Quick Links

Plasma Lipolysis and Changes in Plasma and Cerebrospinal Fluid Signaling Lipids Reveal Abnormal Lipid Metabolism in Chronic Migr

Authors: Katherine Castor|||Jessica Dawlaty|||Xianghong Arakaki|||Noah Gross|||Yohannes W Woldeamanuel|||Michael G Harrington|||Robert P Cowan|||Alfred N Fonteh

Journal: Frontiers in molecular neuroscience

Publication Type: Journal Article

Date: 2021

DOI: PMC8438335

ID: 34531722

Affiliations:

Affiliations

    Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States.|||Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States.|||Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States.|||Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States.|||Pain Center, Department of Neurology, Stanford University, Stanford, CA, United States.|||Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States.|||Pain Center, Department of Neurology, Stanford University, Stanford, CA, United States.|||Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States.

Abstract

Lipids are a primary storage form of energy and the source of inflammatory and pain signaling molecules, yet knowledge of their importance in chronic migraine (CM) pathology is incomplete. We aim to determine if plasma and cerebrospinal fluid (CSF) lipid metabolism are associated with CM pathology.


Reference List

    Abdelmagid S. A., Clarke S. E., Roke K., Nielsen D. E., Badawi A., El-Sohemy A., et al. (2015). Ethnicity, sex, FADS genetic variation, and hormonal contraceptive use influence delta-5- and delta-6-desaturase indices and plasma docosahexaenoic acid concentration in young Canadian adults: a cross-sectional study. Nutr. Metab. 12:14.|||Akerman S., Holland P. R., Lasalandra M. P., Goadsby P. J. (2013). Endocannabinoids in the brainstem modulate dural trigeminovascular nociceptive traffic via CB1 and “triptan” receptors: implications in migraine. J. Neurosci. 11 14869–14877. 10.1523/jneurosci.0943-13.2013|||Alarcon G., Roco J., Medina A., Van Nieuwenhove C., Medina M., Jerez S. (2016). Stearoyl-CoA desaturase indexes and n-6/n-3 fatty acids ratio as biomarkers of cardiometabolic risk factors in normal-weight rabbits fed high fat diets. J. Biomed. Sci. 20:13.|||Alcock J., Lin H. C. (2015). Fatty acids from diet and microbiota regulate energy metabolism. F1000Res. 4:738.|||Al-Hilal M., Alsaleh A., Maniou Z., Lewis F. J., Hall W. L., Sanders T. A., et al. (2013). Genetic variation at the FADS1-FADS2 gene locus influences delta-5 desaturase activity and LC-PUFA proportions after fish oil supplement. J. Lipid Res. 54 542–551. 10.1194/jlr.p032276|||Antonova M., Wienecke T., Olesen J., Ashina M. (2012). Prostaglandin E(2) induces immediate migraine-like attack in migraine patients without aura. Cephalalgia 32 822–833. 10.1177/0333102412451360|||Araya J., Rodrigo R., Pettinelli P., Araya A. V., Poniachik J., Videla L. A. (2010). Decreased liver fatty acid delta-6 and delta-5 desaturase activity in obese patients. Obesity 18 1460–1463. 10.1038/oby.2009.379|||Arita M., Clish C. B., Serhan C. N. (2005). The contributions of aspirin and microbial oxygenase to the biosynthesis of anti-inflammatory resolvins: novel oxygenase products from omega-3 polyunsaturated fatty acids. Biochem. Biophys. Res. Commun. 9 149–157. 10.1016/j.bbrc.2005.07.181|||Artiach G., Back M. (2020). Omega-3 Polyunsaturated Fatty Acids and the Resolution of Inflammation: Novel Therapeutic Opportunities for Aortic Valve Stenosis? Front. Cell Dev. Biol. 8:584128.|||Aveldano M. I., Horrocks L. A. (1983). Quantitative release of fatty acids from lipids by a simple hydrolysis procedure. J. Lipid Res. 24 1101–1105. 10.1016/s0022-2275(20)37924-4|||Bao S., Bohrer A., Ramanadham S., Jin W., Zhang S., Turk J. (2006). Effects of stable suppression of Group VIA phospholipase A2 expression on phospholipid content and composition, insulin secretion, and proliferation of INS-1 insulinoma cells. J. Biol. Chem. 6 187–198. 10.1074/jbc.m509105200|||Baugh S. D., Pabba P. K., Barbosa J., Coulter E., Desai U., Gay J. P., et al. (2015). Design, synthesis, and in vivo activity of novel inhibitors of delta-5 desaturase for the treatment of metabolic syndrome. Bioorg. Med. Chem. Lett. 15 3836–3839. 10.1016/j.bmcl.2015.07.066|||Bazan N. G. (1998). The neuromessenger platelet-activating factor in plasticity and neurodegeneration. Prog. Brain Res. 118 281–291. 