Compromised Behavior and Gamma Power During Working Memory in Cognitively Healthy Individuals With Abnormal CSF Amyloid/Tau.
Authors:
Journal: Frontiers in aging neuroscience
Publication Type: Journal Article
Date: 2020
DOI: PMC7591805
ID: 33192465
Abstract
Research shows that gamma activity changes in Alzheimer's disease (AD), revealing synaptic pathology and potential therapeutic applications. We aim to explore whether cognitive challenge combined with quantitative EEG (qEEG) can unmask abnormal gamma frequency power in healthy individuals at high risk of developing AD. We analyzed low (30-50 Hz) and high gamma (50-80 Hz) power over six brain regions at EEG sensor level (frontal/central/parietal/left temporal/right temporal/occipital) in a dataset collected from an aging cohort during N-back working memory (WM) testing at two different load conditions ( = 0 or 2). Cognitively healthy (CH) study participants (≥60 years old) of both sexes were divided into two subgroups: ormal myloid/au ratios (CH-NAT, = 10) or athological myloid/au (CH-PAT, = 14) in cerebrospinal fluid (CSF). During low load (0-back) challenge, low gamma is higher in CH-PATs than CH-NATs over frontal and central regions ( = 0.014∼0.032, effect size (Cohen's ) = 0.95∼1.11). However, during high load (2-back) challenge, low gamma is lower in CH-PATs compared to CH-NATs over the left temporal region ( = 0.045, Cohen's = -0.96), and high gamma is lower over the parietal region ( = 0.035, Cohen's = -1.02). Overall, our studies show a medium to large negative effect size across the scalp (Cohen's = -0.51∼-1.02). In addition, low gamma during 2-back is positively correlated with 0-back accuracy over all regions except the occipital region only in CH-NATs ( = 0.69∼0.77, = 0.0098∼0.027); high gamma during 2-back correlated positively with 0-back accuracy over all regions in CH-NATs ( = 0.68∼0.78, = 0.007∼0.030); high gamma during 2-back negatively correlated with 0-back response time over parietal, right temporal, and occipital regions in CH-NATs ( = -0.70∼-0.66, = 0.025∼0.037). We interpret these preliminary results to show: (1) gamma power is compromised in AD-biomarker positive individuals, who are otherwise cognitively healthy (CH-PATs); (2) gamma is associated with WM performance in normal aging (CH-NATs) (most significantly in the frontoparietal region). Our pilot findings encourage further investigations in combining cognitive challenges and qEEG in developing neurophysiology-based markers for identifying individuals in the prodromal stage, to help improving our understanding of AD pathophysiology and the contributions of low- and high-frequency gamma oscillations in cognitive functions.
Reference List
- Andersen R. A., Buneo C. A. (2003). Sensorimotor integration in posterior parietal cortex. Adv. Neurol. 93 159–177.|||Arakaki X., Lee R., King K. S., Fonteh A. N., Harrington M. G. (2019). Alpha desynchronization during simple working memory unmasks pathological aging in cognitively healthy individuals. PLoS One 14:e0208517. 10.1371/journal.pone.0208517|||Arakaki X., Shoga M., Li L., Zouridakis G., Tran T., Fonteh A. N., et al. (2018). Alpha desynchronization/synchronization during working memory testing is compromised in acute mild traumatic brain injury (mTBI). PLoS One 13:e0188101. 10.1371/journal.pone.0188101|||Arakaki X., Wei K., Tran T., Liu Q., Fonteh A., Harrington M., et al. (2020). Correlation of neural oscillations during stroop testing with hippocampal and amygdala volume differ between cognitively healthy normal aging and pre-symptomatic Alzheimer’s Disease. FASEB J. 34:4684.