Guidelines for experimental models of myocardial ischemia and infarction.
Authors:
Journal: American journal of physiology. Heart and circulatory physiology
Publication Type: Guideline
Date: 2018
DOI: PMC5966768
ID: 29351451
Abstract
Myocardial infarction is a prevalent major cardiovascular event that arises from myocardial ischemia with or without reperfusion, and basic and translational research is needed to better understand its underlying mechanisms and consequences for cardiac structure and function. Ischemia underlies a broad range of clinical scenarios ranging from angina to hibernation to permanent occlusion, and while reperfusion is mandatory for salvage from ischemic injury, reperfusion also inflicts injury on its own. In this consensus statement, we present recommendations for animal models of myocardial ischemia and infarction. With increasing awareness of the need for rigor and reproducibility in designing and performing scientific research to ensure validation of results, the goal of this review is to provide best practice information regarding myocardial ischemia-reperfusion and infarction models. Listen to this article's corresponding podcast at ajpheart.podbean.com/e/guidelines-for-experimental-models-of-myocardial-ischemia-and-infarction/.
Reference List
- Ajijola OA, Lux RL, Khahera A, Kwon O, Aliotta E, Ennis DB, Fishbein MC, Ardell JL, Shivkumar K. Sympathetic modulation of electrical activation in normal and infarcted myocardium: implications for arrhythmogenesis. Am J Physiol Heart Circ Physiol 312: H608–H621, 2017. doi:10.1152/ajpheart.00575.2016.|||Algranati D, Kassab GS, Lanir Y. Why is the subendocardium more vulnerable to ischemia? A new paradigm. Am J Physiol Heart Circ Physiol 300: H1090–H1100, 2011. doi:10.1152/ajpheart.00473.2010.|||Alleman RJ, Tsang AM, Ryan TE, Patteson DJ, McClung JM, Spangenburg EE, Shaikh SR, Neufer PD, Brown DA. Exercise-induced protection against reperfusion arrhythmia involves stabilization of mitochondrial energetics. Am J Physiol Heart Circ Physiol 310: H1360–H1370, 2016. doi:10.1152/ajpheart.00858.2015.|||Andres AM, Kooren JA, Parker SJ, Tucker KC, Ravindran N, Ito BR, Huang C, Venkatraman V, Van Eyk JE, Gottlieb RA, Mentzer RM Jr. Discordant signaling and autophagy response to fasting in hearts of obese mice: implications for ischemia tolerance. Am J Physiol Heart Circ Physiol 311: H219–H228, 2016. doi:10.1152/ajpheart.00041.2016.|||Aronsen JM, Espe EK, Skårdal K, Hasic A, Zhang L, Sjaastad I. Noninvasive stratification of postinfarction rats based on the degree of cardiac dysfunction using magnetic resonance imaging and echocardiography. Am J Physiol Heart Circ Physiol 312: H932–H942, 2017. doi:10.1152/ajpheart.00668.2016.|||Atkins BZ, Hueman MT, Meuchel J, Hutcheson KA, Glower DD, Taylor DA. Cellular cardiomyoplasty improves diastolic properties of injured heart. J Surg Res 85: 234–242, 1999. doi:10.1006/jsre.1999.5681.|||Atkins BZ, Hueman MT, Meuchel JM, Cottman MJ, Hutcheson KA, Taylor DA. Myogenic cell transplantation improves in vivo regional performance in infarcted rabbit myocardium. J Heart Lung Transplant 18: 1173–1180, 1999. doi:10.1016/S1053-2498(99)00096-0.|||Aurora AB, Porrello ER, Tan W, Mahmoud AI, Hill JA, Bassel-Duby R, Sadek HA, Olson EN. Macrophages are required for neonatal heart regeneration. J Clin Invest 124: 1382–1392, 2014. doi:10.1172/JCI72181.|||Bache RJ, Arentzen CE, Simon AB, Vrobel TR. Abnormalities in myocardial perfusion during tachycardia in dogs with left ventricular hypertrophy: metabolic evidence for myocardial ischemia. Circulation 69: 409–417, 1984. doi:10.1161/01.CIR.69.2.409.|||Baker JE, Konorev EA, Gross GJ, Chilian WM, Jacob HJ. Resistance to myocardial ischemia in five rat strains: is there a genetic component of cardioprotection? Am J Physiol Heart Circ Physiol 278: H1395–H1400, 2000. doi:10.1152/ajpheart.2000.278.4.H1395.