10.1016/s0079-6123(08)63215-x|||Bazan N. G., Allan G. (1996). Platelet-activating factor is both a modulator of synaptic function and a mediator of cerebral injury and inflammation. Adv. Neurol. 71 475–482.|||Bernstein A. M., Roizen M. F., Martinez L. (2014). Purified palmitoleic acid for the reduction of high-sensitivity C-reactive protein and serum lipids: a double-blinded, randomized, placebo controlled study. J. Clin. Lipidol. 8 612–617. 10.1016/j.jacl.2014.08.001|||Berthelot C. C., Kamita S. G., Sacchi R., Yang J., Nording M. L., Georgi K., et al. (2015). Changes in PTGS1 and ALOX12 Gene Expression in Peripheral Blood Mononuclear Cells Are Associated with Changes in Arachidonic Acid, Oxylipins, and Oxylipin/Fatty Acid Ratios in Response to Omega-3 Fatty Acid Supplementation. PLoS One 10:e0144996. 10.1371/journal.pone.0144996|||Bhoi S. K., Kalita J., Misra U. K. (2012). Metabolic syndrome and insulin resistance in migraine. J Headache Pain. 13 321–326.|||Bligh E. G., Dyer W. J. (1959). A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37 911–917. 10.1139/o59-099|||Bluher M. (2013). Importance of estrogen receptors in adipose tissue function. Mol. Metab. 2 130–132. 10.1016/j.molmet.2013.07.001|||Bollag W. B. (2016). Role of phospholipases in adrenal steroidogenesis. J Endocrinol. Apr 229 R29–R41.|||Boutaud O., Andreasson K. I., Zagol-Ikapitte I., Oates J. A. (2005). Cyclooxygenase-dependent lipid-modification of brain proteins. Brain Pathol. 15 139–142. 10.1111/j.1750-3639.2005.tb00510.x|||Cady R., Turner I., Dexter K., Beach M. E., Cady R., Durham P. (2014). An exploratory study of salivary calcitonin gene-related peptide levels relative to acute interventions and preventative treatment with onabotulinumtoxinA in chronic migraine. Headache 54 269–277. 10.1111/head.12250|||Chap H. (2016). Forty five years with membrane phospholipids, phospholipases and lipid mediators: A historical perspective. Biochimie 125 234–249. 10.1016/j.biochi.2016.04.002|||Chen S. C., Chen P. Y., Wu Y. L., Chen C. W., Chen H. W., Lii C. K., et al. (2016). Long-chain polyunsaturated fatty acids amend palmitate-induced inflammation and insulin resistance in mouse C2C12 myotubes. Food Funct. Jan 7 270–278. 10.1039/c5fo00704f|||Chilton F. H., Murphy R. C. (1986). Remodeling of arachidonate-containing phosphoglycerides within the human neutrophil. J. Biol. Chem. 15 7771–7777. 10.1016/s0021-9258(19)57467-1|||Chilton-Lopez T., Surette M. E., Swan D. D., Fonteh A. N., Johnson M. M., Chilton F. H. (1996). Metabolism of gammalinolenic acid in human neutrophils. J. Immunol. 15 2941–2947.|||Choi S. M., Tucker D. F., Gross D. N., Easton R. M., DiPilato L. M., Dean A. S., et al. (2010). Insulin regulates adipocyte lipolysis via an Akt-independent signaling pathway. Mol. Cell Biol. 30 5009–5020. 10.1128/mcb.00797-10|||Chong J., Xia J. (2020). Using MetaboAnalyst 4.0 for Metabolomics Data Analysis, Interpretation, and Integration with Other Omics Data. Methods Mol. Biol. 2104 337–360. 10.1007/978-1-0716-0239-3_17|||Cignarelli A., Genchi V. A., Perrini S., Natalicchio A., Laviola L., Giorgino F. (2019). Insulin and Insulin Receptors in Adipose Tissue Development. Int. J. Mol. Sci. 11:20.|||Clark G. D. (2015). Platelet-Activating Factor Acetylhydrolase and Brain Development. Enzymes 38 37–42. 10.1016/bs.enz.2015.09.009|||Coleman R. A., Mashek D. G. (2011). Mammalian triacylglycerol metabolism: synthesis, lipolysis, and signaling. Chem. Rev. 12 6359–6386. 10.1021/cr100404w|||Coniglio J. G. (1993). Free fatty acids in plasma may exert feed-back control of lipoprotein lipase activity. Nutr. Rev. 51 18–19. 10.1111/j.1753-4887.1993.tb03048.x|||Coonrod J. D., Karathanasis P., Lin R. (1989). Lipoprotein lipase: a source of free fatty acids in bronchoalveolar lining fluid. J. Lab. Clin. Med. 113 449–457.|||Cucchi D., Camacho-Munoz D., Certo M., Pucino V., Nicolaou A., Mauro C. (2019). Fatty acids - from energy substrates to key regulators of cell survival, proliferation and effector function. Cell Stress 10 9–23. 10.15698/cst2020.01.209|||Cupini L. M., Costa C., Sarchielli P., Bari M., Battista N., Eusebi P., et al. (2008). Degradation of endocannabinoids in chronic migraine and medication overuse headache. Neurobiol Dis. 30 186–189. 