Differential Patterns of Gut and Oral Microbiomes in Hispanic Individuals with Cognitive Impairment.
Authors:
Journal: Microorganisms
Publication Type: Journal Article
Date: 2025
DOI: PMC12566222
ID: 41156809
Abstract
Alterations in both oral and gut microbiomes have been associated with Alzheimer's disease and related dementia (ADRD). While extensive research has focused on the role of gut dysbiosis in ADRD, the contribution of the oral microbiome remains relatively understudied. This study aims to evaluate distinct patterns and potential synergistic effects of oral and gut microbiomes in a cohort of predominantly Hispanic individuals with cognitive impairment (CI) and without cognitive impairment (NC). We conducted 16S rRNA gene sequencing on stool and saliva samples from 32 participants (17 CI, 15 NC; 62.5% female, mean age = 70.4 ± 6.2 years) recruited in San Antonio, Texas, USA. Differential abundance analysis evaluated taxa with significant differences between both groups. While diversity metrics showed no significant differences between CI and NC groups, differential abundance analysis revealed an increased presence of oral genera such as , , and in CI participants. Conversely, CI individuals exhibited a decreased abundance of gut genera, including , , and , which are known for their anti-inflammatory properties. No evidence was found for synergistic contributions between oral and gut microbiomes in the context of CI. Our findings suggest that like the gut microbiome, the oral microbiome of CI participants undergoes significant modifications. Notably, the identified oral microbes have been previously associated with periodontal diseases and gingivitis. These results underscore the necessity for further investigations with larger sample sizes to validate our findings and elucidate the complex interplay between oral and gut microbiomes in ADRD pathogenesis.
Reference List
- Larson P.J., Zhou W., Santiago A., Driscoll S., Fleming E., Voigt A.Y., Chun O.K., Grady J.J., Kuchel G.A., Robison J.T. Associations of the skin, oral and gut microbiome with aging, frailty and infection risk reservoirs in older adults. Nat. Aging. 2022;2:941–955. doi: 10.1038/s43587-022-00287-9.|||Wilmanski T., Diener C., Rappaport N., Patwardhan S., Wiedrick J., Lapidus J., Earls J.C., Zimmer A., Glusman G., Robinson M. Gut microbiome pattern reflects healthy ageing and predicts survival in humans. Nat. Metab. 2021;3:274–286. doi: 10.1038/s42255-021-00348-0. Erratum in Nat. Metab. 2021, 3, 586.|||Ghosh T.S., Shanahan F., O’Toole P.W. The gut microbiome as a modulator of healthy ageing. Nat. Rev. Gastroenterol. Hepatol. 2022;19:565–584. doi: 10.1038/s41575-022-00605-x.|||Morais L.H., Schreiber IV H.L., Mazmanian S.K. The gut microbiota–brain axis in behaviour and brain disorders. Nat. Rev. Microbiol. 2021;19:241–255. doi: 10.1038/s41579-020-00460-0.|||Liu L., Huh J.R., Shah K. Microbiota and the gut-brain-axis: Implications for new therapeutic design in the CNS. EBioMedicine. 2022;77:103908. doi: 10.1016/j.ebiom.2022.103908.|||Chakrabarti A., Geurts L., Hoyles L., Iozzo P., Kraneveld A.D., La Fata G., Miani M., Patterson E., Pot B., Shortt C. The microbiota–gut–brain axis: Pathways to better brain health. Perspectives on what we know, what we need to investigate and how to put knowledge into practice. Cell. Mol. Life Sci. 2022;79:80. doi: 10.1007/s00018-021-04060-w.