Quick Links

Proteasome-mediated degradation of the coactivator p300 impairs cardiac transcription.

Authors: C Poizat|||V Sartorelli|||G Chung|||R A Kloner|||L Kedes

Journal: Molecular and cellular biology

Publication Type: Journal Article

Date: 2000

DOI: PMC86467

ID: 11073966

Affiliations:

Affiliations

    Institute for Genetic Medicine and Department of Biochemistry & Molecular Biology, Keck School of Medicine of the University of Southern California, USA.||||||||||||

Abstract

The transcription of tissue-specific genes is controlled by regulatory factors and cofactors and is suppressed in cardiac cells by the antineoplastic agent doxorubicin. Here we show that exposure of cultured cardiomyocytes to doxorubicin resulted in the rapid depletion of transcripts for MEF2C, dHAND, and NKX2.5, three pivotal regulators of cardiac gene expression. Delivery of exogenous p300, a coactivator of MEF2C and NKX2.5 in cardiomyocytes, restored cardiac transcription despite the presence of doxorubicin. Furthermore, p300 also restored the accumulation of transcripts for MEF2C itself. Importantly, cardiocytes exposed to doxorubicin displayed reduced levels of p300 proteins. This was not due to alterations in the level of p300 transcripts; rather, and surprisingly, doxorubicin promoted selective degradation of p300 mediated by the 26S-proteasome machinery. Doxorubicin had no effect on the general level of ubiquitinated proteins or on the levels of beta-catenin, a protein known to be degraded by proteasome-mediated degradation. These results provide evidence for a new mechanism of transcriptional repression caused by doxorubicin in which the selective degradation of p300 results in reduced p300-dependent transcription, including production of MEF2C mRNA.


Chemical List

    Antineoplastic Agents|||Basic Helix-Loop-Helix Transcription Factors|||DNA-Binding Proteins|||Hand2 protein, rat|||Homeobox Protein Nkx-2.5|||Homeodomain Proteins|||MEF2 Transcription Factors|||Muscle Proteins|||Myogenic Regulatory Factors|||NKX2-5 protein, human|||Nuclear Proteins|||RNA, Messenger|||Trans-Activators|||Transcription Factors|||Xenopus Proteins|||Zebrafish Proteins|||hand2 protein, zebrafish|||Doxorubicin|||E1A-Associated p300 Protein|||Ep300 protein, rat|||Peptide Hydrolases|||Proteasome Endopeptidase Complex|||ATP dependent 26S protease