10.1016/j.nbd.2008.01.003|||Daneshmand R., Kurl S., Tuomainen T. P., Virtanen J. K. (2017). Associations of estimated Delta-5-desaturase and Delta-6-desaturase activities with stroke risk factors and risk of stroke: the Kuopio Ischaemic Heart Disease Risk Factor Study. Br. J. Nutr. 117 582–590. 10.1017/s000711451700054x|||de Moura R. F., Nascimento L. F., Ignacio-Souza L. M., Morari J., Razolli D. S., Solon C., et al. (2016). Hypothalamic stearoyl-CoA desaturase-2 (SCD2) controls whole-body energy expenditure. Int. J. Obes 40 471–478. 10.1038/ijo.2015.188|||de Souza C. O., Valenzuela C. A., Baker E. J., Miles E. A., Rosa Neto J. C., Calder P. C. (2018). Palmitoleic Acid has Stronger Anti-Inflammatory Potential in Human Endothelial Cells Compared to Oleic and Palmitic Acids. Mol. Nutr. Food Res. 62:e1800322.|||de Vries T., Villalon C. M., MaassenVanDenBrink A. (2020). Pharmacological treatment of migraine: CGRP and 5-HT beyond the triptans. Pharmacol. Ther. 211:107528. 10.1016/j.pharmthera.2020.107528|||Dennis E. A., Cao J., Hsu Y. H., Magrioti V., Kokotos G. (2011). Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chem. Rev. 12 6130–6185. 10.1021/cr200085w|||Devassy J. G., Leng S., Gabbs M., Monirujjaman M., Aukema H. M. (2016). Omega-3 Polyunsaturated Fatty Acids and Oxylipins in Neuroinflammation and Management of Alzheimer Disease. Adv. Nutr. 7 905–916. 10.3945/an.116.012187|||Dimas P., Montani L., Pereira J. A., Moreno D., Trotzmuller M., Gerber J., et al. (2019). CNS myelination and remyelination depend on fatty acid synthesis by oligodendrocytes. Elife 7:8.|||Djousse L., Weir N. L., Hanson N. Q., Tsai M. Y., Gaziano J. M. (2012). Plasma phospholipid concentration of cis-palmitoleic acid and risk of heart failure. Circ. Heart Fail. 5 703–709. 10.1161/circheartfailure.112.967802|||Dragano N. R. V., Solon C., Ramalho A. F., de Moura R. F., Razolli D. S., Christiansen E., et al. (2017). Polyunsaturated fatty acid receptors, GPR40 and GPR120, are expressed in the hypothalamus and control energy homeostasis and inflammation. J. Neuroinflammation. 26:91.|||Fava A., Pirritano D., Consoli D., Plastino M., Casalinuovo F., Cristofaro S., et al. (2014). Chronic migraine in women is associated with insulin resistance: a cross-sectional study. Eur J Neurol. Feb 21 267–272. 10.1111/ene.12289|||Fonteh A. N., Chiang J., Cipolla M., Hale J., Diallo F., Chirino A., et al. (2013). Alterations in cerebrospinal fluid glycerophospholipids and phospholipase A2 activity in Alzheimer’s disease. J. Lipid. Res. 54 2884–2897. 10.1194/jlr.m037622|||Fonteh A. N., Chung R., Sharma T. L., Fisher R. D., Pogoda J. M., Cowan R., et al. (2011). Cerebrospinal fluid phospholipase C activity increases in migraine. Cephalalgia. 31 456–462. 10.1177/0333102410383589|||Fonteh A. N., Cipolla M., Chiang J., Arakaki X., Harrington M. G. (2014). Human cerebrospinal fluid fatty acid levels differ between supernatant fluid and brain-derived nanoparticle fractions, and are altered in Alzheimer’s disease. PLoS One 9:e100519. 10.1371/journal.pone.0100519|||Frigolet M. E., Gutierrez-Aguilar R. (2017). The Role of the Novel Lipokine Palmitoleic Acid in Health and Disease. Adv. Nutr. 8 173S–181S.|||Goodridge A. G., Back D. W., Wilson S. B., Goldman M. J. (1986). Regulation of genes for enzymes involved in fatty acid synthesis. Ann. N. Y. Acad. Sci. 478 46–62. 10.1111/j.1749-6632.1986.tb15520.x|||Guan W., Steffen B. T., Lemaitre R. N., Wu J. H. Y., Tanaka T., Manichaikul A., et al. (2014). Genome-wide association study of plasma N6 polyunsaturated fatty acids within the cohorts for heart and aging research in genomic epidemiology consortium. Circ. Cardiovasc. Genet. 7 321–331. 10.1161/circgenetics.113.000208|||Guzman D. C., Brizuela N. O., Herrera M. O., Olguin H. J., Garcia E. H., Peraza A. V., et al. (2016). Oleic Acid Protects Against Oxidative Stress Exacerbated by Cytarabine and Doxorubicin in Rat Brain. Anticancer Agents Med. Chem. 16 1491–1495. 10.2174/1871520615666160504093652|||Haghdoost F., Gharzi M., Faez F., Hosseinzadeh E., Tajaddini M., Ra, et al. (2016). Association between Ala379Val polymorphism of lipoprotein-associated phospholipase A2 and migraine without aura in Iranian population. Iran. J. Neurol. 3 80–84.|||Han H. S., Jang J. H., Park J. S., Kim H. J., Kim J. K. (2013). Transient blood brain barrier disruption induced by oleic acid is mediated by nitric oxide. Curr. Neurovasc. Res. 10 287–296. 