|||Barlow SC, Doviak H, Jacobs J, Freeburg LA, Perreault PE, Zellars KN, Moreau K, Villacreses CF, Smith S, Khakoo AY, Lee T, Spinale FG. Intracoronary delivery of recombinant TIMP-3 after myocardial infarction: effects on myocardial remodeling and function. Am J Physiol Heart Circ Physiol 313: H690–H699, 2017. doi:10.1152/ajpheart.00114.2017.|||Bauer M, Kang L, Qiu Y, Wu J, Peng M, Chen HH, Camci-Unal G, Bayomy AF, Sosnovik DE, Khademhosseini A, Liao R. Adult cardiac progenitor cell aggregates exhibit survival benefit both in vitro and in vivo. PLoS One 7: e50491, 2012. doi:10.1371/journal.pone.0050491.|||Becerra R, Román B, Di Carlo MN, Mariangelo JI, Salas M, Sanchez G, Donoso P, Schinella GR, Vittone L, Wehrens XH, Mundiña-Weilenmann C, Said M. Reversible redox modifications of ryanodine receptor ameliorate ventricular arrhythmias in the ischemic-reperfused heart. Am J Physiol Heart Circ Physiol 311: H713–H724, 2016. doi:10.1152/ajpheart.00142.2016.|||Bell RM, Mocanu MM, Yellon DM. Retrograde heart perfusion: the Langendorff technique of isolated heart perfusion. J Mol Cell Cardiol 50: 940–950, 2011. doi:10.1016/j.yjmcc.2011.02.018.|||Beltrami CA, Finato N, Rocco M, Feruglio GA, Puricelli C, Cigola E, Quaini F, Sonnenblick EH, Olivetti G, Anversa P. Structural basis of end-stage failure in ischemic cardiomyopathy in humans. Circulation 89: 151–163, 1994. doi:10.1161/01.CIR.89.1.151.|||Bennardo M, Alibhai F, Tsimakouridze E, Chinnappareddy N, Podobed P, Reitz C, Pyle WG, Simpson J, Martino TA. Day-night dependence of gene expression and inflammatory responses in the remodeling murine heart post-myocardial infarction. Am J Physiol Regul Integr Comp Physiol 311: R1243–R1254, 2016. doi:10.1152/ajpregu.00200.2016.|||Bolli R. Mechanism of myocardial “stunning”. Circulation 82: 723–738, 1990. doi:10.1161/01.CIR.82.3.723.|||Bolli R, Bhatti ZA, Tang XL, Qiu Y, Zhang Q, Guo Y, Jadoon AK. Evidence that late preconditioning against myocardial stunning in conscious rabbits is triggered by the generation of nitric oxide. Circ Res 81: 42–52, 1997. doi:10.1161/01.RES.81.1.42.|||Bolli R, Marbán E. Molecular and cellular mechanisms of myocardial stunning. Physiol Rev 79: 609–634, 1999. doi:10.1152/physrev.1999.79.2.609.|||Bolli R, Zhu WX, Thornby JI, O’Neill PG, Roberts R. Time course and determinants of recovery of function after reversible ischemia in conscious dogs. Am J Physiol Heart Circ Physiol 254: H102–H114, 1988.|||Bolli R, Zughaib M, Li XY, Tang XL, Sun JZ, Triana JF, McCay PB. Recurrent ischemia in the canine heart causes recurrent bursts of free radical production that have a cumulative effect on contractile function. A pathophysiological basis for chronic myocardial “stunning”. J Clin Invest 96: 1066–1084, 1995. doi:10.1172/JCI118093.|||Boyle MP, Weisman HF. Limitation of infarct expansion and ventricular remodeling by late reperfusion. Study of time course and mechanism in a rat model. Circulation 88: 2872–2883, 1993. doi:10.1161/01.CIR.88.6.2872.|||Braunwald E, Rutherford JD. Reversible ischemic left ventricular dysfunction: evidence for the “hibernating myocardium”. J Am Coll Cardiol 8: 1467–1470, 1986. doi:10.1016/S0735-1097(86)80325-4.|||Brodarac A, Šarić T, Oberwallner B, Mahmoodzadeh S, Neef K, Albrecht J, Burkert K, Oliverio M, Nguemo F, Choi YH, Neiss WF, Morano I, Hescheler J, Stamm C. Susceptibility of murine induced pluripotent stem cell-derived cardiomyocytes to hypoxia and nutrient deprivation. Stem Cell Res Ther 6: 83, 2015. doi:10.1186/s13287-015-0057-6.|||Buckberg GD, Fixler DE, Archie JP, Hoffman JI. Experimental subendocardial ischemia in dogs with normal coronary arteries. Circ Res 30: 67–81, 1972. doi:10.1161/01.RES.30.1.67.|||Bujak M, Dobaczewski M, Chatila K, Mendoza LH, Li N, Reddy A, Frangogiannis NG. Interleukin-1 receptor type I signaling critically regulates infarct healing and cardiac remodeling. Am J Pathol 173: 57–67, 2008. doi:10.2353/ajpath.2008.070974.