Irizarry M. C., Deng A., Lleo A., Berezovska O., Von Arnim C. A., Martin-Rehrmann M., et al. (2004). Apolipoprotein E modulates gamma-secretase cleavage of the amyloid precursor protein.
90
1132–1143.|||Ishiura S. (1991). Proteolytic cleavage of the Alzheimer’s disease amyloid A4 precursor protein.
56
363–369. 10.1111/j.1471-4159.1991.tb08160.x
|||Ito J., Nagayasu Y., Lu R., Kheirollah A., Hayashi M., Yokoyama S. (2005). Astrocytes produce and secrete FGF-1, which promotes the production of apoE-HDL in a manner of autocrine action.
46
679–686. 10.1194/jlr.m400313-jlr200
|||Ito J., Nagayasu Y., Miura Y., Yokoyama S., Michikawa M. (2014). Astrocytes endogenous apoE generates HDL-like lipoproteins using previously synthesized cholesterol through interaction with ABCA1.
1570
1–12. 10.1016/j.brainres.2014.04.037
|||Iwamoto N., Kobayashi K., Kosaka K. (1989). The formation of prostaglandins in the postmortem cerebral cortex of Alzheimer-type dementia patients.
236
80–84. 10.1007/bf00314401
|||Iwasaki A., Medzhitov R. (2015). Control of adaptive immunity by the innate immune system.
16
343–353. 10.1038/ni.3123
|||Iyu D., Juttner M., Glenn J. R., White A. E., Johnson A. J., Fox S. C., et al. (2011). PGE1 and PGE2 modify platelet function through different prostanoid receptors.
94
9–16. 10.1016/j.prostaglandins.2010.11.001
|||Janciauskiene S., Wright H. T. (1998). Inflammation, antichymotrypsin, and lipid metabolism: autogenic etiology of Alzheimer’s disease.
20
1039–1046. 10.1002/(sici)1521-1878(199812)20:12<1039::aid-bies10>3.0.co;2-z|||Janssen C. I., Kiliaan A. J. (2014). Long-chain polyunsaturated fatty acids (LCPUFA) from genesis to senescence: the influence of LCPUFA on neural development, aging, and neurodegeneration.
53
1–17. 10.1016/j.plipres.2013.10.002
|||Jean-Louis T., Rockwell P., Figueiredo-Pereira M. E. (2018). Prostaglandin J2 promotes O-GlcNAcylation raising APP processing by alpha- and beta-secretases: relevance to Alzheimer’s disease.
62
130–145. 10.1016/j.neurobiolaging.2017.10.009
|||Joffre C., Nadjar A., Lebbadi M., Calon F., Laye S. (2014). n-3 LCPUFA improves cognition: the young, the old and the sick.
91
1–20. 10.1016/j.plefa.2014.05.001
|||Johnen A., Pawlowski M., Duning T. (2018). Distinguishing neurocognitive deficits in adult patients with NP-C from early onset Alzheimer’s dementia.
13
91.|||Jones L., Holmans P. A., Hamshere M. L., Harold D., Moskvina V., Ivanov D., et al. (2010). Genetic evidence implicates the immune system and cholesterol metabolism in the aetiology of Alzheimer’s disease.
5:e13950. 10.1371/journal.pone.0013950
|||Jones N. S., Rebeck G. W. (2018). The synergistic effects of APOE genotype and obesity on Alzheimer’s disease risk.
20:63. 10.3390/ijms20010063
|||Kaether C., Haass C. (2004). A lipid boundary separates APP and secretases and limits amyloid beta-peptide generation.
167
809–812. 10.1083/jcb.200410090
|||Kagedal K., Kim W. S., Appelqvist H., Chan S., Cheng D., Agholme L., et al. (2010). Increased expression of the lysosomal cholesterol transporter NPC1 in Alzheimer’s disease.
1801
831–838. 10.1016/j.bbalip.2010.05.005
|||Kaiser H. J., Orlowski A., Rog T., Nyholm T. K., Chai W., Feizi T., et al. (2011). Lateral sorting in model membranes by cholesterol-mediated hydrophobic matching.