Reference List

    Avantaggiati M L, Carbone M, Graessman A, Nakatani Y, Howard B, Levine A S. The SV40 large T antigen and adenovirus E1a oncoproteins interact with distinct isoforms of the transcriptional co-activator, p300. EMBO J. 1996;15:2236–2248.|||Avantaggiati M L, Ogryzko V, Gardner K, Giordano A, Levine A S, Kelly K. Recruitment of p300/CBP in p53-dependent signal pathways. Cell. 1997;89:1175–1184.|||Bishopric N H, Kedes L. Adrenergic regulation of the skeletal alpha-actin gene promoter during myocardial cell hypertrophy. Proc Natl Acad Sci USA. 1991;88:2132–2136.|||Ciechanover A. The ubiquitin-proteasome proteolytic pathway. Cell. 1994;79:13–21.|||Durocher D, Charron F, Warren R, Schwartz R J, Nemer M. The cardiac transcription factors Nkx2–5 and GATA-4 are mutual cofactors. EMBO J. 1997;16:5687–5696.|||Durocher D, Chen C Y, Ardati A, Schwartz R J, Nemer M. The atrial natriuretic factor promoter is a downstream target for Nkx-2.5 in the myocardium. Mol Cell Biol. 1996;16:4648–4655.|||Eckner R, Ewen M E, Newsome D, Gerdes M, DeCaprio J A, Lawrence J B, Livingston D M. Molecular cloning and functional analysis of the adenovirus E1A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev. 1994;8:869–884.|||Eckner R, Ludlow J W, Lill N L, Oldread E, Arany Z, Modjtahedi N, DeCaprio J A, Livingston D M, Morgan J A. Association of p300 and CBP with simian virus 40 large T antigen. Mol Cell Biol. 1996;16:3454–3464.|||Eckner R, Yao T P, Oldread E, Livingston D M. Interaction and functional collaboration of p300/CBP and bHLH proteins in muscle and B-cell differentiation. Genes Dev. 1996;10:2478–2490.|||Edmondson D G, Lyons G E, Martin J F, Olson E N. Mef2 gene expression marks the cardiac and skeletal muscle lineages during mouse embryogenesis. Development. 1994;120:1251–1263.|||Egan C, Jelsma T N, Howe J A, Bayley S T, Ferguson B, Branton P E. Mapping of cellular protein-binding sites on the products of early-region 1A of human adenovirus type 5. Mol Cell Biol. 1988;8:3955–3959.|||Grossman S R, Perez M, Kung A L, Joseph M, Mansur C, Xiao Z X, Kumar S, Howley P M, Livingston D M. p300/MDM2 complexes participate in MDM2-mediated p53 degradation. Mol Cell. 1998;2:405–415.|||Gustafson T A, Kedes L. Identification of multiple proteins that interact with functional regions of the human cardiac alpha-actin promoter. Mol Cell Biol. 1989;9:3269–3283.|||Hochstrasser M. Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Curr Opin Cell Biol. 1995;7:215–223.|||Hochstrasser M. Ubiquitin-dependent protein degradation. Annu Rev Genet. 1996;30:405–439.|||Huang J, Weintraub H, Kedes L. Intramolecular regulation of MyoD activation domain conformation and function. Mol Cell Biol. 1998;18:5478–5484.|||Ito H, Miller S C, Billingham M E, Akimoto H, Torti S V, Wade R, Gahlmann R, Lyons G, Kedes L, Torti F M. Doxorubicin selectively inhibits muscle gene expression in cardiac muscle cells in vivo and in vitro. Proc Natl Acad Sci USA. 1990;87:4275–4279.|||Janknecht R, Hunter T. Transcription: a growing coactivator network. Nature. 1996;383:22–23.|||Jeyaseelan R, Poizat C, Baker R K, Abdishoo S, Isterabadi L B, Lyons G E, Kedes L. A novel cardiac-restricted target for doxorubicin: CARP, a nuclear modulator of gene expression in cardiac progenitor cells and cardiomyocytes. J Biol Chem. 1997;272:22800–22808.|||Kamei Y, Xu L, Heinzel T, Torchia J, Kurokawa R, Gloss B, Lin S C, Heyman R A, Rose D W, Glass C K, Rosenfeld M G. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell. 1996;85:403–414.|||Kitabayashi I, Eckner R, Arany Z, Chiu R, Gachelin G, Livingston D M, Yokoyama K K. Phosphorylation of the adenovirus E1A-associated 300 kDa protein in response to retinoic acid and E1A during the differentiation of F9 cells. EMBO J. 1995;14:3496–3509.|||Kurabayashi M, Dutta S, Jeyaseelan R, Kedes L. Doxorubicin-induced Id2A gene transcription is targeted at an activating transcription factor/cyclic AMP response element motif through novel mechanisms involving protein kinases distinct from protein kinase C and protein kinase A. Mol Cell Biol. 1995;15:6386–6397.