|||Bujak M, Kweon HJ, Chatila K, Li N, Taffet G, Frangogiannis NG. Aging-related defects are associated with adverse cardiac remodeling in a mouse model of reperfused myocardial infarction. J Am Coll Cardiol 51: 1384–1392, 2008. doi:10.1016/j.jacc.2008.01.011.|||Bulluck H, Nicholas J, Crimi G, White SK, Ludman AJ, Pica S, Raineri C, Cabrera-Fuentes HA, Yellon D, Rodriguez-Palomares J, Garcia-Dorado D, Hausenloy DJ. Circadian variation in acute myocardial infarct size assessed by cardiovascular magnetic resonance in reperfused STEMI patients. Int J Cardiol 230: 149–154, 2017. doi:10.1016/j.ijcard.2016.12.030.|||Bustin SA, Huggett JF. Reproducibility of biomedical research–the importance of editorial vigilance. Biomol Detect Quantif 11: 1–3, 2017. doi:10.1016/j.bdq.2017.01.002.|||Bux AS, Lindsey ML, Vasquez HG, Taegtmeyer H, Harmancey R. Glucose regulates the intrinsic inflammatory response of the heart to surgically induced hypothermic ischemic arrest and reperfusion. Physiol Genomics 49: 37–52, 2017. doi:10.1152/physiolgenomics.00102.2016.|||Canfield SG, Sepac A, Sedlic F, Muravyeva MY, Bai X, Bosnjak ZJ. Marked hyperglycemia attenuates anesthetic preconditioning in human-induced pluripotent stem cell-derived cardiomyocytes. Anesthesiology 117: 735–744, 2012. doi:10.1097/ALN.0b013e3182655e96.|||Canton M, Skyschally A, Menabò R, Boengler K, Gres P, Schulz R, Haude M, Erbel R, Di Lisa F, Heusch G. Oxidative modification of tropomyosin and myocardial dysfunction following coronary microembolization. Eur Heart J 27: 875–881, 2006. doi:10.1093/eurheartj/ehi751.|||Canty JM., Jr Coronary pressure-function and steady-state pressure-flow relations during autoregulation in the unanesthetized dog. Circ Res 63: 821–836, 1988. doi:10.1161/01.RES.63.4.821.|||Canty JM Jr, Fallavollita JA. Resting myocardial flow in hibernating myocardium: validating animal models of human pathophysiology. Am J Physiol Heart Circ Physiol 277: H417–H422, 1999.|||Canty JM Jr, Giglia J, Kandath D. Effect of tachycardia on regional function and transmural myocardial perfusion during graded coronary pressure reduction in conscious dogs. Circulation 82: 1815–1825, 1990. doi:10.1161/01.CIR.82.5.1815.|||Canty JM Jr, Klocke FJ. Reduced regional myocardial perfusion in the presence of pharmacologic vasodilator reserve. Circulation 71: 370–377, 1985. doi:10.1161/01.CIR.71.2.370.|||Canty JM Jr, Klocke FJ. Reductions in regional myocardial function at rest in conscious dogs with chronically reduced regional coronary artery pressure. Circ Res 61: II107–II116, 1987.|||Canty JM Jr, Mates RE. A programmable pressure control system for coronary flow studies. Am J Physiol Heart Circ Physiol 243: H796–H802, 1982.|||Canty JM Jr, Smith TP Jr. Adenosine-recruitable flow reserve is absent during myocardial ischemia in unanesthetized dogs studied in the basal state. Circ Res 76: 1079–1087, 1995. doi:10.1161/01.RES.76.6.1079.|||Canty JM Jr, Suzuki G, Banas MD, Verheyen F, Borgers M, Fallavollita JA. Hibernating myocardium: chronically adapted to ischemia but vulnerable to sudden death. Circ Res 94: 1142–1149, 2004. doi:10.1161/01.RES.0000125628.57672.CF.|||Canty JM Jr, Duncker DJ. Coronary blood flow and myocardial ischemia. In: Braunwald’s Heart Disease, edited by Mann DL, Zipes DP, Libby P, Bonow RO. Philadelphia, PA: Elsevier, 2014, p. 1029–1056.|||Canty JM Jr, Suzuki G. Myocardial perfusion and contraction in acute ischemia and chronic ischemic heart disease. J Mol Cell Cardiol 52: 822–831, 2012. doi:10.1016/j.yjmcc.2011.08.019.|||Cao H, Yu F, Zhao Y, Zhang X, Tai J, Lee J, Darehzereshki A, Bersohn M, Lien CL, Chi NC, Tai YC, Hsiai TK. Wearable multi-channel microelectrode membranes for elucidating electrophysiological phenotypes of injured myocardium. Integr Biol 6: 789–795, 2014. doi:10.1039/C4IB00052H.|||Capasso JM, Li P, Anversa P. Nonischemic myocardial damage induced by nonocclusive constriction of coronary artery in rats. Am J Physiol Heart Circ Physiol 260: H651–H661, 1991.