108
16628–16633. 10.1073/pnas.1103742108
|||Kalaria R. N., Harik S. I. (1989). Abnormalities of the glucose transporter at the blood-brain barrier and in brain in Alzheimer’s disease.
317
415–421.|||Kamboh M. I., Minster R. L., Demirci F. Y., Ganguli M., Dekosky S. T., Lopez O. L., et al. (2012). Association of CLU and PICALM variants with Alzheimer’s disease.
33
518–521. 10.1016/j.neurobiolaging.2010.04.015
|||Kaminsky Y. G., Tikhonova L. A., Kosenko E. A. (2015). Critical analysis of Alzheimer’s amyloid-beta toxicity to mitochondria.
20:173–197. 10.2741/4304
|||Kang J., Rivest S. (2012). Lipid metabolism and neuroinflammation in Alzheimer’s disease: a role for liver X receptors.
33
715–746. 10.1210/er.2011-1049
|||Kao Y. C., Ho P. C., Tu Y. K., Jou I. M., Tsai K. J. (2020). Lipids and Alzheimer’s Disease.
21:1505
10.3390/ijms21041505
|||Karamanos Y., Gosselet F., Dehouck M. P., Cecchelli R. (2014). Blood-brain barrier proteomics: towards the understanding of neurodegenerative diseases.
45
730–737. 10.1016/j.arcmed.2014.11.008
|||Katt M. E., Mayo L. N., Ellis S. E., Mahairaki V., Rothstein J. D., Cheng L., et al. (2019). The role of mutations associated with familial neurodegenerative disorders on blood-brain barrier function in an iPSC model.
16:20. 10.1186/s12987-019-0139-4
|||Keaney J., Campbell M. (2015). The dynamic blood-brain barrier.
282
4067–4079.|||Kelsch W., Sim S., Lois C. (2010). Watching synaptogenesis in the adult brain.
33
131–149. 10.1146/annurev-neuro-060909-153252
|||Kennedy M. B. (2013). Synaptic signaling in learning and memory.
8:a016824. 10.1101/cshperspect.a016824
|||Khalil A., Berrougui H., Pawelec G., Fulop T. (2012). Impairment of the ABCA1 and SR-BI-mediated cholesterol efflux pathways and HDL anti-inflammatory activity in Alzheimer’s disease.
133
20–29. 10.1016/j.mad.2011.11.008
|||Kim M., Nevado-Holgado A., Whiley L., Snowden S. G., Soininen H., Kloszewska I., et al. (2017). Association between plasma ceramides and phosphatidylcholines and hippocampal brain volume in late onset Alzheimer’s disease.
60
809–817. 10.3233/jad-160645
|||Kishimoto Y., Agranoff B. W., Radin N. S., Burton R. M. (1969). Comparison of the fatty acids of lipids of subcellular brain fractions.
16
397–404. 10.1111/j.1471-4159.1969.tb10380.x
|||Kitazume S., Tachida Y., Oka R., Shirotani K., Saido T. C., Hashimoto Y. (2001). Alzheimer’s beta-secretase, beta-site amyloid precursor protein-cleaving enzyme, is responsible for cleavage secretion of a Golgi-resident sialyltransferase.
98
13554–13559. 10.1073/pnas.241509198
|||Knebl J., DeFazio P., Clearfield M. B., Little L., McConathy W. J., McPherson R., et al. (1994). Plasma lipids and cholesterol esterification in Alzheimer’s disease.
73
69–77. 10.1016/0047-6374(94)90039-6|||Kniewallner K. M., Ehrlich D., Kiefer A., Marksteiner J., Humpel C. (2015). Platelets in the Alzheimer’s disease brain: do they play a role in cerebral amyloid angiopathy?
12
4–14. 10.2174/1567202612666150102124703
|||Kohama S. G., Rosene D. L., Sherman L. S. (2012). Age-related changes in human and non-human primate white matter: from myelination disturbances to cognitive decline.
34
1093–1110. 10.1007/s11357-011-9357-7
|||Koizumi K., Wang G., Park L. (2016). Endothelial dysfunction and amyloid-beta-induced neurovascular alterations.