10.2174/15672026113109990024|||Herzer S., Meldner S., Grone H. J., Nordstrom V. (2015). Fasting-Induced Lipolysis and Hypothalamic Insulin Signaling Are Regulated by Neuronal Glucosylceramide Synthase. Diabetes 64 3363–3376. 10.2337/db14-1726|||Hiltunen J. K., Chen Z., Haapalainen A. M., Wierenga R. K., Kastaniotis A. J. (2010). Mitochondrial fatty acid synthesis–an adopted set of enzymes making a pathway of major importance for the cellular metabolism. Prog. Lipid Res. 49 27–45. 10.1016/j.plipres.2009.08.001|||Huang W., Wang B., Li X., Kang J. X. (2015). Endogenously elevated n-3 polyunsaturated fatty acids alleviate acute ethanol-induced liver steatosis. Biofactors 41 453–462. 10.1002/biof.1246|||Ibeas E., Fuentes L., Martin R., Hernandez M., Nieto M. L. (2009). Secreted phospholipase A2 type IIA as a mediator connecting innate and adaptive immunity: new role in atherosclerosis. Cardiovasc. Res. 1 54–63. 10.1093/cvr/cvn234|||Im H., Park J. H., Im S., Han J., Kim K., Lee Y. H. (2021). Regulatory roles of G-protein coupled receptors in adipose tissue metabolism and their therapeutic potential. Arch. Pharm. Res. 44 133–145. 10.1007/s12272-021-01314-w|||Ji R. R., Xu Z. Z., Strichartz G., Serhan C. N. (2011). Emerging roles of resolvins in the resolution of inflammation and pain. Trends Neurosci. 34 599–609. 10.1016/j.tins.2011.08.005|||Joseph R., Welch K. M., Grunfeld S., Oster S. B., D’Andrea G. (1988). Cytosolic ionized calcium homeostasis in platelets: an abnormal sensitivity to PAF-activation in migraine. Headache 28 396–402. 10.1111/j.1526-4610.1988.hed2806396.x|||Jumpertz R., Guijarro A., Pratley R. E., Mason C. C., Piomelli D., Krakoff J. (2012). Associations of fatty acids in cerebrospinal fluid with peripheral glucose concentrations and energy metabolism. PLoS One 7:e41503. 10.1371/journal.pone.0041503|||Kakutani S., Kawashima H., Tanaka T., Shiraishi-Tateishi A., Kiso Y. (2010). Uptake of dihomo-gamma-linolenic acid by murine macrophages increases series-1 prostaglandin release following lipopolysaccharide treatment. Prostaglandins Leukot Essent Fatty Acids 83 23–29. 10.1016/j.plefa.2010.02.032|||Kawashima A., Sugawara S., Okita M., Akahane T., Fukui K., Hashiuchi M., et al. (2009). Plasma fatty acid composition, estimated desaturase activities, and intakes of energy and nutrient in Japanese men with abdominal obesity or metabolic syndrome. J. Nutr. Sci. Vitaminol. 55 400–406. 10.3177/jnsv.55.400|||Kheirollahi M., Kazemi M., Amini G., Khorvash F., Ahangari F., Kolahdouz M., et al. (2015). Expression of prostaglandin I2 (prostacyclin) receptor in blood of migraine patients: A potential biomarker. Adv. Biomed. Res. 4:121. 10.4103/2277-9175.158030|||Kim D., Jun K. S., Lee S. B., Kang N. G., Min D. S., Kim Y. H., et al. (1997). Phospholipase C isozymes selectively couple to specific neurotransmitter receptors. Nature 18 290–293. 10.1038/38508|||Kim M. S., Yan J., Wu W., Zhang G., Zhang Y., Cai D. (2015). Rapid linkage of innate immunological signals to adaptive immunity by the brain-fat axis. Nat. Immunol. 16 525–533. 10.1038/ni.3133|||Kishimoto Y., Williams M., Moser H. W., Hignite C., Biermann K. (1973). Branched-chain and odd-numbered fatty acids and aldehydes in the nervous system of a patient with deranged vitamin B 12 metabolism. J. Lipid Res. 14 69–77. 10.1016/s0022-2275(20)39331-7|||Kuefner M. S., Deng X., Stephenson E. J., Pham K., Park E. A. (2019). Secretory phospholipase A2 group IIA enhances the metabolic rate and increases glucose utilization in response to thyroid hormone. FASEB J. 33 738–749. 10.1096/fj.201800711r|||Kuefner M. S., Pham K., Redd J. R., Stephenson E. J., Harvey I., Deng X., et al. (2017). Secretory phospholipase A2 group IIA modulates insulin sensitivity and metabolism. J. Lipid. Res. 58 1822–1833. 10.1194/jlr.m076141|||Kurotani K., Sato M., Ejima Y., Nanri A., Yi S., Pham N. M., et al. (2012). High levels of stearic acid, palmitoleic acid, and dihomo-gamma-linolenic acid and low levels of linoleic acid in serum cholesterol ester are associated with high insulin resistance. Nutr Res. 32 669–675e663.|||Le Foll C. (2019). Hypothalamic Fatty Acids and Ketone Bodies Sensing and Role of FAT/CD36 in the Regulation of Food Intake. Front Physiol. 10:1036.