|||Ardid S., Wang X. J., Gomez-Cabrero D., Compte A. (2010). Reconciling coherent oscillation with modulation of irregular spiking activity in selective attention: gamma-range synchronization between sensory and executive cortical areas. J. Neurosci. 30 2856–2870. 10.1523/jneurosci.4222-09.2010|||Babiloni C., Del Percio C., Caroli A., Salvatore E., Nicolai E., Marzano N., et al. (2016a). Cortical sources of resting state EEG rhythms are related to brain hypometabolism in subjects with Alzheimer’s disease: an EEG-PET study. Neurobiol. Aging 48 122–134. 10.1016/j.neurobiolaging.2016.08.021|||Babiloni C., Del Percio C., Vecchio F., Sebastiano F., Di Gennaro G., Quarato P. P., et al. (2016b). Alpha, beta and gamma electrocorticographic rhythms in somatosensory, motor, premotor and prefrontal cortical areas differ in movement execution and observation in humans. Clin. Neurophysiol. 127 641–654. 10.1016/j.clinph.2015.04.068|||Babiloni C., Lizio R., Marzano N., Capotosto P., Soricelli A., Triggiani A. I., et al. (2016c). Brain neural synchronization and functional coupling in Alzheimer’s disease as revealed by resting state EEG rhythms. Int. J Psychophysiol. 103 88–102. 10.1016/j.ijpsycho.2015.02.008|||Babiloni C., Lopez S., Del Percio C., Noce G., Pascarelli M. T., Lizio R., et al. (2020). Resting-state posterior alpha rhythms are abnormal in subjective memory complaint seniors with preclinical Alzheimer’s neuropathology and high education level: the INSIGHT-preAD study. Neurobiol. Aging 90 43–59. 10.1016/j.neurobiolaging.2020.01.012|||Babiloni C., Triggiani A. I., Lizio R., Cordone S., Tattoli G., Bevilacqua V., et al. (2016d). Classification of single normal and alzheimer’s disease individuals from cortical sources of resting state EEG rhythms. Front. Neurosci. 10:47. 10.3389/fnins.2016.00047|||Baddeley A. (1998a). Recent developments in working memory. Curr. Opin. Neurobiol. 8 234–238. 10.1016/s0959-4388(98)80145-1|||Baddeley A. (1998b). Working memory. C. R Acad. Sci. III. 321 167–173.|||Barr M. S., Radhu N., Guglietti C. L., Zomorrodi R., Rajji T. K., Ritvo P., et al. (2014). Age-related differences in working memory evoked gamma oscillations. Brain Res. 1576 43–51. 10.1016/j.brainres.2014.05.043|||Bartos M., Vida I., Jonas P. (2007). Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat. Rev. Neurosci. 8 45–56. 10.1038/nrn2044|||Booth C. A., Ridler T., Murray T. K., Ward M. A., de Groot E., Goodfellow M., et al. (2016). Electrical and network neuronal properties are preferentially disrupted in dorsal, but not ventral, medial entorhinal cortex in a mouse model of tauopathy. J. Neurosci. 36 312–324. 10.1523/jneurosci.2845-14.2016|||Bragin A., Jando G., Nadasdy Z., Hetke J., Wise K., Buzsaki G. (1995). Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat. J. Neurosci. 15(1 Pt. 1), 47–60. 10.1523/jneurosci.15-01-00047.1995|||Buneo C. A., Jarvis M. R., Batista A. P., Andersen R. A. (2003). Properties of spike train spectra in two parietal reach areas. Exp. Brain Res. 153 134–139. 10.1007/s00221-003-1586-2|||Busche M. A., Chen X., Henning H. A., Reichwald J., Staufenbiel M., Sakmann B., et al. (2012). Critical role of soluble amyloid-beta for early hippocampal hyperactivity in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. U.S.A. 109 8740–8745. 