36
155–165. 10.1007/s10571-015-0256-9
|||Kojima S., Omori M. (1992). Two-way cleavage of beta-amyloid protein precursor by multicatalytic proteinase.
304
57–60. 10.1016/0014-5793(92)80588-8|||Kosicek M., Zetterberg H., Andreasen N., Peter-Katalinic J., Hecimovic S. (2012). Elevated cerebrospinal fluid sphingomyelin levels in prodromal Alzheimer’s disease.
516
302–305. 10.1016/j.neulet.2012.04.019
|||Kotani S., Sakaguchi E., Warashina S., Matsukawa N., Ishikura Y., Kiso Y., et al. (2006). Dietary supplementation of arachidonic and docosahexaenoic acids improves cognitive dysfunction.
56
159–164. 10.1016/j.neures.2006.06.010
|||Kramer S. D., Schutz Y. B., Wunderli-Allenspach H., Abbott N. J., Begley D. J. (2002). Lipids in blood-brain barrier models in vitro II: influence of glial cells on lipid classes and lipid fatty acids.
38
566–571.|||Kumar A., Singh A. (2015). A review on mitochondrial restorative mechanism of antioxidants in Alzheimer’s disease and other neurological conditions.
6:206. 10.3389/fphar.2015.00206
|||Kwon H. J., Cha M. Y., Kim D., Kim D. K., Soh M., Shin K., et al. (2016). Mitochondria-targeting ceria nanoparticles as antioxidants for Alzheimer’s disease.
10
2860–2870. 10.1021/acsnano.5b08045
|||Lamsa R., Helisalmi S., Herukka S. K., Tapiola T., Pirttila T., Vepsalainen S., et al. (2007). Study on the association between SOAT1 polymorphisms, Alzheimer’s disease risk and the level of CSF biomarkers.
24
146–150. 10.1159/000105164
|||Laughlin S. B., Sejnowski T. J. (2003). Communication in neuronal networks.
301
1870–1874. 10.1126/science.1089662
|||Leduc V., Jasmin-Belanger S., Poirier J. (2010). APOE and cholesterol homeostasis in Alzheimer’s disease.
16
469–477. 10.1016/j.molmed.2010.07.008
|||Lee L. K., Shahar S., Chin A. V., Yusoff N. A. (2013). Docosahexaenoic acid-concentrated fish oil supplementation in subjects with mild cognitive impairment (MCI): a 12-month randomised, double-blind, placebo-controlled trial.
225
605–612. 10.1007/s00213-012-2848-0
|||Leonard A. E., Kelder B., Bobik E. G., Chuang L. T., Parker-Barnes J. M., Thurmond J. M., et al. (2000). cDNA cloning and characterization of human Delta5-desaturase involved in the biosynthesis of arachidonic acid.
347(Pt. 3), 719–724. 10.1042/bj3470719|||Lepara O., Valjevac A., Alajbegovic A., Zaciragic A., Nakas-Icindic E. (2009). Decreased serum lipids in patients with probable Alzheimer’s disease.
9
215–220. 10.17305/bjbms.2009.2809
|||Lepping R. J., Honea R. A., Martin L. E., Liao K., Choi I. Y., Lee P., et al. (2019). Long-chain polyunsaturated fatty acid supplementation in the first year of life affects brain function, structure, and metabolism at age nine years.
61
5–16. 10.1002/dev.21780
|||Leuti A., Maccarrone M., Chiurchiu V. (2019). Proresolving lipid mediators: endogenous modulators of oxidative stress.
2019:8107265. 10.1155/2019/8107265
|||Levental I., Veatch S. (2016). The continuing mystery of lipid rafts.
428
4749–4764. 10.1016/j.jmb.2016.08.022
|||Li M. Z., Zheng L. J., Shen J., Li X. Y., Zhang Q., Bai X., et al. (2018). SIRT1 facilitates amyloid beta peptide degradation by upregulating lysosome number in primary astrocytes.
13
2005–2013. 10.4103/1673-5374.239449
|||Li X., Kan H. Y., Lavrentiadou S., Krieger M., Zannis V. (2002). Reconstituted discoidal ApoE-phospholipid particles are ligands for the scavenger receptor BI. The amino-terminal 1-165 domain of ApoE suffices for receptor binding.