|||Schupack D.A., Mars R.A.T., Voelker D.H., Abeykoon J.P., Kashyap P.C. The promise of the gut microbiome as part of individualized treatment strategies. Nat. Rev. Gastroenterol. Hepatol. 2022;19:7–25. doi: 10.1038/s41575-021-00499-1.|||Guo C., Huo Y.-J., Li Y., Han Y., Zhou D. Gut-brain axis: Focus on gut metabolites short-chain fatty acids. World J. Clin. Cases. 2022;10:1754–1763. doi: 10.12998/wjcc.v10.i6.1754.|||Varesi A., Pierella E., Romeo M., Piccini G.B., Alfano C., Bjørklund G., Oppong A., Ricevuti G., Esposito C., Chirumbolo S., et al. The Potential Role of Gut Microbiota in Alzheimer’s Disease: From Diagnosis to Treatment. Nutrients. 2022;14:668. doi: 10.3390/nu14030668.|||Bonfili L., Cuccioloni M., Gong C., Cecarini V., Spina M., Zheng Y., Angeletti M., Eleuteri A.M. Gut microbiota modulation in Alzheimer’s disease: Focus on lipid metabolism. Clin. Nutr. 2022;41:698–708. doi: 10.1016/j.clnu.2022.01.025.|||Tarawneh R., Penhos E. The Gut Microbiome and Alzheimer’s Disease: Complex and Bidirectional Interactions. Neurosci. Biobehav. Rev. 2022;141:104814. doi: 10.1016/j.neubiorev.2022.104814.|||Barrio C., Arias-Sánchez S., Martín-Monzón I. The gut microbiota-brain axis, psychobiotics and its influence on brain and behaviour: A systematic review. Psychoneuroendocrinology. 2022;137:105640. doi: 10.1016/j.psyneuen.2021.105640.|||Verhaar B.J.H., Hendriksen H.M.A., de Leeuw F.A., Doorduijn A.S., van Leeuwenstijn M., Teunissen C.E., Barkhof F., Scheltens P., Kraaij R., van Duijn C.M., et al. Gut Microbiota Composition Is Related to AD Pathology. Front. Immunol. 2022;12:794519. doi: 10.3389/fimmu.2021.794519.|||Fongang B., Satizabal C., Kautz T.F., Wadop Y.N., Muhammad J.A.S., Vasquez E., Mathews J., Gireud-Goss M., Saklad A.R., Himali J., et al. Cerebral small vessel disease burden is associated with decreased abundance of gut Barnesiella intestinihominis bacterium in the Framingham Heart Study. Sci. Rep. 2023;13:13622. doi: 10.1038/s41598-023-40872-5.|||Deo P.N., Deshmukh R. Oral microbiome: Unveiling the fundamentals. J. Oral Maxillofac. Pathol. JOMFP. 2019;23:122. doi: 10.4103/jomfp.JOMFP_304_18.|||Kitamoto S., Nagao-Kitamoto H., Hein R., Schmidt T., Kamada N. The bacterial connection between the oral cavity and the gut diseases. J. Dent. Res. 2020;99:1021–1029. doi: 10.1177/0022034520924633.|||Hou K., Wu Z.-X., Chen X.-Y., Wang J.-Q., Zhang D., Xiao C., Zhu D., Koya J.B., Wei L., Li J., et al. Microbiota in health and diseases. Signal Transduct. Target. Ther. 2022;7:135. doi: 10.1038/s41392-022-00974-4.|||Pathak J.L., Yan Y., Zhang Q., Wang L., Ge L. The role of oral microbiome in respiratory health and diseases. Respir. Med. 2021;185:106475. doi: 10.1016/j.rmed.2021.106475.|||Maki K.A., Kazmi N., Barb J.J., Ames N. The Oral and Gut Bacterial Microbiomes: Similarities, Differences, and Connections. Biol. Res. Nurs. 2021;23:7–20. doi: 10.1177/1099800420941606.|||Park S.-Y., Hwang B.-O., Lim M., Ok S.-H., Lee S.-K., Chun K.-S., Park K.-K., Hu Y., Chung W.-Y., Song N.-Y. Oral-Gut Microbiome Axis in Gastrointestinal Disease and Cancer. Cancers. 2021;13:2124. doi: 10.3390/cancers13092124.|||Shen L. Gut, oral and nasal microbiota and Parkinson’s disease. Microb. Cell Fact. 2020;19:50. doi: 10.1186/s12934-020-01313-4.|||Maitre Y., Micheneau P., Delpierre A., Mahalli R., Guerin M., Amador G., Denis F. Did the Brain and Oral Microbiota Talk to Each Other? A Review of the Literature. J. Clin. Med. 2020;9:3876. doi: 10.3390/jcm9123876.