|||Kurabayashi M, Jeyaseelan R, Kedes L. Antineoplastic agent doxorubicin inhibits myogenic differentiation of C2 myoblasts. J Biol Chem. 1993;268:5524–5529.|||Kurabayashi M, Jeyaseelan R, Kedes L. Doxorubicin represses the function of the myogenic helix-loop-helix transcription factor MyoD: involvement of Id gene induction. J Biol Chem. 1994;269:6031–6039.|||Levine A J. p53, the cellular gatekeeper for growth and division. Cell. 1997;88:323–331.|||Lin Q, Schwarz J, Bucana C, Olson E N. Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science. 1997;276:1404–1407.|||Lints T J, Parsons L M, Hartley L, Lyons I, Harvey R P. Nkx-2.5: a novel murine homeobox gene expressed in early heart progenitor cells and their myogenic descendants. Development. 1993;119:419–431. . (Erratum, 119:969.)|||Lyons I, Parsons L M, Hartley L, Li R, Andrews J E, Robb L, Harvey R P. Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2–5. Genes Dev. 1995;9:1654–1666.|||Murakami Y, Matsufuji S, Kameji T, Hayashi S, Igarashi K, Tamura T, Tanaka K, Ichihara A. Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitination. Nature. 1992;360:597–599.|||Ogryzko V V, Schiltz R L, Russanova V, Howard B H, Nakatani Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell. 1996;87:953–959.|||Orford K, Crockett C, Jensen J P, Weissman A M, Byers S W. Serine phosphorylation-regulated ubiquitination and degradation of β-catenin. J Biol Chem. 1997;272:24735–24738.|||Petrij F, Giles R H, Dauwerse H G, Saris J J, Hennekam R C, Masuno M, Tommerup N, van Ommen G J, Goodman R H, Peters D J, et al. Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature. 1995;376:348–351.|||Puri P L, Avantaggiati M L, Balsano C, Sang N, Graessmann A, Giordano A, Levrero M. p300 is required for MyoD-dependent cell cycle arrest and muscle-specific gene transcription. EMBO J. 1997;16:369–383.|||Puri P L, Sartorelli V, Yang X J, Hamamori Y, Ogryzko V V, Howard B H, Kedes L, Wang J Y, Graessmann A, Nakatani Y, Levrero M. Differential roles of p300 and PCAF acetyltransferases in muscle differentiation. Mol Cell. 1997;1:35–45.|||Sartorelli V, Huang J, Hamamori Y, Kedes L. Molecular mechanisms of myogenic coactivation by p300: direct interaction with the activation domain of MyoD and with the MADS box of MEF2C. Mol Cell Biol. 1997;17:1010–1026.|||Sartorelli V, Puri P L, Hamamori Y, Ogryzko V V, Chung G, Nakatani Y, Wang J Y, Kedes L. Acetylation of MyoD directed by PCAF is necessary for the execution of the muscle program. Mol Cell. 1999;4:725–734.|||Sepulveda J L, Belaguli N, Nigam V, Chen C Y, Nemer M, Schwartz R J. GATA-4 and Nkx-2.5 coactivate Nkx-2 DNA binding targets: role for regulating early cardiac gene expression. Mol Cell Biol. 1998;18:3405–3415.|||Sheaff R J, Singer J D, Swanger J, Smitherman M, Roberts J M, Clurman B E. Proteasomal turnover of p21Cip1 does not require p21Cip1 ubiquitination. Mol Cell. 2000;5:403–410.|||Shikama N, Lyon J, La Thange N. The p300/CBP family:integrating signals with transcription factors and chromatin. Trends Cell Biol. 1997;7:230–236.|||Verma R, Deshaies R J. A proteasome howdunit: the case of the missing signal. Cell. 2000;101:341–344.|||Whyte P, Williamson N M, Harlow E. Cellular targets for transformation by the adenovirus E1A proteins. Cell. 1989;56:67–75.|||Yao T P, Ku G, Zhou N, Scully R, Livingston D M. The nuclear hormone receptor coactivator SRC-1 is a specific target of p300. Proc Natl Acad Sci USA. 1996;93:10626–10631.|||Yao T P, Oh S P, Fuchs M, Zhou N D, Ch'ng L E, Newsome D, Bronson R T, Li E, Livingston D M, Eckner R. Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell. 1998;93:361–372.|||Yuan W, Condorelli G, Caruso M, Felsani A, Giordano A. Human p300 protein is a coactivator for the transcription factor MyoD. J Biol Chem. 1996;271:9009–9013.