277
21149–21157. 10.1074/jbc.m200658200
|||Lim G. P., Yang F., Chu T., Chen P., Beech W., Teter B., et al. (2000). Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer’s disease.
20
5709–5714. 10.1523/jneurosci.20-15-05709.2000
|||Lin Q., Cao Y., Gao J. (2015). Decreased expression of the APOA1-APOC3-APOA4 gene cluster is associated with risk of Alzheimer’s disease.
9
5421–5431.|||Lingwood D., Simons K. (2010). Lipid rafts as a membrane-organizing principle.
327
46–50. 10.1126/science.1174621
|||Lingwood D., Kaiser H. J., Levental I., Simons K. (2009). Lipid rafts as functional heterogeneity in cell membranes.
37
955–960. 10.1042/bst0370955
|||Liu K., Liu Y., Xu Y., Nandakumar K. S., Shen X., Lin J., et al. (2019). Regulatory role of Golgi brefeldin a resistance factor-1 in amyloid precursor protein trafficking, cleavage and Abeta formation.
120
15604–15615. 10.1002/jcb.28827
|||Liu L., MacKenzie K. R., Putluri N., Maletic-Savatic M., Bellen H. J. (2017). The glia-neuron lactate shuttle and elevated ROS promote lipid synthesis in neurons and lipid droplet accumulation in glia via APOE/D.
26
719–737e716.|||Loef M., Walach H. (2013). The Omega-6/Omega-3 ratio and dementia or cognitive decline: a systematic review on human studies and biological evidence.
32
1–23. 10.1080/21551197.2012.752335
|||Loera-Valencia R., Goikolea J., Parrado-Fernandez C., Merino-Serrais P., Maioli S. (2019). Alterations in cholesterol metabolism as a risk factor for developing Alzheimer’s disease: potential novel targets for treatment.
190
104–114. 10.1016/j.jsbmb.2019.03.003
|||Lohner S., Fekete K., Marosvölgyi T., Decsi T. (2013). Gender differences in the long-chain polyunsaturated fatty acid status: systematic review of 51 publications.
62
98–112. 10.1159/000345599
|||Lopez L. B., Kritz-Silverstein D., Barrett Connor E. (2011). High dietary and plasma levels of the omega-3 fatty acid docosahexaenoic acid are associated with decreased dementia risk: the rancho bernardo study.
15
25–31. 10.1007/s12603-011-0009-5
|||Louveau A., Smirnov I., Keyes T. J., Eccles J. D., Rouhani S. J., Peske J. D., et al. (2015). Structural and functional features of central nervous system lymphatic vessels.
523
337–341. 10.1038/nature14432
|||Lovinger D. M. (2008). Communication networks in the brain: neurons, receptors, neurotransmitters, and alcohol.
31
196–214.|||Lucatelli J. F., Barros A. C., Silva V. K., Machado Fda S., Constantin P. C., Dias A. A., et al. (2011). Genetic influences on Alzheimer’s disease: evidence of interactions between the genes APOE, APOC1 and ACE in a sample population from the South of Brazil.
36
1533–1539. 10.1007/s11064-011-0481-7
|||Luo C., Ren H., Yao X., Shi Z., Liang F., Kang J. X., et al. (2018). Enriched brain Omega-3 polyunsaturated fatty acids confer neuroprotection against microinfarction.
32
50–61. 10.1016/j.ebiom.2018.05.028
|||MacDonald-Wicks L., McEvoy M., Magennis E., Schofield P. W., Patterson A. J., Zacharia K. (2019). Dietary long-chain fatty acids and cognitive performance in older australian adults.
11:711. 10.3390/nu11040711
|||Mackic J. B., Stins M., McComb J. G., Calero M., Ghiso J., Kim K. S., et al. (1998). Human blood-brain barrier receptors for Alzheimer’s amyloid-beta 1- 40. asymmetrical binding, endocytosis, and transcytosis at the apical side of brain microvascular endothelial cell monolayer.