|||Sureda A., Daglia M., Castilla S.A., Sanadgol N., Nabavi S.F., Khan H., Belwal T., Jeandet P., Marchese A., Pistollato F. Oral microbiota and Alzheimer’s disease: Do all roads lead to Rome? Pharmacol. Res. 2020;151:104582. doi: 10.1016/j.phrs.2019.104582.|||Tsai C., Hayes C., Taylor G.W. Glycemic control of type 2 diabetes and severe periodontal disease in the US adult population. Community Dent. Oral Epidemiol. 2002;30:182–192. doi: 10.1034/j.1600-0528.2002.300304.x.|||Mesa F., Magan-Fernandez A., Castellino G., Chianetta R., Nibali L., Rizzo M. Periodontitis and mechanisms of cardiometabolic risk: Novel insights and future perspectives. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2019;1865:476–484. doi: 10.1016/j.bbadis.2018.12.001.|||Yu J.C., Khodadadi H., Baban B. Innate immunity and oral microbiome: A personalized, predictive, and preventive approach to the management of oral diseases. EPMA J. 2019;10:43–50. doi: 10.1007/s13167-019-00163-4.|||Chu H., Mazmanian S.K. Innate immune recognition of the microbiota promotes host-microbial symbiosis. Nat. Immunol. 2013;14:668–675. doi: 10.1038/ni.2635.|||Adil N.A., Omo-Erigbe C., Yadav H., Jain S. The oral–gut microbiome–brain axis in cognition. Microorganisms. 2025;13:814. doi: 10.3390/microorganisms13040814.|||Santonocito S., Giudice A., Polizzi A., Troiano G., Merlo E.M., Sclafani R., Grosso G., Isola G. A Cross-Talk between Diet and the Oral Microbiome: Balance of Nutrition on Inflammation and Immune System’s Response during Periodontitis. Nutrients. 2022;14:2426. doi: 10.3390/nu14122426.|||Chandra S., Alam M.T., Dey J., Chakrapani P.S.B., Ray U., Srivastava A.K., Gandhi S., Tripathi P.P. Healthy Gut, Healthy Brain: The Gut Microbiome in Neurodegenerative Disorders. Curr. Top. Med. Chem. 2020;20:1142–1153. doi: 10.2174/1568026620666200413091101.|||Wardman J.F., Bains R.K., Rahfeld P., Withers S.G. Carbohydrate-active enzymes (CAZymes) in the gut microbiome. Nat. Rev. Microbiol. 2022;20:542–556. doi: 10.1038/s41579-022-00712-1.|||Gacesa R., Kurilshikov A., Vich Vila A., Sinha T., Klaassen M.A.Y., Bolte L.A., Andreu-Sánchez S., Chen L., Collij V., Hu S., et al. Environmental factors shaping the gut microbiome in a Dutch population. Nature. 2022;604:732–739. doi: 10.1038/s41586-022-04567-7.|||Berding K., Vlckova K., Marx W., Schellekens H., Stanton C., Clarke G., Jacka F., Dinan T.G., Cryan J.F. Diet and the Microbiota-Gut-Brain Axis: Sowing the Seeds of Good Mental Health. Adv. Nutr. 2021;12:1239–1285. doi: 10.1093/advances/nmaa181.|||Frausto D.M., Forsyth C.B., Keshavarzian A., Voigt R.M. Dietary Regulation of Gut-Brain Axis in Alzheimer’s Disease: Importance of Microbiota Metabolites. Front. Neurosci. 2021;15:736814. doi: 10.3389/fnins.2021.736814.|||Lorenzo D., GianVincenzo Z., Carlo Luca R., Karan G., Jorge V., Roberto M., Javad P. Oral-Gut Microbiota and Arthritis: Is There an Evidence-Based Axis? J. Clin. Med. 2019;8:1753. doi: 10.3390/jcm8101753.|||Lamont R.J., Koo H., Hajishengallis G. The oral microbiota: Dynamic communities and host interactions. Nat. Rev. Microbiol. 2018;16:745–759. doi: 10.1038/s41579-018-0089-x.|||Astafurov K., Elhawy E., Ren L., Dong C.Q., Igboin C., Hyman L., Griffen A., Mittag T., Danias J. Oral microbiome link to neurodegeneration in glaucoma. PLoS ONE. 2014;9:e104416. doi: 10.1371/journal.pone.0104416.