|||Le Foll C., Dunn-Meynell A. A., Miziorko H. M., Levin B. E. (2014). Regulation of hypothalamic neuronal sensing and food intake by ketone bodies and fatty acids. Diabetes. 63 1259–1269. 10.2337/db13-1090|||Lemas D. J., Klimentidis Y. C., Aslibekyan S., Wiener H. W., O’Brien D. M., Hopkins S. E., et al. (2016). Polymorphisms in stearoyl coa desaturase and sterol regulatory element binding protein interact with N-3 polyunsaturated fatty acid intake to modify associations with anthropometric variables and metabolic phenotypes in Yup’ik people. Mol. Nutr. Food Res. 60 2642–2653. 10.1002/mnfr.201600170|||Liebisch G., Fahy E., Aoki J., Dennis E. A., Durand T., Ejsing C. S., et al. (2020). Update on LIPID MAPS classification, nomenclature, and shorthand notation for MS-derived lipid structures. J. Lipid. Res. 61 1539–1555. 10.1194/jlr.s120001025|||Lin Y. W., Chou A. I. W., Su H., Su K. P. (2020). Transient receptor potential V1 (TRPV1) modulates the therapeutic effects for comorbidity of pain and depression: The common molecular implication for electroacupuncture and omega-3 polyunsaturated fatty acids. Brain Behav. Immun. 89 604–614. 10.1016/j.bbi.2020.06.033|||Lindsay D. B. (1975). Fatty acids as energy sources. Proc. Nutr. Soc. 34 241–248. 10.1079/pns19750045|||Lipton R. B., Manack Adams A., Buse D. C., Fanning K. M., Reed M. L. (2016). A Comparison of the Chronic Migraine Epidemiology and Outcomes (CaMEO) Study and American Migraine Prevalence and Prevention (AMPP) Study: Demographics and Headache-Related Disability. Headache. 56 1280–1289. 10.1111/head.12878|||Liu F., Li Z., Lv X., Ma J. (2015). Dietary n-3 polyunsaturated fatty acid intakes modify the effect of genetic variation in fatty acid desaturase 1 on coronary artery disease. PLoS One 10:e0121255. 10.1371/journal.pone.0121255|||Liu X. H., Eun B. L., Barks J. D. (2001). Platelet-activating factor antagonist BN 50730 attenuates hypoxic-ischemic brain injury in neonatal rats. Pediatr Res. 49 804–811. 10.1203/00006450-200106000-00016|||Locker M., Bitard J., Collet C., Poliard A., Mutel V., Launay J. M., et al. (2006). Stepwise control of osteogenic differentiation by 5-HT(2B) receptor signaling: nitric oxide production and phospholipase A2 activation. Cell Signal. 18 628–639. 10.1016/j.cellsig.2005.06.006|||Lucas K. K., Svensson C. I., Hua X. Y., Yaksh T. L., Dennis E. A. (2005). Spinal phospholipase A2 in inflammatory hyperalgesia: role of group IVA cPLA2. Br. J. Pharmacol. 144 940–952. 10.1038/sj.bjp.0706116|||Matsuda M., Kawamoto T., Tamura R. (2017). Predictive value of serum dihomo-gamma-linolenic acid level and estimated Delta-5 desaturase activity in patients with hepatic steatosis. Obes Res. Clin. Pract. 11 34–43. 10.1016/j.orcp.2016.02.004|||Matsuzaka T. (2021). Role of fatty acid elongase Elovl6 in the regulation of energy metabolism and pathophysiological significance in diabetes. Diabetol. Int. 12 68–73. 10.1007/s13340-020-00481-3|||May A., Schulte L. H. (2016). Chronic migraine: risk factors, mechanisms and treatment. Nat. Rev. Neurol. 12 455–464. 10.1038/nrneurol.2016.93|||Mead J. F., Dhopeshwarkar G. A. (1971). Types of fatty acids in brain lipids, their derivation and function. In: lipids, malnutrition & the developing brain. Ciba Found Symp. 1971 59–72. 10.1002/9780470719862.ch4|||Mocking R. J., Assies J., Lok A., Ruhe H. G., Koeter M. W., Visser I., et al. (2012). Statistical methodological issues in handling of fatty acid data: percentage or concentration, imputation and indices. Lipids. 47 541–547. 10.1007/s11745-012-3665-2|||Monk J. M., Liddle D. M., Cohen D. J., Tsang D. H., Hillyer L. M., Abdelmagid S. A., et al. (2016). The delta 6 desaturase knock out mouse reveals that immunomodulatory effects of essential n-6 and n-3 polyunsaturated fatty acids are both independent of and dependent upon conversion. J. Nutr. Biochem. 32 29–38. 10.1016/j.jnutbio.2016.01.004|||Montani L., Pereira J. A., Norrmen C., Pohl H. B. F., Tinelli E., Trotzmuller M., et al. (2018). De novo fatty acid synthesis by Schwann cells is essential for peripheral nervous system myelination. J. Cell Biol. 2 1353–1368. 10.1083/jcb.201706010|||Morita M., Kawamichi M., Shimura Y., Kawaguchi K., Watanabe S., Imanaka T. (2015). Brain microsomal fatty acid elongation is increased in abcd1-deficient mouse during active myelination phase. Metab. Brain Dis. 30 1359–1367. 