102
734–743. 10.1172/jci2029
|||Maclean F. L., Horne M. K., Williams R. J., Nisbet D. R. (2018). Review: biomaterial systems to resolve brain inflammation after traumatic injury.
2:021502
10.1063/1.5023709|||Mahley R. W. (2016). Central nervous system lipoproteins: ApoE and regulation of cholesterol metabolism.
36
1305–1315. 10.1161/atvbaha.116.307023
|||Mancuso C., Bates T. E., Butterfield D. A., Calafato S., Cornelius C., De Lorenzo A., et al. (2007). Natural antioxidants in Alzheimer’s disease.
16
1921–1931.|||Marchi C., Adorni M. P., Caffarra P., Ronda N., Spallazzi M., Barocco F., et al. (2019). ABCA1- and ABCG1-mediated cholesterol efflux capacity of cerebrospinal fluid is impaired in Alzheimer’s disease.
60
1449–1456. 10.1194/jlr.p091033
|||Marquer C., Devauges V., Cossec J. C., Liot G., Lecart S., Saudou F., et al. (2011). Local cholesterol increase triggers amyloid precursor protein-Bace1 clustering in lipid rafts and rapid endocytosis.
25
1295–1305. 10.1096/fj.10-168633
|||Martin R. E., Bazan N. G. (1992). Changing fatty acid content of growth cone lipids prior to synaptogenesis.
59
318–325. 10.1111/j.1471-4159.1992.tb08906.x
|||Martin T. F. (2000). Racing lipid rafts for synaptic-vesicle formation.
2
E9–E11.|||Martinez-Frailes C., Di Lauro C., Bianchi C., de Diego-Garcia L., Sebastian-Serrano A., Bosca L., et al. (2019). Amyloid peptide induced neuroinflammation increases the p2x7 receptor expression in microglial cells, impacting on its functionality.
13:143. 10.3389/fncel.2019.00143
|||Martins M. J., Constancia M., Neves D., Simm A. (2017). Biomarkers of aging: from cellular senescence to age-associated diseases.
2017:7280690. 10.1155/2017/7280690
|||Matthews K. A., Xu W., Gaglioti A. H., Holt J. B., Croft J. B., Mack D., et al. (2019). Racial and ethnic estimates of Alzheimer’s disease and related dementias in the United States (2015–2060) in adults aged =65 years.
15
17–24. 10.1016/j.jalz.2018.06.3063
|||Mauch D. H., Nagler K., Schumacher S., Goritz C., Muller E. C., Otto A., et al. (2001). CNS synaptogenesis promoted by glia-derived cholesterol.
294
1354–1357. 10.1126/science.294.5545.1354
|||Maulik M., Peake K., Chung J., Wang Y., Vance J. E., Kar S. (2015). APP overexpression in the absence of NPC1 exacerbates metabolism of amyloidogenic proteins of Alzheimer’s disease.
24
7132–7150.|||Mayer E. A. (1993). Neuronal communication.
2
57–76.|||Maysinger D., Ji J., Moquin A., Hossain S., Hancock M. A., Zhang I., et al. (2018). Dendritic polyglycerol sulfates in the prevention of synaptic loss and mechanism of action on glia.
9
260–271. 10.1021/acschemneuro.7b00301
|||McClean P. L., Jalewa J., Holscher C. (2015). Prophylactic liraglutide treatment prevents amyloid plaque deposition, chronic inflammation and memory impairment in APP/PS1 mice.
293
96–106. 10.1016/j.bbr.2015.07.024
|||McNamara R. K., Able J., Jandacek R., Rider T., Tso P., Eliassen J. C., et al. (2010). Docosahexaenoic acid supplementation increases prefrontal cortex activation during sustained attention in healthy boys: a placebo-controlled, dose-ranging, functional magnetic resonance imaging study.
91
1060–1067. 10.3945/ajcn.2009.28549
|||McNamara R. K., Asch R. H., Lindquist D. M., Krikorian R. (2018). Role of polyunsaturated fatty acids in human brain structure and function across the lifespan: an update on neuroimaging findings.