|||Guo H., Chang S., Pi X., Hua F., Jiang H., Liu C., Du M. The effect of periodontitis on dementia and cognitive impairment: A meta-analysis. Int. J. Environ. Res. Public Health. 2021;18:6823. doi: 10.3390/ijerph18136823.|||Seyedmoalemi M.A., Saied-Moallemi Z. Association between periodontitis and Alzheimer’s disease: A narrative review. IBRO Neurosci. Rep. 2025;18:360–365. doi: 10.1016/j.ibneur.2024.12.004.|||Georges F., Do N., Seleem D. Oral dysbiosis and systemic diseases. Front. Dent. Med. 2022;3:995423. doi: 10.3389/fdmed.2022.995423.|||Suárez L.J., Garzón H., Arboleda S., Rodríguez A. Oral dysbiosis and autoimmunity: From local periodontal responses to an imbalanced systemic immunity. A review. Front. Immunol. 2020;11:591255. doi: 10.3389/fimmu.2020.591255.|||Peng X., Cheng L., You Y., Tang C., Ren B., Li Y., Xu X., Zhou X. Oral microbiota in human systematic diseases. Int. J. Oral Sci. 2022;14:14. doi: 10.1038/s41368-022-00163-7.|||Corrêa J.D., Fernandes G.R., Calderaro D.C., Mendonça S.M.S., Silva J.M., Albiero M.L., Cunha F.Q., Xiao E., Ferreira G.A., Teixeira A.L. Oral microbial dysbiosis linked to worsened periodontal condition in rheumatoid arthritis patients. Sci. Rep. 2019;9:8379. doi: 10.1038/s41598-019-44674-6.|||Hajishengallis G., Chavakis T. Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities. Nat. Rev. Immunol. 2021;21:426–440. doi: 10.1038/s41577-020-00488-6.|||Olsen I., Yamazaki K. Can oral bacteria affect the microbiome of the gut? J. Oral Microbiol. 2019;11:1586422. doi: 10.1080/20002297.2019.1586422.|||Weintraub S., Besser L., Dodge H.H., Teylan M., Ferris S., Goldstein F.C., Giordani B., Kramer J., Loewenstein D., Marson D. Version 3 of the Alzheimer Disease Centers’ neuropsychological test battery in the Uniform Data Set (UDS) Alzheimer Dis. Assoc. Disord. 2018;32:10–17. doi: 10.1097/WAD.0000000000000223.|||Besser L., Kukull W., Knopman D.S., Chui H., Galasko D., Weintraub S., Jicha G., Carlsson C., Burns J., Quinn J. Version 3 of the national Alzheimer’s coordinating center’s uniform data set. Alzheimer Dis. Assoc. Disord. 2018;32:351–358. doi: 10.1097/WAD.0000000000000279.|||Monsell S.E., Dodge H.H., Zhou X.-H., Bu Y., Besser L.M., Mock C., Hawes S.E., Kukull W.A., Weintraub S. Results from the NACC uniform data set neuropsychological battery crosswalk study. Alzheimer Dis. Assoc. Disord. 2016;30:134–139. doi: 10.1097/WAD.0000000000000111.|||Jack Jr. C.R., Albert M.S., Knopman D.S., McKhann G.M., Sperling R.A., Carrillo M.C., Thies B., Phelps C.H. Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011;7:257–262. doi: 10.1016/j.jalz.2011.03.004.|||Morris J.C. Clinical dementia rating: A reliable and valid diagnostic and staging measure for dementia of the Alzheimer type. Int. Psychogeriatr. 1997;9:173–176. doi: 10.1017/S1041610297004870.|||Caporaso J.G., Lauber C.L., Walters W.A., Berg-Lyons D., Lozupone C.A., Turnbaugh P.J., Fierer N., Knight R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA. 2011;108:4516–4522. doi: 10.1073/pnas.1000080107.|||Caporaso J.G., Lauber C.L., Walters W.A., Berg-Lyons D., Huntley J., Fierer N., Owens S.M., Betley J., Fraser L., Bauer M. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–1624. doi: 10.1038/ismej.2012.8.