|||Capasso JM, Malhotra A, Li P, Zhang X, Scheuer J, Anversa P. Chronic nonocclusive coronary artery constriction impairs ventricular function, myocardial structure, and cardiac contractile protein enzyme activity in rats. Circ Res 70: 148–162, 1992. doi:10.1161/01.RES.70.1.148.|||Chablais F, Jaźwińska A. Induction of myocardial infarction in adult zebrafish using cryoinjury. J Vis Exp 2012: 3666, 2012. doi:10.3791/3666.|||Chan W, White DA, Wang XY, Bai RF, Liu Y, Yu HY, Zhang YY, Fan F, Schneider HG, Duffy SJ, Taylor AJ, Du XJ, Gao W, Gao XM, Dart AM. Macrophage migration inhibitory factor for the early prediction of infarct size. J Am Heart Assoc 2: e000226, 2013. doi:10.1161/JAHA.113.000226.|||Chen C, Chen L, Fallon JT, Ma L, Li L, Bow L, Knibbs D, McKay R, Gillam LD, Waters DD. Functional and structural alterations with 24-hour myocardial hibernation and recovery after reperfusion. A pig model of myocardial hibernation. Circulation 94: 507–516, 1996. doi:10.1161/01.CIR.94.3.507.|||Cho SW, Gwak SJ, Kim IK, Cho MC, Hwang KK, Kwon JS, Choi CY, Yoo KJ, Kim BS. Granulocyte colony-stimulating factor treatment enhances the efficacy of cellular cardiomyoplasty with transplantation of embryonic stem cell-derived cardiomyocytes in infarcted myocardium. Biochem Biophys Res Commun 340: 573–582, 2006. doi:10.1016/j.bbrc.2005.12.044.|||Christia P, Bujak M, Gonzalez-Quesada C, Chen W, Dobaczewski M, Reddy A, Frangogiannis NG. Systematic characterization of myocardial inflammation, repair, and remodeling in a mouse model of reperfused myocardial infarction. J Histochem Cytochem 61: 555–570, 2013. doi:10.1369/0022155413493912.|||Chung Y. Myocardial Po2 does not limit aerobic metabolism in the postischemic heart. Am J Physiol Heart Circ Physiol 310: H226–H238, 2016. doi:10.1152/ajpheart.00335.2015.|||Ciulla MM, Paliotti R, Ferrero S, Braidotti P, Esposito A, Gianelli U, Busca G, Cioffi U, Bulfamante G, Magrini F. Left ventricular remodeling after experimental myocardial cryoinjury in rats. J Surg Res 116: 91–97, 2004. doi:10.1016/j.jss.2003.08.238.|||Cohen M, Boiangiu C, Abidi M. Therapy for ST-segment elevation myocardial infarction patients who present late or are ineligible for reperfusion therapy. J Am Coll Cardiol 55: 1895–1906, 2010. doi:10.1016/j.jacc.2009.11.087.|||Costa AR, Panda NC, Yong S, Mayorga ME, Pawlowski GP, Fan K, Penn MS, Laurita KR. Optical mapping of cryoinjured rat myocardium grafted with mesenchymal stem cells. Am J Physiol Heart Circ Physiol 302: H270–H277, 2012. doi:10.1152/ajpheart.00019.2011.|||Cullen LA, Mills NL, Mahler S, Body R. Early rule-out and rule-in strategies for myocardial infarction. Clin Chem 63: 129–139, 2017. doi:10.1373/clinchem.2016.254730.|||Curtis MJ, Hancox JC, Farkas A, Wainwright CL, Stables CL, Saint DA, Clements-Jewery H, Lambiase PD, Billman GE, Janse MJ, Pugsley MK, Ng GA, Roden DM, Camm AJ, Walker MJ. The Lambeth Conventions (II): guidelines for the study of animal and human ventricular and supraventricular arrhythmias. Pharmacol Ther 139: 213–248, 2013. doi:10.1016/j.pharmthera.2013.04.008.|||Darehzereshki A, Rubin N, Gamba L, Kim J, Fraser J, Huang Y, Billings J, Mohammadzadeh R, Wood J, Warburton D, Kaartinen V, Lien CL. Differential regenerative capacity of neonatal mouse hearts after cryoinjury. Dev Biol 399: 91–99, 2015. doi:10.1016/j.ydbio.2014.12.018.|||Date T, Belanger AJ, Mochizuki S, Sullivan JA, Liu LX, Scaria A, Cheng SH, Gregory RJ, Jiang C. Adenovirus-mediated expression of p35 prevents hypoxia/reoxygenation injury by reducing reactive oxygen species and caspase activity. Cardiovasc Res 55: 309–319, 2002. doi:10.1016/S0008-6363(02)00412-1.|||De Jesus NM, Wang L, Lai J, Rigor RR, Francis Stuart SD, Bers DM, Lindsey ML, Ripplinger CM. Anti-arrhythmic effects of interleukin-1 inhibition following myocardial infarction. Heart Rhythm 14: 727–736, 2017. doi:10.1016/j.hrthm.2017.01.027.