136
23–34. 10.1016/j.plefa.2017.05.001
|||Mecca A. P., Barcelos N. M., Wang S., Bruck A., Nabulsi N., Planeta-Wilson B., et al. (2018). Cortical beta-amyloid burden, gray matter, and memory in adults at varying APOE epsilon4 risk for Alzheimer’s disease.
61
207–214. 10.1016/j.neurobiolaging.2017.09.027
|||Melo R. C., D’Avila H., Wan H. C., Bozza P. T., Dvorak A. M., Weller P. F. (2011). Lipid bodies in inflammatory cells: structure, function, and current imaging techniques.
59
540–556. 10.1369/0022155411404073
|||Mergenthaler P., Lindauer U., Dienel G. A., Meisel A. (2013). Sugar for the brain: the role of glucose in physiological and pathological brain function.
36
587–597. 10.1016/j.tins.2013.07.001
|||Merino-Zamorano C., Fernandez-de Retana S., Montanola A., Batlle A., Saint-Pol J., Mysiorek C., et al. (2016). Modulation of amyloid-beta1-40 transport by ApoA1 and ApoJ across an in vitro model of the blood-brain barrier.
53
677–691. 10.3233/jad-150976
|||Mesa-Herrera F., Taoro-Gonzalez L., Valdes-Baizabal C., Diaz M., Marin R. (2019). Lipid and lipid raft alteration in aging and neurodegenerative diseases: a window for the development of new biomarkers.
20:3810. 10.3390/ijms20153810
|||Mielke M. (2018). Sex and gender differences in alzheimer’s disease dementia.
35
14–17.|||Mietelska-Porowska A., Wojda U. (2017). T lymphocytes and inflammatory mediators in the interplay between brain and blood in Alzheimer’s disease: potential pools of new biomarkers.
2017
4626540. 10.1155/2017/4626540
|||Mills J., Reiner P. B. (1999). Regulation of amyloid precursor protein cleavage.
72
443–460. 10.1046/j.1471-4159.1999.0720443.x
|||Mobraten K., Haug T. M., Kleiveland C. R., Lea T. (2013). Omega-3 and omega-6 PUFAs induce the same GPR120-mediated signalling events, but with different kinetics and intensity in Caco-2 cells.
12:101. 10.1186/1476-511X-12-101
|||Mochel F. (2018). Lipids and synaptic functions.
41
1117–1122. 10.1007/s10545-018-0204-1
|||Mohaibes R. J., Fiol-deRoque M. A., Torres M., Ordinas M., Lopez D. J., Castro J. A., et al. (2017). The hydroxylated form of docosahexaenoic acid (DHA-H) modifies the brain lipid composition in a model of Alzheimer’s disease, improving behavioral motor function and survival.
1859
1596–1603. 10.1016/j.bbamem.2017.02.020
|||Molander-Melin M., Blennow K., Bogdanovic N., Dellheden B., Mansson J. E., Fredman P. (2005). Structural membrane alterations in Alzheimer brains found to be associated with regional disease development; increased density of gangliosides GM1 and GM2 and loss of cholesterol in detergent-resistant membrane domains.
92
171–182. 10.1111/j.1471-4159.2004.02849.x
|||Montani L., Suter U. (2018). Building lipids for myelin.
10
861–862. 10.18632/aging.101458
|||Montanini I., Gatti C., Woelk H., Porcellati S. (1983). The influence of polyunsaturated phosphatidylcholine on brain lipid synthesis during aging.
38
376–382.|||Montoliu-Gaya L., Mulder S. D., Herrebout M. A. C., Baayen J. C., Villegas S., Veerhuis R. (2018). Abeta-oligomer uptake and the resulting inflammatory response in adult human astrocytes are precluded by an anti-Abeta single chain variable fragment in combination with an apoE mimetic peptide.
89
49–59. 10.1016/j.mcn.2018.03.015
|||Morris J. C., Schindler S., McCue L. M. (2019). Assessment of racial disparities in biomarkers for Alzheimer disease.
76
264–273.|||Morris M. C., Tangney C. C. (2014). Dietary fat composition and dementia risk.