|||Nkouonlack C.D., Njamnshi W.Y., Angwafor S.A., Siewe Fodjo J.N., Mengnjo M.K., Ngarka L., Mbede M., Nfor L.N., Abomate C., Maestre G.E. Dementia and cognitive impairment in French-speaking Sub-Saharan Africa: A comprehensive review on moving out of the shadows of neglect. Res. Sq. 2024. preprint .|||Bolyen E., Rideout J.R., Dillon M.R., Bokulich N.A., Abnet C.C., Al-Ghalith G.A., Alexander H., Alm E.J., Arumugam M., Asnicar F. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019;37:852–857. doi: 10.1038/s41587-019-0209-9. Erratum in Nat. Biotechnol. 2019, 37,1091.|||Douglas G.M., Maffei V.J., Zaneveld J.R., Yurgel S.N., Brown J.R., Taylor C.M., Huttenhower C., Langille M.G.I. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 2020;38:685–688. doi: 10.1038/s41587-020-0548-6.|||Mallick H., Rahnavard A., McIver L.J., Ma S., Zhang Y., Nguyen L.H., Tickle T.L., Weingart G., Ren B., Schwager E.H., et al. Multivariable association discovery in population-scale meta-omics studies. PLoS Comput. Biol. 2021;17:e1009442. doi: 10.1371/journal.pcbi.1009442.|||Callahan B.J., Sankaran K., Fukuyama J.A., McMurdie P.J., Holmes S.P. Bioconductor workflow for microbiome data analysis: From raw reads to community analyses. F1000Research. 2016;5:1492. doi: 10.12688/f1000research.8986.2.|||Yu G., Wang L.-G., Han Y., He Q.-Y. clusterProfiler: An R package for comparing biological themes among gene clusters. Omics A J. Integr. Biol. 2012;16:284–287. doi: 10.1089/omi.2011.0118.|||Khemwong T., Kobayashi H., Ikeda Y., Matsuura T., Sudo T., Kano C., Mikami R., Izumi Y. Fretibacterium sp. human oral taxon 360 is a novel biomarker for periodontitis screening in the Japanese population. PLoS ONE. 2019;14:e0218266. doi: 10.1371/journal.pone.0218266.|||Kang Y., Sun B., Chen Y., Lou Y., Zheng M., Li Z. Dental plaque microbial resistomes of periodontal health and disease and their changes after scaling and root planing therapy. Msphere. 2021;6:e00121–e00162. doi: 10.1128/mSphere.00162-21.|||Kwek H., Wilson M., Newman H. Mycoplasma in relation to gingivitis and periodontitis. J. Clin. Periodontol. 1990;17:119–122. doi: 10.1111/j.1600-051X.1990.tb01073.x.|||Deng Z.-L., Szafrański S.P., Jarek M., Bhuju S., Wagner-Döbler I. Dysbiosis in chronic periodontitis: Key microbial players and interactions with the human host. Sci. Rep. 2017;7:3703. doi: 10.1038/s41598-017-03804-8.|||Lee J.W., Lee Y.K., Yuk D.Y., Choi D.Y., Ban S.B., Oh K.W., Hong J.T. Neuro-inflammation induced by lipopolysaccharide causes cognitive impairment through enhancement of beta-amyloid generation. J. Neuroinflammation. 2008;5:37. doi: 10.1186/1742-2094-5-37.|||Zhou B., Szymanski C.M., Baylink A. Bacterial chemotaxis in human diseases. Trends Microbiol. 2023;31:453–467. doi: 10.1016/j.tim.2022.10.007.|||Killingsworth J., Sawmiller D., Shytle R.D. Propionate and Alzheimer’s disease. Front. Aging Neurosci. 2021;12:580001. doi: 10.3389/fnagi.2020.580001.|||Troesch B., Weber P., Mohajeri M.H. Potential links between impaired one-carbon metabolism due to polymorphisms, inadequate B-vitamin status, and the development of Alzheimer’s disease. Nutrients. 2016;8:803. doi: 10.3390/nu8120803.|||Kodam P., Sai Swaroop R., Pradhan S.S., Sivaramakrishnan V., Vadrevu R. Integrated multi-omics analysis of Alzheimer’s disease shows molecular signatures associated with disease progression and potential therapeutic targets. Sci. Rep. 2023;13:3695. doi: 10.1038/s41598-023-30892-6.