|||DeLeon-Pennell KY, de Castro Brás LE, Iyer RP, Bratton DR, Jin YF, Ripplinger CM, Lindsey ML. P. gingivalis lipopolysaccharide intensifies inflammation post-myocardial infarction through matrix metalloproteinase-9. J Mol Cell Cardiol 76: 218–226, 2014. doi:10.1016/j.yjmcc.2014.09.007.|||DeLeon-Pennell KY, Tian Y, Zhang B, Cates CA, Iyer RP, Cannon P, Shah P, Aiyetan P, Halade GV, Ma Y, Flynn E, Zhang Z, Jin YF, Zhang H, Lindsey ML. CD36 is a matrix metalloproteinase-9 substrate that stimulates neutrophil apoptosis and removal during cardiac remodeling. Circ Cardiovasc Genet 9: 14–25, 2016. doi:10.1161/CIRCGENETICS.115.001249.|||Depre C, Kim SJ, John AS, Huang Y, Rimoldi OE, Pepper JR, Dreyfus GD, Gaussin V, Pennell DJ, Vatner DE, Camici PG, Vatner SF. Program of cell survival underlying human and experimental hibernating myocardium. Circ Res 95: 433–440, 2004. doi:10.1161/01.RES.0000138301.42713.18.|||Dewald O, Frangogiannis NG, Zoerlein M, Duerr GD, Klemm C, Knuefermann P, Taffet G, Michael LH, Crapo JD, Welz A, Entman ML. Development of murine ischemic cardiomyopathy is associated with a transient inflammatory reaction and depends on reactive oxygen species. Proc Natl Acad Sci USA 100: 2700–2705, 2003. doi:10.1073/pnas.0438035100.|||Dewald O, Ren G, Duerr GD, Zoerlein M, Klemm C, Gersch C, Tincey S, Michael LH, Entman ML, Frangogiannis NG. Of mice and dogs: species-specific differences in the inflammatory response following myocardial infarction. Am J Pathol 164: 665–677, 2004. doi:10.1016/S0002-9440(10)63154-9.|||Dewald O, Zymek P, Winkelmann K, Koerting A, Ren G, Abou-Khamis T, Michael LH, Rollins BJ, Entman ML, Frangogiannis NG. CCL2/monocyte chemoattractant protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circ Res 96: 881–889, 2005. doi:10.1161/01.RES.0000163017.13772.3a.|||Domenech RJ, Hoffman JI, Noble MI, Saunders KB, Henson JR, Subijanto S. Total and regional coronary blood flow measured by radioactive microspheres in conscious and anesthetized dogs. Circ Res 25: 581–596, 1969. doi:10.1161/01.RES.25.5.581.|||Dörge H, Neumann T, Behrends M, Skyschally A, Schulz R, Kasper C, Erbel R, Heusch G. Perfusion-contraction mismatch with coronary microvascular obstruction: role of inflammation. Am J Physiol Heart Circ Physiol 279: H2587–H2592, 2000. doi:10.1152/ajpheart.2000.279.6.H2587.|||Downey JM, Kirk ES. Inhibition of coronary blood flow by a vascular waterfall mechanism. Circ Res 36: 753–760, 1975. doi:10.1161/01.RES.36.6.753.|||Du CK, Zhan DY, Akiyama T, Inagaki T, Shishido T, Shirai M, Pearson JT. Myocardial interstitial levels of serotonin and its major metabolite 5-hydroxyindole acetic acid during ischemia-reperfusion. Am J Physiol Heart Circ Physiol 312: H60–H67, 2017. doi:10.1152/ajpheart.00471.2016.|||Du XJ, Cox HS, Dart AM, Esler MD. Sympathetic activation triggers ventricular arrhythmias in rat heart with chronic infarction and failure. Cardiovasc Res 43: 919–929, 1999. doi:10.1016/S0008-6363(99)00139-X.|||Dutta P, Hoyer FF, Grigoryeva LS, Sager HB, Leuschner F, Courties G, Borodovsky A, Novobrantseva T, Ruda VM, Fitzgerald K, Iwamoto Y, Wojtkiewicz G, Sun Y, Da Silva N, Libby P, Anderson DG, Swirski FK, Weissleder R, Nahrendorf M. Macrophages retain hematopoietic stem cells in the spleen via VCAM-1. J Exp Med 212: 497–512, 2015. doi:10.1084/jem.20141642.|||Dutta P, Hoyer FF, Sun Y, Iwamoto Y, Tricot B, Weissleder R, Magnani JL, Swirski FK, Nahrendorf M. E-selectin inhibition mitigates splenic HSC activation and myelopoiesis in hypercholesterolemic mice with myocardial infarction. Arterioscler Thromb Vasc Biol 36: 1802–1808, 2016. doi:10.1161/ATVBAHA.116.307519.|||Fallavollita JA, Canty JM Jr. Differential 18F-2-deoxyglucose uptake in viable dysfunctional myocardium with normal resting perfusion: evidence for chronic stunning in pigs. Circulation 99: 2798–2805, 1999. doi:10.1161/01.CIR.99.21.2798.