10.1007/s11011-015-9701-1|||Mozaffarian D., Cao H., King I. B., Lemaitre R. N., Song X., Siscovick D. S., et al. (2010a). Circulating palmitoleic acid and risk of metabolic abnormalities and new-onset diabetes. Am. J. Clin. Nutr. 92 1350–1358. 10.3945/ajcn.110.003970|||Mozaffarian D., Cao H., King I. B., Lemaitre R. N., Song X., Siscovick D. S., et al. (2010b). Trans-palmitoleic acid, metabolic risk factors, and new-onset diabetes in U.S. adults: a cohort study. Ann. Intern. Med. 21 790–799. 10.7326/0003-4819-153-12-201012210-00005|||Myren M., Olesen J., Gupta S. (2012). Prostaglandin E2 receptor expression in the rat trigeminal-vascular system and other brain structures involved in pain. Neurosci. Lett. 6 64–69. 10.1016/j.neulet.2011.10.050|||Nakamura M. T., Yudell B. E., Loor J. J. (2014). Regulation of energy metabolism by long-chain fatty acids. Prog. Lipid. Res. 53 124–144. 10.1016/j.plipres.2013.12.001|||Nunes E. A., Rafacho A. (2017). Implications of Palmitoleic Acid (Palmitoleate) On Glucose Homeostasis, Insulin Resistance and Diabetes. Curr. Drug Targets 18 619–628. 10.2174/1389450117666151209120345|||O’Brien J. S., Rouser G. (1964). The fatty acid composition of brain sphingolipids: sphingomyelin, ceramide, cerebroside, and cerebroside sulfate. J. Lipid. Res. 5 339–342. 10.1016/s0022-2275(20)40202-0|||Olesen J., Third International Headache Classification Committee of the International Headache S. (2011). New plans for headache classification: ICHD-3. Cephalalgia 31 4–5. 10.1177/0333102410375628|||Oyanagi E., Uchida M., Miyakawa T., Miyachi M., Yamaguchi H., Nagami K., et al. (2015). Palmitoleic acid induces the cardiac mitochondrial membrane permeability transition despite the presence of L-carnitine. Biochem. Biophys. Res. Commun. 24 29–36. 10.1016/j.bbrc.2015.05.011|||Ozcan R. K., Ozmen S. G. (2019). The Association Between Migraine, Metabolic Syndrome, Insulin Resistance, and Obesity in Women: A Case-Control Study. Sisli Etfal Hastan Tip Bul. 53 395–402.|||Paillard F., Catheline D., Duff F. L., Bouriel M., Deugnier Y., Pouchard M., et al. (2008). Plasma palmitoleic acid, a product of stearoyl-coA desaturase activity, is an independent marker of triglyceridemia and abdominal adiposity. Nutr. Metab. Cardiovasc. Dis. 18 436–440. 10.1016/j.numecd.2007.02.017|||Pedersen S. B., Fuglsig S., Sjogren P., Richelsen B. (1996). Identification of steroid receptors in human adipose tissue. Eur. J. Clin. Invest. 26 1051–1056. 10.1046/j.1365-2362.1996.380603.x|||Perciaccante A., Perciaccante M. V. (2008). Autonomic nervous system, insulin, and migraine. Headache. 48 1381–1382. 10.1111/j.1526-4610.2008.01129.x|||Pickens C. A., Matsuo K. H., Fenton J. I. (2016). Relationship between Body Mass Index, C-Peptide, and Delta-5-Desaturase Enzyme Activity Estimates in Adult Males. PLoS One 11:e0149305. 10.1371/journal.pone.0149305|||Piomelli D., Sasso O. (2014). Peripheral gating of pain signals by endogenous lipid mediators. Nat. Neurosci. 17 164–174. 10.1038/nn.3612|||Polo-Hernandez E., Tello V., Arroyo A. A., Dominguez-Prieto M., de Castro F., Tabernero A., et al. (2014). Oleic acid synthesized by stearoyl-CoA desaturase (SCD-1) in the lateral periventricular zone of the developing rat brain mediates neuronal growth, migration and the arrangement of prospective synapses. Brain Res. 27 13–25. 10.1016/j.brainres.2014.04.038|||Prego-Dominguez J., Hadrya F., Takkouche B. (2016). Polyunsaturated Fatty Acids and Chronic Pain: A Systematic Review and Meta-analysis. Pain Physician. 19 521–535. 10.36076/ppj/2016.19.521|||Quiroga A. D., Lehner R. (2018). Pharmacological intervention of liver triacylglycerol lipolysis: The good, the bad and the ugly. Biochem. Pharmacol. 155 233–241. 10.1016/j.bcp.2018.07.005|||Ramsden C., Gagnon C., Graciosa J., Faurot K., David R., Bralley J. A., et al. (2010). Do omega-6 and trans fatty acids play a role in complex regional pain syndrome? A pilot study. Pain Med. 11 1115–1125. 10.1111/j.1526-4637.2010.00882.x|||Ramsden C. E., Mann J. D., Faurot K. R., Lynch C., Imam S. T., MacIntosh B. A., et al. (2011). Low omega-6 vs. low omega-6 plus high omega-3 dietary intervention for chronic daily headache: protocol for a randomized clinical trial. Trials 15:97.|||Ramsey R. B., Scott T., Banik N. L. (1977). Fatty acid composition of myelin isolated from the brain of a patient with cellular deficiency of co-enzyme forms of vitamin B12. J. Neurol. Sci. 34 221–232. 10.1016/0022-510x(77)90070-3|||Rao N. S., Pearce J. (1971). Hypothalamic-pituitary-adrenal axis studies in migraine with special reference to insulin sensitivity. Brain 94 289–298. 10.1093/brain/94.2.289|||Rogne M., Tasken K. (2014). Compartmentalization of cAMP signaling in adipogenesis, lipogenesis, and lipolysis. Horm. Metab. Res. 46 833–840. 10.1055/s-0034-1389955|||Rouser G., Kritchevsky G., Yamamoto A., Baxter C. F. (1972). Lipids in the nervous system of different species as a function of age: brain, spinal cord, peripheral nerve, purified whole cell preparations, and subcellular particulates: regulatory mechanisms and membrane structure. Adv. Lipid. Res. 10 261–360. 10.1016/b978-0-12-024910-7.50013-0|||Rubin D., Laposata M. (1992). Cellular interactions between n-6 and n-3 fatty acids: a mass analysis of fatty acid elongation/desaturation, distribution among complex lipids, and conversion to eicosanoids. J. Lipid Res. 33 1431–1440. 10.1016/s0022-2275(20)41397-5|||Salles J., Sargueil F., Knoll-Gellida A., Witters L. A., Shy M., Jiang H., et al. (2002). Fatty acid synthase expression during peripheral nervous system myelination. Brain Res. Mol. Brain Res. 30 52–58. 10.1016/s0169-328x(02)00161-4|||Salvemini D., Doyle T., Kress M., Nicol G. (2013). Therapeutic targeting of the ceramide-to-sphingosine 1-phosphate pathway in pain. Trends Pharmacol. Sci. 34 110–118. 10.1016/j.tips.2012.12.001|||Sandhir R., Khan M., Chahal A., Singh I. (1998). Localization of nervonic acid beta-oxidation in human and rodent peroxisomes: impaired oxidation in Zellweger syndrome and X-linked adrenoleukodystrophy. J. Lipid Res. 39 2161–2171. 10.1016/s0022-2275(20)32471-8|||Sarchielli P., Alberti A., Coppola F., Baldi A., Gallai B., Floridi A., et al. (2004). Platelet-activating factor (PAF) in internal jugular venous blood of migraine without aura patients assessed during migraine attacks. Cephalalgia. 24 623–630.|||Sargent J. R., Coupland K., Wilson R. (1994). Nervonic acid and demyelinating disease. Med. Hypotheses. 42 237–242. 10.1016/0306-9877(94)90122-8|||Sassa T., Tadaki M., Kiyonari H., Kihara A. (2018). Very long-chain tear film lipids produced by fatty acid elongase ELOVL1 prevent dry eye disease in mice. FASEB J. 32 2966–2978. 10.1096/fj.201700947r|||Schroeder E. A., Brunet A. (2015). Lipid Profiles and Signals for Long Life. Trends Endocrinol. Metab. 26 589–592. 10.1016/j.tem.2015.08.007|||Sekar S., Panchal S. K., Ghattamaneni N. K., Brown L., Crawford R., Xiao Y., et al. (2020). Dietary Saturated Fatty Acids Modulate Pain Behaviour in Trauma-Induced Osteoarthritis in Rats. Nutrients 18:12.|||Sergeant S., Rahbar E., Chilton F. H. (2016). Gamma-linolenic acid, Dihommo-gamma linolenic, Eicosanoids and Inflammatory Processes. Eur. J. Pharmacol. 15 77–86. 10.1016/j.ejphar.2016.04.020|||Serhan C. N., Levy B. D. (2018). Resolvins in inflammation: emergence of the pro-resolving superfamily of mediators. J. Clin. Invest. 2 2657–2669. 10.1172/jci97943|||Shapiro H., Singer P., Ariel A. (2016). Beyond the classic eicosanoids: Peripherally-acting oxygenated metabolites of polyunsaturated fatty acids mediate pain associated with tissue injury and inflammation. Prostaglandins Leukot Essent Fatty Acids 111 45–61. 10.1016/j.plefa.2016.03.001|||Shridas P., Zahoor L., Forrest K. J., Layne J. D., Webb N. R. (2014). Group X secretory phospholipase A2 regulates insulin secretion through a cyclooxygenase-2-dependent mechanism. J. Biol. Chem. 3 27410–27417. 10.1074/jbc.m114.591735|||Starvaggi Cucuzza L., Divari S., Biolatti B., Cannizzo F. T. (2020). Expression of corticosteroid hormone receptors, prereceptors, and molecular chaperones in hypothalamic-pituitary-adrenal axis and adipose tissue after the administration of growth promoters in veal calves. Domest Anim. Endocrinol. 72:106473. 10.1016/j.domaniend.2020.106473|||Sugiura T., Mabuchi K., Ojima-Uchiyama A., Masuzawa Y., Cheng N. N., Fukuda T., et al. (1992). Synthesis and action of PAF in human eosinophils. J. Lipid. Mediat. 5 151–153.|||Sun H. Y., Lin C. C., Tsai P. J., Tsai W. J., Lee J. C., Tsao C. W., et al. (2017). Lipoprotein lipase liberates free fatty acids to inhibit HCV infection and prevent hepatic lipid accumulation. Cell Microbiol. 