|||LaRock C.N., Nizet V. Cationic antimicrobial peptide resistance mechanisms of streptococcal pathogens. Biochim. Biophys. Acta (BBA)-Biomembr. 2015;1848:3047–3054. doi: 10.1016/j.bbamem.2015.02.010.|||Wang C., Feng S., Qie J., Wei X., Yan H., Liu K. Polyion complexes of a cationic antimicrobial peptide as a potential systemically administered antibiotic. Int. J. Pharm. 2019;554:284–291. doi: 10.1016/j.ijpharm.2018.11.029.|||Geitani R., Ayoub Moubareck C., Touqui L., Karam Sarkis D. Cationic antimicrobial peptides: Alternatives and/or adjuvants to antibiotics active against methicillin-resistant Staphylococcus aureus and multidrug-resistant Pseudomonas aeruginosa. BMC Microbiol. 2019;19:54. doi: 10.1186/s12866-019-1416-8.|||Sansores-España L.D., Melgar-Rodríguez S., Olivares-Sagredo K., Cafferata E.A., Martínez-Aguilar V.M., Vernal R., Paula-Lima A.C., Díaz-Zúñiga J. Oral-gut-brain axis in experimental models of periodontitis: Associating gut dysbiosis with neurodegenerative diseases. Front. Aging. 2021;2:781582. doi: 10.3389/fragi.2021.781582.|||Bertani B., Ruiz N. Function and biogenesis of lipopolysaccharides. EcoSal Plus. 2018;8:10–1128. doi: 10.1128/ecosalplus.esp-0001-2018.|||Rhee S.H. Lipopolysaccharide: Basic biochemistry, intracellular signaling, and physiological impacts in the gut. Intest. Res. 2014;12:90–95. doi: 10.5217/ir.2014.12.2.90.|||Iniesta M., Chamorro C., Ambrosio N., Marín M.J., Sanz M., Herrera D. Subgingival microbiome in periodontal health, gingivitis and different stages of periodontitis. J. Clin. Periodontol. 2023;50:905–920. doi: 10.1111/jcpe.13793.|||Bertelsen R.J., Barrionuevo A.M.P., Shigdel R., Lie S.A., Lin H., Real F.G., Ringel-Kulka T., Åstrøm A.N., Svanes C. Association of oral bacteria with oral hygiene habits and self-reported gingival bleeding. J. Clin. Periodontol. 2022;49:768–781. doi: 10.1111/jcpe.13644.|||Ortiz A.P., Acosta-Pagán K.T., Oramas-Sepúlveda C., Castañeda-Avila M.A., Vilanova-Cuevas B., Ramos-Cartagena J.M., Vivaldi J.A., Pérez-Santiago J., Pérez C.M., Godoy-Vitorino F. Oral microbiota and periodontitis severity among Hispanic adults. Front. Cell. Infect. Microbiol. 2022;12:965159. doi: 10.3389/fcimb.2022.965159.|||Yussof A., Yoon P., Krkljes C., Schweinberg S., Cottrell J., Chu T., Chang S.L. A meta-analysis of the effect of binge drinking on the oral microbiome and its relation to Alzheimer’s disease. Sci. Rep. 2020;10:19872. doi: 10.1038/s41598-020-76784-x.|||Nędzi-Góra M., Kowalski J., Górska R. The immune response in periodontal tissues. Arch. Immunol. Ther. Exp. 2017;65:421–429. doi: 10.1007/s00005-017-0472-8.|||Mao S., Huang C.-P., Lan H., Lau H.-G., Chiang C.-P., Chen Y.-W. Association of periodontitis and oral microbiomes with Alzheimer’s disease: A narrative systematic review. J. Dent. Sci. 2022;17:1762–1779. doi: 10.1016/j.jds.2022.07.001.|||Bathini P., Foucras S., Dupanloup I., Imeri H., Perna A., Berruex J.L., Doucey M.A., Annoni J.M., Auber Alberi L. Classifying dementia progression using microbial profiling of saliva. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2020;12:e12000. doi: 10.1002/dad2.12000.|||Van Hul M., Le Roy T., Prifti E., Dao M.C., Paquot A., Zucker J.-D., Delzenne N.M., Muccioli G.G., Clément K., Cani P.D. From correlation to causality: The case of Subdoligranulum. Gut Microbes. 2020;12:1849998. doi: 10.1080/19490976.2020.1849998.|||Lu Y., Zhang Y., Zhao X., Shang C., Xiang M., Li L., Cui X. Microbiota-derived short-chain fatty acids: Implications for cardiovascular and metabolic disease. Front. Cardiovasc. Med. 2022;9:900381. doi: 10.3389/fcvm.2022.900381.|||O’Connor K.M., Lucking E.F., Bastiaanssen T.F., Peterson V.L., Crispie F., Cotter P.D., Clarke G., Cryan J.F., O’Halloran K.D. Prebiotic administration modulates gut microbiota and faecal short-chain fatty acid concentrations but does not prevent chronic intermittent hypoxia-induced apnoea and hypertension in adult rats. EBioMedicine. 2020;59:102968. doi: 10.1016/j.ebiom.2020.102968.|||Yang F., Chen H., Gao Y., An N., Li X., Pan X., Yang X., Tian L., Sun J., Xiong X. Gut microbiota-derived short-chain fatty acids and hypertension: Mechanism and treatment. Biomed. Pharmacother. 2020;130:110503. doi: 10.1016/j.biopha.2020.110503.|||Liu Y., Li S., Wang X., Xing T., Li J., Zhu X., Zhang L., Gao F. Microbiota populations and short-chain fatty acids production in cecum of immunosuppressed broilers consuming diets containing γ-irradiated Astragalus polysaccharides. Poult. Sci. 2021;100:273–282. doi: 10.1016/j.psj.2020.09.089.|||Larsen J.M. The immune response to Prevotella bacteria in chronic inflammatory disease. Immunology. 2017;151:363–374. doi: 10.1111/imm.12760.|||Jiang H., Ling Z., Zhang Y., Mao H., Ma Z., Yin Y., Wang W., Tang W., Tan Z., Shi J. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav. Immun. 2015;48:186–194. doi: 10.1016/j.bbi.2015.03.016.|||Eslami S., Hosseinzadeh Shakib N., Fooladfar Z., Nasrollahian S., Baghaei S., Mosaddad S.A., Motamedifar M. The role of periodontitis-associated bacteria in Alzheimer’s disease: A narrative review. J. Basic. Microbiol. 2023;63:1059–1072. doi: 10.1002/jobm.202300250.|||Zhao J., Bi W., Xiao S., Lan X., Cheng X., Zhang J., Lu D., Wei W., Wang Y., Li H. Neuroinflammation induced by lipopolysaccharide causes cognitive impairment in mice. Sci. Rep. 2019;9:5790. doi: 10.1038/s41598-019-42286-8.|||Kalyan M., Tousif A.H., Sonali S., Vichitra C., Sunanda T., Praveenraj S.S., Ray B., Gorantla V.R., Rungratanawanich W., Mahalakshmi A.M. Role of endogenous lipopolysaccharides in neurological disorders. Cells. 2022;11:4038. doi: 10.3390/cells11244038.|||Ostfeld I., Ben-Zeev T., Zamir A., Levi C., Gepner Y., Springer S., Hoffman J.R. Role of β-Alanine Supplementation on Cognitive Function, Mood, and Physical Function in Older Adults; Double-Blind Randomized Controlled Study. Nutrients. 2023;15:923. doi: 10.3390/nu15040923.|||Neuffer J., González-Domínguez R., Lefèvre-Arbogast S., Low D.Y., Driollet B., Helmer C., Du Preez A., de Lucia C., Ruigrok S.R., Altendorfer B. Exploration of the gut–brain axis through metabolomics identifies serum propionic acid associated with higher cognitive decline in older persons. Nutrients. 2022;14:4688. doi: 10.3390/nu14214688.|||Zhang D., Li N., Wang Y., Lu W., Zhang Y., Chen Y., Deng X., Yu X. Methane ameliorates post-operative cognitive dysfunction by inhibiting microglia NF-κB/MAPKs pathway and promoting IL-10 expression in aged mice. Int. Immunopharmacol. 2019;71:52–60. doi: 10.1016/j.intimp.2019.03.003.|||González-Domínguez R., Castellano-Escuder P., Lefèvre-Arbogast S., Low D.Y., Du Preez A., Ruigrok S.R., Lee H., Helmer C., Pallàs M., Urpi-Sarda M. Apolipoprotein E and sex modulate fatty acid metabolism in a prospective observational study of cognitive decline. Alzheimer’s Res. Ther. 2022;14:1. doi: 10.1186/s13195-021-00948-8.