|||Fallavollita JA, Canty JM Jr. Ischemic cardiomyopathy in pigs with two-vessel occlusion and viable, chronically dysfunctional myocardium. Am J Physiol Heart Circ Physiol 282: H1370–H1379, 2002. doi:10.1152/ajpheart.00138.2001.|||Fallavollita JA, Logue M, Canty JM Jr. Stability of hibernating myocardium in pigs with a chronic left anterior descending coronary artery stenosis: absence of progressive fibrosis in the setting of stable reductions in flow, function and coronary flow reserve. J Am Coll Cardiol 37: 1989–1995, 2001. doi:10.1016/S0735-1097(01)01250-5.|||Fallavollita JA, Malm BJ, Canty JM Jr. Hibernating myocardium retains metabolic and contractile reserve despite regional reductions in flow, function, and oxygen consumption at rest. Circ Res 92: 48–55, 2003. doi:10.1161/01.RES.0000049104.57549.03.|||Fallavollita JA, Perry BJ, Canty JM Jr. 18F-2-deoxyglucose deposition and regional flow in pigs with chronically dysfunctional myocardium. Evidence for transmural variations in chronic hibernating myocardium. Circulation 95: 1900–1909, 1997. doi:10.1161/01.CIR.95.7.1900.|||Ferdinandy P, Hausenloy DJ, Heusch G, Baxter GF, Schulz R. Interaction of risk factors, comorbidities, and comedications with ischemia/reperfusion injury and cardioprotection by preconditioning, postconditioning, and remote conditioning. Pharmacol Rev 66: 1142–1174, 2014. doi:10.1124/pr.113.008300.|||Ferrera R, Benhabbouche S, Bopassa JC, Li B, Ovize M. One hour reperfusion is enough to assess function and infarct size with TTC staining in Langendorff rat model. Cardiovasc Drugs Ther 23: 327–331, 2009. doi:10.1007/s10557-009-6176-5.|||Firoozan S, Wei K, Linka A, Skyba D, Goodman NC, Kaul S. A canine model of chronic ischemic cardiomyopathy: characterization of regional flow-function relations. Am J Physiol Heart Circ Physiol 276: H446–H455, 1999.|||Fishbein MC, Meerbaum S, Rit J, Lando U, Kanmatsuse K, Mercier JC, Corday E, Ganz W. Early phase acute myocardial infarct size quantification: validation of the triphenyl tetrazolium chloride tissue enzyme staining technique. Am Heart J 101: 593–600, 1981. doi:10.1016/0002-8703(81)90226-X.|||Fomovsky GM, Rouillard AD, Holmes JW. Regional mechanics determine collagen fiber structure in healing myocardial infarcts. J Mol Cell Cardiol 52: 1083–1090, 2012. doi:10.1016/j.yjmcc.2012.02.012.|||Francis Stuart SD, De Jesus NM, Lindsey ML, Ripplinger CM. The crossroads of inflammation, fibrosis, and arrhythmia following myocardial infarction. J Mol Cell Cardiol 91: 114–122, 2016. doi:10.1016/j.yjmcc.2015.12.024.|||Frangogiannis NG. The immune system and the remodeling infarcted heart: cell biological insights and therapeutic opportunities. J Cardiovasc Pharmacol 63: 185–195, 2014. doi:10.1097/FJC.0000000000000003.|||Frangogiannis NG. Inflammation in cardiac injury, repair and regeneration. Curr Opin Cardiol 30: 240–245, 2015. doi:10.1097/HCO.0000000000000158.|||Frangogiannis NG. Pathophysiology of myocardial infarction. Compr Physiol 5: 1841–1875, 2015. doi:10.1002/cphy.c150006.|||Frangogiannis NG, Michael LH, Entman ML. Myofibroblasts in reperfused myocardial infarcts express the embryonic form of smooth muscle myosin heavy chain (SMemb). Cardiovasc Res 48: 89–100, 2000. doi:10.1016/S0008-6363(00)00158-9.|||Frantz S, Bauersachs J, Ertl G. Post-infarct remodelling: contribution of wound healing and inflammation. Cardiovasc Res 81: 474–481, 2009. doi:10.1093/cvr/cvn292.|||Frey A, Saxon VM, Popp S, Lehmann M, Mathes D, Pachel C, Hofmann U, Ertl G, Lesch KP, Frantz S. Early citalopram treatment increases mortality due to left ventricular rupture in mice after myocardial infarction. J Mol Cell Cardiol 98: 28–36, 2016. doi:10.1016/j.yjmcc.2016.07.002.