35(Suppl. 2), S59–S64.|||Morris M. C., Evans D. A., Bienias J. L., Tangney C. C., Bennett D. A., Wilson R. S., et al. (2003). Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease.
60
940–946.|||Moura R. P., Martins C., Pinto S., Sousa F., Sarmento B. (2019). Blood-brain barrier receptors and transporters: an insight on their function and how to exploit them through nanotechnology.
16
271–285. 10.1080/17425247.2019.1583205
|||Mukadam A. S., Breusegem S. Y., Seaman M. N. J. (2018). Analysis of novel endosome-to-golgi retrieval genes reveals a role for PLD3 in regulating endosomal protein sorting and amyloid precursor protein processing.
75
2613–2625. 10.1007/s00018-018-2752-9
|||Muldoonm M. F., Ryan C. M., Sheu L., Yao J. K., Conklin S. M., Manuck S. B. (2010). Serum phospholipid docosahexaenonic acid is associated with cognitive functioning during middle adulthood.
140
848–853. 10.3945/jn.109.119578
|||Muszynski P., Kulczynska-Przybik A., Borawska R., Litman-Zawadzka A., Slowik A., Klimkowicz-Mrowiec A., et al. (2017). The relationship between markers of inflammation and degeneration in the central nervous system and the blood-brain barrier impairment in Alzheimer’s disease.
59
903–912. 10.3233/jad-170220
|||Nägga K., Gustavsson A.-M., Stomrud E., Lindqvist D., van Westen D., Blennow K., et al. (2018). Increased midlife triglycerides predict brain β-amyloid and tau pathology 20 years later.
90
e73–e81. 10.1212/WNL.0000000000004749
|||Nasaruddin M. L., Holscher C., Kehoe P., Graham S. F., Green B. D. (2016). Wide-ranging alterations in the brain fatty acid complement of subjects with late Alzheimer’s disease as detected by GC-MS.
8
154–165.|||Nasrabady S. E., Rizvi B., Goldman J. E., Brickman A. M. (2018). White matter changes in Alzheimer’s disease: a focus on myelin and oligodendrocytes.
6:22. 10.1186/s40478-018-0515-3
|||Nation D. A., Sweeney M. D., Montagne A., Sagare A. P., D’Orazio L. M., Pachicano M., et al. (2019). Blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction.
25
270–276.|||Nehlig A. (2004). Brain uptake and metabolism of ketone bodies in animal models.
70
265–275. 10.1016/j.plefa.2003.07.006
|||Nelson A. R., Sagare A. P., Zlokovic B. V. (2017). Role of clusterin in the brain vascular clearance of amyloid-beta.
114
8681–8682. 10.1073/pnas.1711357114
|||Nelson A. R., Sweeney M. D., Sagare A. P., Zlokovic B. V. (2016). Neurovascular dysfunction and neurodegeneration in dementia and Alzheimer’s disease.
1862
887–900. 10.1016/j.bbadis.2015.12.016
|||Nicholls D. G., Budd S. L. (2000). Mitochondria and neuronal survival.
80
315–360. 10.1152/physrev.2000.80.1.315
|||Ntambi J. M. (2019). Highlighting inflammation and lipid metabolism.
520
688–689. 10.1016/j.bbrc.2019.10.014
|||Nunan J., Small D. H. (2000). Regulation of APP cleavage by alpha-, beta- and gamma-secretases.
483
6–10. 10.1016/s0014-5793(00)02076-7|||Nunes V. S., Cazita P. M., Catanozi S., Nakandakare E. R., Quintao E. C. R. (2018). Decreased content, rate of synthesis and export of cholesterol in the brain of apoE knockout mice.
50
283–287. 10.1007/s10863-018-9757-9
|||Nuutinen T., Huuskonen J., Suuronen T., Ojala J., Miettinen R., Salminen A. (2007). Amyloid-beta 1-42 induced endocytosis and clusterin/apoJ protein accumulation in cultured human astrocytes.
50
540–547. 10.1016/j.neuint.2006.11.002
|||Nuutinen T., Suuronen T., Kyrylenko S., Huuskonen J., Salminen A. (2005). Induction o