10.1073/pnas.1206171109|||Buzsaki G., Schomburg E. W. (2015). What does gamma coherence tell us about inter-regional neural communication? Nat. Neurosci. 18 484–489. 10.1038/nn.3952|||Buzsaki G., Wang X. J. (2012). Mechanisms of gamma oscillations. Annu. Rev. Neurosci. 35 203–225. 10.1146/annurev-neuro-062111-150444|||Carl C., Acik A., Konig P., Engel A. K., Hipp J. F. (2012). The saccadic spike artifact in MEG. Neuroimage 59 1657–1667. 10.1016/j.neuroimage.2011.09.020|||Chen C. M., Stanford A. D., Mao X., Abi-Dargham A., Shungu D. C., Lisanby S. H., et al. (2014). GABA level, gamma oscillation, and working memory performance in schizophrenia. Neuroimage Clin. 4 531–539. 10.1016/j.nicl.2014.03.007|||Chen X., Liu A., Chiang J., Wang Z. J., McKeown M. J., Ward R. K. (2016). Removing muscle artifacts from EEG data: multichannel or single-channel techniques? IEEE Sens. J. 16 1986–1997. 10.1109/jsen.2015.2506982|||Cohen M. X. (2014). Analyzing Neural Time Series Data: Theory and Practice. Cambridge, MA: MIT Press.|||Cohen M. X., Donner T. H. (2013). Midfrontal conflict-related theta-band power reflects neural oscillations that predict behavior. J. Neurophysiol. 110 2752–2763. 10.1152/jn.00479.2013|||Corbetta M., Kincade J. M., Shulman G. L. (2002). Neural systems for visual orienting and their relationships to spatial working memory. J. Cogn. Neurosci. 14 508–523. 10.1162/089892902317362029|||Courtney S. M., Petit L., Haxby J. V., Ungerleider L. G. (1998). The role of prefrontal cortex in working memory: examining the contents of consciousness. Philos. Trans. R Soc. Lond. B Biol. Sci. 353 1819–1828. 10.1098/rstb.1998.0334|||Craik F. I. M., Byrd M., Swanson J. M. (1987). Patterns of memory loss in three elderly samples. Psychol. Aging 2 79–86. 10.1037/0882-7974.2.1.79|||Craik F. I. M., Dirkx E. (1992). Age-related differences in three tests of visual imagery. Psychol. Aging 7 661–665. 10.1037/0882-7974.7.4.661|||Csicsvari J., Jamieson B., Wise K. D., Buzsaki G. (2003). Mechanisms of gamma oscillations in the hippocampus of the behaving rat. Neuron 37 311–322. 10.1016/s0896-6273(02)01169-8|||Dauwels J., Vialatte F., Musha T., Cichocki A. (2010). A comparative study of synchrony measures for the early diagnosis of Alzheimer’s disease based on EEG. Neuroimage 49 668–693. 10.1016/j.neuroimage.2009.06.056|||Delorme A., Makeig S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134 9–21. 10.1016/j.jneumeth.2003.10.009|||Dreher J. C., Grafman J. (2003). Dissociating the roles of the rostral anterior cingulate and the lateral prefrontal cortices in performing two tasks simultaneously or successively. Cereb. Cortex 13 329–339. 10.1093/cercor/13.4.329|||Fuchs E. C., Zivkovic A. R., Cunningham M. O., Middleton S., Lebeau F. E., Bannerman D. M., et al. (2007). Recruitment of parvalbumin-positive interneurons determines hippocampal function and associated behavior. Neuron 53 591–604. 10.1016/j.neuron.2007.01.031|||Gajewski P. D., Hanisch E., Falkenstein M., Thones S., Wascher E. (2018). What does the n-back task measure as we get older? relations between working-memory measures and other cognitive functions across the lifespan. Front. Psychol. 9:2208. 10.3389/fpsyg.2018.02208|||Geisler C., Brunel N., Wang X. J. (2005). Contributions of intrinsic membrane dynamics to fast network oscillations with irregular neuronal discharges. J. Neurophysiol. 94 4344–4361. 10.1152/jn.00510.2004|||Goldman-Rakic P. S. (1994). Working memory dysfunction in schizophrenia. J. Neuropsychiatry Clin. Neurosci. 6 348–357.|||Goutagny R., Gu N., Cavanagh C., Jackson J., Chabot J. G., Quirion R., et al. (2013). Alterations in hippocampal network oscillations and theta-gamma coupling arise before Abeta overproduction in a mouse model of Alzheimer’s disease. Eur. J. Neurosci. 37 1896–1902. 10.1111/ejn.12233|||Hajos N., Paulsen O. (2009). Network mechanisms of gamma oscillations in the CA3 region of the hippocampus. Neural Netw. 22 1113–1119. 10.1016/j.neunet.2009.07.024|||Hansson O., Zetterberg H., Buchhave P., Londos E., Blennow K., Minthon L. (2006). Association between CSF biomarkers and incipient Alzheimer’s disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol. 5 228–234. 10.1016/s1474-4422(06)70355-6|||Harrington M. G., Chiang J., Pogoda J. M., Gomez M., Thomas K., Marion S. D., et al. (2013). Executive function changes before memory in preclinical Alzheimer’s pathology: a prospective, cross-sectional, case control study. PLoS One 8:e79378. 10.1371/journal.pone.0079378|||Harrington M. G., Edminster S. P., Buennagel D. P., Chiang J. P., Sweeney M. D., CHui H. C., et al. (2019). Four-year longitudinal study of cognitively healthy individuals: csf amyloid/tau levels and nanoparticle membranes identify high risk for Alzheimer’s Disease. Alzheimers Dement. 15:299.|||Hasenstaub A., Shu Y., Haider B., Kraushaar U., Duque A., McCormick D. A. (2005). Inhibitory postsynaptic potentials carry synchronized frequency information in active cortical networks. Neuron 47 423–435. 10.1016/j.neuron.2005.06.016|||Herrmann C. S. (2001). Human EEG responses to 1-100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena. Exp. Brain Res. 137 346–353. 10.1007/s002210100682|||Herrmann C. S., Demiralp T. (2005). Human EEG gamma oscillations in neuropsychiatric disorders. Clin. Neurophysiol. 116 2719–2733. 10.1016/j.clinph.2005.07.007|||Hipp J. F., Engel A. K., Siegel M. (2011). Oscillatory synchronization in large-scale cortical networks predicts perception. Neuron 69 387–396. 10.1016/j.neuron.2010.12.027|||Howard M. W., Rizzuto D. S., Caplan J. B., Madsen J. R., Lisman J., Aschenbrenner-Scheibe R., et al. (2003). Gamma oscillations correlate with working memory load in humans. Cereb. Cortex 13 1369–1374. 10.1093/cercor/bhg084|||Iaccarino H. F., Singer A. C., Martorell A. J., Rudenko A., Gao F., Gillingham T. Z., et al. (2016). Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature 540 230–235. 10.1038/nature20587|||Jack CR, Jr, Bennett D. A., Blennow K., Carrillo M. C., Dunn B., Haeberlein S. B., et al. (2018). NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement 14 535–562. 10.1016/j.jalz.2018.02.018|||Jia X., Kohn A. (2011). Gamma rhythms in the brain. PLoS Biol. 9:e1001045. 10.1371/journal.pbio.1001045|||Jonides J., Smith E. E., Koeppe R. A., Awh E., Minoshima S., Mintun M. A. (1993). Spatial working memory in humans as revealed by PET. Nature 363 623–625. 10.1038/363623a0|||Junghofer M., Elbert T., Tucker D. M., Braun C. (1999). The polar average reference effect: a bias in estimating the head surface integral in EEG recording. Clin. Neurophysiol. 110 1149–1155. 10.1016/s1388-2457(99)00044-9|||Kimberg D. Y., Aguirre G. K., D’Esposito M. (2000). Modulation of task-related neural activity in task-switching: an fMRI study. Brain Res. Cogn. Brain Res. 10 189–196. 10.1016/s0926-6410(00)00016-1|||Klimesch W. (2012). alpha-band oscillations, attention, and controlled access to stored information. Trends Cogn. Sci. 16 606–617. 10.1016/j.tics.2012.10.007|||Kopell N., Ermentrout G. B., Whittington M. A., Traub R. D. (2000). Gamma rhythms and beta rhythms have different synchronization properties. Proc. Natl. Acad. Sci. U.S.A. 97 1867–1872. 10.1073/pnas.97.4.1867|||Kumar S., Narayan Y., Amell T. (2003b). Power spectra of sternocleidomastoids, splenius capitis, and upper trapezius in oblique exertions. Spine J. 3 339–350. 10.1016/s1529-9430(03)00077-9|||Kumar S., Narayan Y., Amell T. (2003a). EMG power spectra of cervical muscles in lateral flexion and comparison with sagittal and oblique plane activities. Eur. J. Appl. Physiol. 89 367–376. 10.1007/s00421-003-0797-3|||Lianyang L., Arakaki X., Thao T., Harrington M., Padhye N., Zouridakis G. (2016). Brain activation profiles in mTBI: evidence from ERP activity of working memory response. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2016 1862–1865.|||Lim H. K., Nebes R., Snitz B., Cohen A., Mathis C., Price J., et al. (2014). Regional amyloid burden and intrinsic connectivity networks in cognitively normal elderly subjects. Brain 137(Pt. 12), 3327–3338. 10.1093/brain/awu271|||Lopez M. E., Bruna R., Aurtenetxe S., Pineda-Pardo J. A., Marcos A., Arrazola J., et al. (2014). Alpha-band hypersynchronization in progressive mild cognitive impairment: a magnetoencephalography study. J. Neurosci. 34 14551–14559. 10.1523/jneurosci.0964-14.2014|||Luck S. J. (2014). An Introduction to the Event-Related Potential Technique. Cambridge, MA: The MIT Press, 279–282.|||Lutzenberger W., Pulvermuller F., Elbert T., Birbaumer N. (1995). Visual stimulation alters local 40-Hz responses in humans: an EEG-study. Neurosci. Lett. 183 39–42. 10.1016/0304-3940(94)11109-v|||Miller E. K., Cohen J. D. (2001). An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24 167–202. 10.1146/annurev.neuro.24.1.167|||Missonnier P., Gold G., Leonards U., Costa-Fazio L., Michel J. P., Ibanez V., et al. (2004). Aging and working memory: early deficits in EEG activation of posterior cortical areas. J. Neural Transm 111 1141–1154.|||Mormino E. C., Smiljic A., Hayenga A. O., Onami S. H., Greicius M. D., Rabinovici G. D., et al. (2011). Relationships between beta-amyloid and functional connectivity in different components of the default mode network in aging. Cereb Cortex 21 2399–2407. 10.1093/cercor/bhr025|||Muller E. G., Edwin T. H., Stokke C., Navelsaker S. S., Babovic A., Bogdanovic N., et al. (2019). Amyloid-beta PET-Correlation with cerebrospinal fluid biomarkers and prediction of Alzheimer s disease diagnosis in a memory clinic. PLoS One 14:e0221365. 10.1371/journal.pone.0221365|||Muthukumaraswamy S. D. (2013). High-frequency brain activity and muscle artifacts in MEG/EEG: a review and recommendations. Front. Hum. Neurosci. 7:138. 10.3389/fnhum.2013.00138|||Nakamura A., Cuesta P., Fernandez A., Arahata Y., Iwata K., Kuratsubo I., et al. (2018). Electromagnetic signatures of the preclinical and prodromal stages of Alzheimer’s disease. Brain 141 1470–1485. 10.1093/brain/awy044|||Nakazono T., Jun H., Blurton-Jones M., Green K. N., Igarashi K. M. (2018). Gamma oscillations in the entorhinal-hippocampal circuit underlying memory and dementia. Neurosci Res 129 40–46. 10.1016/j.neures.2018.02.002|||Nava-Mesa M. O., Jimenez-Diaz L., Yajeya J., Navarro-Lopez J. D. (2014). GABAergic neurotransmission and new strategies of neuromodulation to compensate synaptic dysfunction in early stages of Alzheimer’s disease. Front. Cell Neurosci. 8:167. 10.3389/fncel.2014.00167|||O’Keefe J., Recce M. L. (1993). Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3 317–330. 10.1002/hipo.450030307|||Olbrich S., Jodicke J., Sander C., Himmerich H., Hegerl U. (2011). ICA-based muscle artefact correction of EEG data: what is muscle and what is brain? Comment on McMenamin et al. Neuroimage 54 4–9.|||Owen A. M., McMillan K. M., Laird A. R., Bullmore E. (2005). N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Hum. Brain Mapp. 25 46–59. 10.1002/hbm.20131|||Palop J. J., Mucke L. (2016). Network abnormalities and interneuron dysfunction in Alzheimer disease. Nat. Rev. Neurosci. 17 777–792. 10.1038/nrn.2016.141|||Qi Z., Wu X., Wang Z., Zhang N., Dong H., Yao L., et al. (2010). Impairment and compensation coexist in amnestic MCI default mode network. Neuroimage 50 48–55. 10.1016/j.neuroimage.2009.12.025|||Rabinowitz J. C., Ackerman B. P., Craik F. I., Hinchley J. L. (1982). Aging and metamemory: the roles of relatedness and imagery. J. Gerontol. 37 688–695. 10.1093/geronj/37.6.688|||Rajmohan R., Reddy P. H. (2017). Amyloid-Beta and Phosphorylated Tau Accumulations Cause Abnormalities at Synapses of Alzheimer’s disease Neurons. J Alzheimers Dis. 57 975–999. 10.3233/jad-160612|||Ray S., Maunsell J. H. (2011). Different origins of gamma rhythm and high-gamma activity in macaque visual cortex. PLoS Biol. 9:e1000610. 10.1371/journal.pbio.1000610|||Rojas G. M., Alvarez C., Montoya C. E., de la Iglesia-Vaya M., Cisternas J. E., Galvez M. (2018). Study of resting-state functional connectivity networks using EEG electrodes position as seed. Front. Neurosci 12:235. 10.3389/fnins.2018.00235|||Rushworth M. F., Krams M., Passingham R. E. (2001a). The attentional role of the left parietal cortex: the distinct lateralization and localization of motor attention in the human brain. J. Cogn. Neurosci. 13 698–710. 10.1162/089892901750363244|||Rushworth M. F., Paus T., Sipila P. K. (2001b). Attention systems and the organization of the human parietal cortex. J. Neurosci. 21 5262–5271. 10.1523/jneurosci.21-14-05262.2001|||Salthouse T. A. (2003). Memory aging from 18 to 80. Alzheimer Dis. Assoc. Disord. 17 162–167. 10.1097/00002093-200307000-00008|||Salthouse T. A., Ferrer-Caja E. (2003). What needs to be explained to account for age-related effects on multiple cognitive variables? Psychol. Aging 18 91–110. 10.1037/0882-7974.18.1.91|||Sawilowsky S. S. (2009). New effect size rules of thumb. J. Modern Appl. Statist. Methods 8 597–599. 10.22237/jmasm/1257035100|||Schneider T. R., Debener S., Oostenveld R., Engel A. K. (2008). Enhanced EEG gamma-band activity reflects multisensory semantic matching in visual-to-auditory object priming. Neuroimage 42 1244–1254. 10.1016/j.neuroimage.2008.05.033|||Sederberg P. B., Schulze-Bonhage A., Madsen J. R., Bromfield E. B., Litt B., Brandt A., et al. (2007). Gamma oscillations distinguish true from false memories. Psychol. Sci. 18 927–932. 10.1111/j.1467-9280.2007.02003.x|||Shulman G. L., d’Avossa G., Tansy A. P., Corbetta M. (2002a). Two attentional processes in the parietal lobe. Cereb. Cortex 12 1124–1131. 10.1093/cercor/12.11.1124|||Shulman G. L., Tansy A. P., Kincade M., Petersen S. E., McAvoy M. P., Corbetta M. (2002b). Reactivation of networks involved in preparatory states. Cereb. Cortex 12 590–600. 10.1093/cercor/12.6.590|||Singer W. (1999). Neurobiology: striving for coherence. Nature 397 391–393. 