|||Galaup A, Gomez E, Souktani R, Durand M, Cazes A, Monnot C, Teillon J, Le Jan S, Bouleti C, Briois G, Philippe J, Pons S, Martin V, Assaly R, Bonnin P, Ratajczak P, Janin A, Thurston G, Valenzuela DM, Murphy AJ, Yancopoulos GD, Tissier R, Berdeaux A, Ghaleh B, Germain S. Protection against myocardial infarction and no-reflow through preservation of vascular integrity by angiopoietin-like 4. Circulation 125: 140–149, 2012. doi:10.1161/CIRCULATIONAHA.111.049072.|||Gallagher KP, Matsuzaki M, Koziol JA, Kemper WS, Ross J Jr. Regional myocardial perfusion and wall thickening during ischemia in conscious dogs. Am J Physiol Heart Circ Physiol 247: H727–H738, 1984.|||Gallagher KP, Matsuzaki M, Osakada G, Kemper WS, Ross J Jr. Effect of exercise on the relationship between myocardial blood flow and systolic wall thickening in dogs with acute coronary stenosis. Circ Res 52: 716–729, 1983. doi:10.1161/01.RES.52.6.716.|||Gallagher KP, Osakada G, Matsuzaki M, Kemper WS, Ross J Jr. Myocardial blood flow and function with critical coronary stenosis in exercising dogs. Am J Physiol Heart Circ Physiol 243: H698–H707, 1982.|||Ganote CE, Humphrey SM. Effects of anoxic or oxygenated reperfusion in globally ischemic, isovolumic, perfused rat hearts. Am J Pathol 120: 129–145, 1985.|||Gao XM, Moore XL, Liu Y, Wang XY, Han LP, Su Y, Tsai A, Xu Q, Zhang M, Lambert GW, Kiriazis H, Gao W, Dart AM, Du XJ. Splenic release of platelets contributes to increased circulating platelet size and inflammation after myocardial infarction. Clin Sci (Lond) 130: 1089–1104, 2016. doi:10.1042/CS20160234.|||Gao XM, White DA, Dart AM, Du XJ. Post-infarct cardiac rupture: recent insights on pathogenesis and therapeutic interventions. Pharmacol Ther 134: 156–179, 2012. doi:10.1016/j.pharmthera.2011.12.010.|||Gao XM, Wu QZ, Kiriazis H, Su Y, Han LP, Pearson JT, Taylor AJ, Du XJ. Microvascular leakage in acute myocardial infarction: characterization by histology, biochemistry, and magnetic resonance imaging. Am J Physiol Heart Circ Physiol 312: H1068–H1075, 2017. doi:10.1152/ajpheart.00073.2017.|||Gao XM, Xu Q, Kiriazis H, Dart AM, Du XJ. Mouse model of post-infarct ventricular rupture: time course, strain- and gender-dependency, tensile strength, and histopathology. Cardiovasc Res 65: 469–477, 2005. doi:10.1016/j.cardiores.2004.10.014.|||Gardner RT, Habecker BA. Infarct-derived chondroitin sulfate proteoglycans prevent sympathetic reinnervation after cardiac ischemia-reperfusion injury. J Neurosci 33: 7175–7183, 2013. doi:10.1523/JNEUROSCI.5866-12.2013.|||Gardner RT, Wang L, Lang BT, Cregg JM, Dunbar CL, Woodward WR, Silver J, Ripplinger CM, Habecker BA. Targeting protein tyrosine phosphatase σ after myocardial infarction restores cardiac sympathetic innervation and prevents arrhythmias. Nat Commun 6: 6235, 2015. doi:10.1038/ncomms7235.|||Gedik N, Krüger M, Thielmann M, Kottenberg E, Skyschally A, Frey UH, Cario E, Peters J, Jakob H, Heusch G, Kleinbongard P. Proteomics/phosphoproteomics of left ventricular biopsies from patients with surgical coronary revascularization and pigs with coronary occlusion/reperfusion: remote ischemic preconditioning. Sci Rep 7: 7629, 2017. doi:10.1038/s41598-017-07883-5.|||Gedik N, Maciel L, Schulte C, Skyschally A, Heusch G, Kleinbongard P. Cardiomyocyte mitochondria as targets of humoral factors released by remote ischemic preconditioning. Arch Med Sci 13: 448–458, 2017. doi:10.5114/aoms.2016.61789.|||Gent S, Skyschally A, Kleinbongard P, Heusch G. lschemic preconditioning in pigs: a causal role for signal transducer and activator of transcription 3. Am J Physiol Heart Circ Physiol 312: H478–H484, 2017. doi:10.1152/ajpheart.00749.2016.|||Gharacholou SM, Alexander KP, Chen AY, Wang TY, Melloni C, Gibler WB, Pollack CV Jr, Ohman EM, Peterson ED, Roe MT. Implications and reasons for the lack of use of reperfusion therapy in patients with ST-segment elevation myocardial infarction: findings from the CRUSADE initiative. Am Heart J 159: 757–763, 2010. doi:10.1016/j.ahj.2010.02.009.|||Gheorghiade M, Bonow RO. Chronic heart failure in the United States: a manifestation of coronary artery disease. Circulation 97: 282–289, 1998. doi:10.1161/01.CIR.97.3.282.|||Girod WG, Jones SP, Sieber N, Aw TY, Lefer DJ. Effects of hypercholesterolemia on myocardial ischemia-reperfusion injury in LDL receptor-deficient mice. Arterioscler Thromb Vasc Biol 19: 2776–2781, 1999. doi:10.1161/01.ATV.19.11.2776.|||Glenny RW, Bernard S, Brinkley M. Validation of fluorescent-labeled microspheres for measurement of regional organ perfusion. J Appl Physiol 74: 2585–2597, 1993. doi:10.1152/jappl.1993.74.5.2585.|||González-Rosa JM, Martín V, Peralta M, Torres M, Mercader N. Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish. Development 138: 1663–1674, 2011. doi:10.1242/dev.060897.|||Grisel P, Meinhardt A, Lehr HA, Kappenberger L, Barrandon Y, Vassalli G. The MRL mouse repairs both cryogenic and ischemic myocardial infarcts with scar. Cardiovasc Pathol 17: 14–22, 2008. doi:10.1016/j.carpath.2007.01.007.|||Gumz ML. Taking into account circadian rhythm when conducting experiments on animals. Am J Physiol Renal Physiol 310: F454–F455, 2016. doi:10.1152/ajprenal.00549.2015.|||Guo Y, Flaherty MP, Wu WJ, Tan W, Zhu X, Li Q, Bolli R. Genetic background, gender, age, body temperature, and arterial blood pH have a major impact on myocardial infarct size in the mouse and need to be carefully measured and/or taken into account: results of a comprehensive analysis of determinants of infarct size in 1,074 mice. Basic Res Cardiol 107: 288, 2012. doi:10.1007/s00395-012-0288-y.|||Guth BD, Heusch G, Seitelberger R, Ross J Jr. Elimination of exercise-induced regional myocardial dysfunction by a bradycardiac agent in dogs with chronic coronary stenosis. Circulation 75: 661–669, 1987. doi:10.1161/01.CIR.75.3.661.|||Guth BD, Indolfi C, Heusch G, Seitelberger R, Ross J Jr. Mechanisms of benefit in the ischemic myocardium due to heart rate reduction. Basic Res Cardiol 85, Suppl 1: 157–166, 1990.|||Guth BD, Martin JF, Heusch G, Ross J Jr. Regional myocardial blood flow, function and metabolism using phosphorus-31 nuclear magnetic resonance spectroscopy during ischemia and reperfusion in dogs. J Am Coll Cardiol 10: 673–681, 1987. doi:10.1016/S0735-1097(87)80212-7.|||Halade GV, Kain V, Black LM, Prabhu SD, Ingle KA. Aging dysregulates D- and E-series resolvins to modulate cardiosplenic and cardiorenal network following myocardial infarction. Aging (Albany NY) 8: 2611–2634, 2016. doi:10.18632/aging.101077.|||Halade GV, Kain V, Ingle KA. Heart functional and structural compendium of cardiosplenic and cardiorenal networks in acute and chronic heart failure pathology. Am J Physiol Heart Circ Physiol 314: H255−H267, 2018. doi:10.1152/ajpheart.00528.2017.|||Halade GV, Kain V, Ingle KA, Prabhu SD. Interaction of 12/15-lipoxygenase with fatty acids alters the leukocyte kinetics leading to improved postmyocardial infarction healing. Am J Physiol Heart Circ Physiol 313: H89−H102, 2017. doi:10.1152/ajpheart.00040.2017.|||Hausenloy DJ, Barrabes JA, Bøtker HE, Davidson SM, Di Lisa F, Downey J, Engstrom T, Ferdinandy P, Carbrera-Fuentes HA, Heusch G, Ibanez B, Iliodromitis EK, Inserte J, Jennings R, Kalia N, Kharbanda R, Lecour S, Marber M, Miura T, Ovize M, Perez-Pinzon MA, Piper HM, Przyklenk K, Schmidt MR, Redington A, Ruiz-Meana M, Vilahur G, Vinten-Johansen J, Yellon DM, Garcia-Dorado D. Ischaemic conditioning and targeting reperfusion injury: a 30 year voyage of discovery. Basic Res Cardiol 111: 70, 2016. doi:10.1007/s00395-016-0588-8.|||Hausenloy DJ, Bøtker HE, Engstrom T, Erlinge D, Heusch G, Ibanez B, Kloner RA, Ovize M, Yellon DM, Garcia-Dorado D. Targeting reperfusion injury in patients with ST-segment elevation myocardial infarction: trials and tribulations. Eur Heart J 38: 935–941, 2017. doi:10.1093/eurheartj/ehw145.|||Hausenloy DJ, Garcia-Dorado D, Bøtker HE, Davidson SM, Downey J, Engel FB, Jennings R, Lecour S, Leor J, Madonna R, Ovize M, Perrino C, