Quick Links

Antigen-induced generation of lyso-phospholipids in human airways.

Authors: F H Chilton|||F J Averill|||W C Hubbard|||A N Fonteh|||M Triggiani|||M C Liu

Journal: The Journal of experimental medicine

Publication Type: Comparative Study

Date: 1996

DOI: PMC2192563

ID: 8642333

Affiliations:

Affiliations

    Departments of Internal Medicine, Bownan Gray School of Medicine of Wake Forest University, Winston-Salew, North Carolina 27157, USA.|||||||||||||||

Abstract

The goal of the current study was to examine the formation of phospholipids, 1-radyl-2-lysosn-glycero-phospholipids (lyso-PL) and 2-acetylated phospholipids (such as PAF) as well as mechanisms responsible for generating these phospholipids in bronchoalveolar lavage fluid (BAI.F) from allergic subjects challenged with antigen. Bronchoalveolar lavage was performed in normal and allergic subjects before, 5-30 min, 6 h, and 20 h after segmental antigen challenge via a wedged bronchoscope. Levels of 1-hexadecyl-2-lyso-phospholipids and 1-hexadecyl-2-acetyl-phospholipids were initially determined by negative ion chemical ionization gas chromatography/mass spectrometry (NICI-GC/MS). Antigen dramatically elevated quantities of 1-hexadecyl-2-lyso-phospholipids in allergic subjects 20 h after challenge when compared to non-allergic controls. In contrast, there was not a significant increase in levels of 1-hexadecyl-2-acetyl-phospholipids after antigen challenge. Closer examination of 1-radyl-2-lyso-sn-glycero-3-phosphocholine (GPC) revealed that 1-palmitoyl-2-lyso-GPC, 1-myristoyl-2-lyso-GPC and 1-hexadecyl-2-lyso-GPC were three major molecular species produced after antigen challenge. 1-palmitoyl-2-lyso-GPC increased sevenfold to levels of 222 +/- 75 ng/ml of BALF 20 h after antigen challenge. The elevated levels of lyso-PL correlated with levels of albumin used to assess plasma exudation induced by allergen challenge. In contrast, the time course of prostaglandin D2 (PGD2) or 9 alpha, 11 beta PGF2 (11 beta PGF2) formation did not correlate with lyso-PL generation. To examine the mechanism leading to lyso-phospholipid formation in antigen-challenged allergic subjects, secretory phospholipase A2 (PI.A2) and acetyl hydrolase activities were measured. There was a significant increase in PLA2 activity found in BALF of allergic subjects challenged with antigen when compared to saline controls. This activity was neutralized by an antibody directed against low molecular mass, (14 kD) human synovial PLA2 and dithiothreitol. Acetyl hydrolase activity also markedly increased in BALF obtained after antigen challenge. This study indicates that high levels of lyso-PLs are present in airways of allergic subjects challenged with antigen and provides evidence for two distinct mechanisms that could induce lyso-PL formation. Future studies will be necessary to determine the ramifications of these high levels of lyso-phospholipids on airway function.


Chemical List

    Lysophospholipids|||Methacholine Chloride|||Dinoprost|||Prostaglandin D2

Reference List

    Fed Proc. 1983 Nov;42(14):3120-2|||J Allergy Clin Immunol. 1994 Jul;94(1):109-19|||J Immunol. 1983 Dec;131(6):2958-64|||J Lab Clin Med. 1984 Sep;104(3):340-5|||J Biol Chem. 1984 Oct 10;259(19):12014-9|||J Rheumatol. 1985 Apr;12(2):211-6|||J Appl Physiol (1985). 1986 Feb;60(2):532-8|||J Pharmacol Exp Ther. 1986 Mar;236(3):580-4|||Biomed Environ Mass Spectrom. 1986 Mar;13(3):107-11|||Exp Lung Res. 1986;11(1):1-12|||J Clin Invest. 1986 Jul;78(1):271-80|||Lancet. 1986 Jul 26;2(8500):189-92|||Int Arch Allergy Appl Immunol. 1987;82(1):57-61|||Biochemistry. 1986 Dec 30;25(26):8381-5|||Am Rev Respir Dis. 1987 Jul;136(1):207-10|||Am Rev Respir Dis. 1987 Nov;136(5):1145-51|||J Appl Physiol (1985). 1987 Nov;63(5):1979-86|||Br J Pharmacol. 1988 Feb;93(2):412-6|||Hosp Pract (Off Ed). 1988 Nov 15;23(11):49-58|||J Lab Clin Med. 1988 Dec;112(6):745-54|||Am Rev Respir Dis. 1988 May;137(5):1015-9|||Am Rev Respir Dis. 1988 Nov;138(5):1196-200|||J Appl Physiol (1985). 1989 Jan;66(1):261-7|||J Biol Chem. 1989 Apr 5;264(10):5335-8|||J Biol Chem. 1989 Apr 5;264(10):5768-75|||J Biochem. 1989 Apr;105(4):520-5|||J Chromatogr. 1990 Mar 16;526(1):11-24|||J Immunol. 1990 Jun 15;144(12):4773-80|||Eur Respir J. 1990 Apr;3(4):408-13|||Am Rev Respir Dis. 1990 Jul;142(1):126-32|||Am Rev Respir Dis. 1990 Aug;142(2):434-57|||Chest. 1991 Mar;99(3 Suppl):9S-10S|||Am Rev Respir Dis. 1991 Jul;144(1):51-8|||J Pharmacol Exp Ther. 1967 May;156(2):339-44|||Biochim Biophys Acta. 1979 Aug 20;559(2-3):259-87|||Eur J Pharmacol. 1980 Jul 25;65(2-3):185-92|||Am J Physiol. 1981 Nov;241(5):H700-7|||J Clin Invest. 1995 Feb;95(2):774-82|||Nature. 1995 Apr 6;374(6522):549-53|||J Nutr. 1995 Jun;125(6 Suppl):1661S-1665S|||Circ Res. 1983 May;52(5):543-56|||Am J Pathol. 1983 Oct;113(1):75-84|||J Immunol. 1991 Jul 15;147(2):660-6|||J Mol Cell Cardiol. 1991 Jun;23(6):671-80|||J Clin Invest. 1991 Dec;88(6):1819-32|||Am Rev Respir Dis. 1992 Mar;145(3):726-31|||Eur J Biochem. 1992 Oct 1;209(1):257-65|||J Cardiovasc Pharmacol. 1992 Oct;20(4):538-46|||Biochim Biophys Acta. 1993 Jan 10;1165(3):321-6|||J Lab Clin Med. 1993 Jan;121(1):111-7|||J Biol Chem. 1993 Feb 25;268(6):3857-65|||Clin Chem. 1993 Dec;39(12):2453-9|||J Mol Cell Cardiol. 1993 Aug;25(8):905-13|||J Biol Chem. 1994 Jan 21;269(3):1575-8|||J Biol Chem. 1994 Jan 28;269(4):2365-8|||Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):1069-73|||J Clin Invest. 1994 Feb;93(2):907-11|||Am J Respir Crit Care Med. 1994 Mar;149(3 Pt 1):660-6|||J Biol Chem. 1994 Feb 25;269(8):5897-904|||J Surg Res. 1994 Feb;56(2):199-205|||J Biol Chem. 1994 May 6;269(18):13057-60|||J Immunol. 1994 Jun 1;152(11):5438-46|||Am J Respir Cell Mol Biol. 1994 Jul;11(1):108-13|||J Appl Physiol Respir Environ Exerc Physiol. 1983 Sep;55(3):799-804