10.1038/17021|||Sperling R. A., Aisen P. S., Beckett L. A., Bennett D. A., Craft S., Fagan A. M., et al. (2011). Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 7 280–292.|||Sperling R. A., Mormino E. C., Schultz A. P., Betensky R. A., Papp K. V., Amariglio R. E., et al. (2019). The impact of amyloid-beta and tau on prospective cognitive decline in older individuals. Ann. Neurol. 85 181–193.|||Stevenson R. F., Zheng J., Mnatsakanyan L., Vadera S., Knight R. T., Lin J. J., et al. (2018). Hippocampal CA1 gamma power predicts the precision of spatial memory judgments. Proc. Natl. Acad. Sci. U.S.A. 115 10148–10153. 10.1073/pnas.1805724115|||Sullivan G. M., Feinn R. (2012). Using Effect Size-or Why the P Value Is Not Enough. J Grad Med Educ. 4 279–282. 10.4300/jgme-d-12-00156.1|||Tallon-Baudry C., Bertrand O. (1999). Oscillatory gamma activity in humans and its role in object representation. Trends Cogn. Sci. 3 151–162. 10.1016/s1364-6613(99)01299-1|||Tallon-Baudry C., Bertrand O., Peronnet F., Pernier J. (1998). Induced gamma-band activity during the delay of a visual short-term memory task in humans. J. Neurosci. 18 4244–4254. 10.1523/jneurosci.18-11-04244.1998|||Tiesinga P., Sejnowski T. J. (2009). Cortical enlightenment: are attentional gamma oscillations driven by ING or PING? Neuron 63 727–732. 10.1016/j.neuron.2009.09.009|||van Vugt M. K., Schulze-Bonhage A., Litt B., Brandt A., Kahana M. J. (2010). Hippocampal gamma oscillations increase with memory load. J. Neurosci. 30 2694–2699. 10.1523/jneurosci.0567-09.2010|||Verret L. (2012). [Repairing rhythms in the brain of Alzheimer’s mouse models]. Med. Sci. 28 1044–1047.|||Verret L., Mann E. O., Hang G. B., Barth A. M., Cobos I., Ho K., et al. (2012). Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell 149 708–721. 10.1016/j.cell.2012.02.046|||Vorobyov S., Cichocki A. (2002). Blind noise reduction for multisensory signals using ICA and subspace filtering, with application to EEG analysis. Biol. Cybern. 86 293–303. 10.1007/s00422-001-0298-6|||Wang J., Fang Y., Wang X., Yang H., Yu X., Wang H. (2017). Enhanced gamma activity and cross-frequency interaction of resting-state electroencephalographic oscillations in patients with alzheimer’s disease. Front. Aging Neurosci. 9:243. 10.3389/fnagi.2017.00243|||Wang X. J., Buzsaki G. (1996). Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J. Neurosci. 16 6402–6413. 10.1523/jneurosci.16-20-06402.1996|||Wilder C. M. K., Nolty A., Arakaki X., Fonteh A. N., Harrington M. G. (2018). Boston naming test predicts deterioration of cerebrospinal fluid biomarkers in pre-symptomatic Alzheimer’s disease. FASEB J. 32:545.|||Wilson H. R., Cowan J. D. (1972). Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12 1–24. 10.1016/s0006-3495(72)86068-5|||Wulff P., Ponomarenko A. A., Bartos M., Korotkova T. M., Fuchs E. C., Bahner F., et al. (2009). Hippocampal theta rhythm and its coupling with gamma oscillations require fast inhibition onto parvalbumin-positive interneurons. Proc. Natl. Acad. Sci. U.S.A. 106 3561–3566. 10.1073/pnas.0813176106|||Yao D. (2001). A method to standardize a reference of scalp EEG recordings to a point at infinity. Physiol. Meas. 22 693–711. 10.1088/0967-3334/22/4/305|||Yao D., Wang L., Oostenveld R., Nielsen K. D., Arendt-Nielsen L., Chen A. C. (2005). A comparative study of different references for EEG spectral mapping: the issue of the neutral reference and the use of the infinity reference. Physiol. Meas. 26 173–184. 10.1088/0967-3334/26/3/003