2017:19.|||Sun-Edelstein C., Rapoport A. M. (2016). Update on the Pharmacological Treatment of Chronic Migraine. Curr. Pain Headache Rep. 20:6.|||Svensson C. I., Lucas K. K., Hua X. Y., Powell H. C., Dennis E. A., Yaksh T. L. (2005). Spinal phospholipase A2 in inflammatory hyperalgesia: role of the small, secretory phospholipase A2. Neuroscience 133 543–553. 10.1016/j.neuroscience.2005.01.024|||Swenne I., Vessby B. (2013). Relationship of Delta(6) -desaturase and Delta(5) -desaturase activities with thyroid hormone status in adolescents with eating disorders and weight loss. Acta Paediatr. 102 416–418. 10.1111/apa.12132|||Sztriha L., Betz A. L. (1991). Oleic acid reversibly opens the blood-brain barrier. Brain Res. 7 257–262. 10.1016/0006-8993(91)91326-v|||Tian X., Bazan N. G. (2005). Neuroprotection by platelet-activating factor antagonism. Ann. N. Y. Acad. Sci. 1053 455–456. 10.1111/j.1749-6632.2005.tb00054.x|||Tu M., Wang W., Zhang G., Hammock B. D. (2020). omega-3 Polyunsaturated Fatty Acids on Colonic Inflammation and Colon Cancer: Roles of Lipid-Metabolizing Enzymes Involved. Nutrients 28:12.|||Vardi Y., Rabey I. M., Streifler M., Schwartz A., Lindner H. R., Zor U. (1976). Migraine attacks. Alleviation by an inhibitor of prostaglandin synthesis and action. Neurology 26 447–450. 10.1212/wnl.26.5.447|||Velasco A., Tabernero A., Medina J. M. (2003). Role of oleic acid as a neurotrophic factor is supported in vivo by the expression of GAP-43 subsequent to the activation of SREBP-1 and the up-regulation of stearoyl-CoA desaturase during postnatal development of the brain. Brain Res. 4 103–111. 10.1016/s0006-8993(03)02772-0|||Voros G., Ector J., Garweg C., Droogne W., Van Cleemput J., Peersman N., et al. (2018). Increased Cardiac Uptake of Ketone Bodies and Free Fatty Acids in Human Heart Failure and Hypertrophic Left Ventricular Remodeling. Circ. Heart Fail. 11:e004953.|||Walker C. S., Hay D. L., Fitzpatrick S. M., Cooper G. J., Loomes K. M. (2014). alpha-Calcitonin gene related peptide (alpha-CGRP) mediated lipid mobilization in 3T3-L1 adipocytes. Peptides 58 14–19. 10.1016/j.peptides.2014.05.011|||Wei S., Ong W. Y., Thwin M. M., Fong C. W., Farooqui A. A., Gopalakrishnakone P., et al. (2003). Group IIA secretory phospholipase A2 stimulates exocytosis and neurotransmitter release in pheochromocytoma-12 cells and cultured rat hippocampal neurons. Neuroscience 121 891–898. 10.1016/s0306-4522(03)00525-6|||Wienecke T., Olesen J., Ashina M. (2010). Prostaglandin I2 (epoprostenol) triggers migraine-like attacks in migraineurs. Cephalalgia 30 179–190. 10.1111/j.1468-2982.2009.01923.x|||Wu J. H., Lemaitre R. N., Manichaikul A., Guan W., Tanaka T., Foy M., et al. (2013). Genome-wide association study identifies novel loci associated with concentrations of four plasma phospholipid fatty acids in the de novo lipogenesis pathway: results from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium. Circ. Cardiovasc. Genet. 6 171–183. 10.1161/circgenetics.112.964619|||Yaksh T. L., Kokotos G., Svensson C. I., Stephens D., Kokotos C. G., Fitzsimmons B., et al. (2006). Systemic and intrathecal effects of a novel series of phospholipase A2 inhibitors on hyperalgesia and spinal prostaglandin E2 release. J. Pharmacol. Exp. Ther. 316 466–475. 10.1124/jpet.105.091686|||Yang G., Badeanlou L., Bielawski J., Roberts A. J., Hannun Y. A., Samad F. (2009). Central role of ceramide biosynthesis in body weight regulation, energy metabolism, and the metabolic syndrome. Am. J. Physiol. Endocrinol. Metab. 297 E211–E224.|||Yue T. L., Feuerstein G. Z. (1994). Platelet-activating factor: a putative neuromodulator and mediator in the pathophysiology of brain injury. Crit. Rev. Neurobiol. 8 11–24.|||Zanieri F., Levi A., Montefusco D., Longato L., De Chiara F., Frenguelli L., et al. (2020). Exogenous Liposomal Ceramide-C6 Ameliorates Lipidomic Profile, Energy Homeostasis, and Anti-Oxidant Systems in NASH. Cells 16:9.|||Zechner R., Madeo F., Kratky D. (2017). Cytosolic lipolysis and lipophagy: two sides of the same coin. Nat. Rev. Mol. Cell Biol. 18 671–684. 10.1038/nrm.2017.76|||Zhang Z., Ma Z. (2017). Saturated fatty acids recognition by the CD14-TLR4-MD2 complex may engage in the presurgical anxiety-induced persistent postsurgical pain. Med. Hypotheses 103 105–107.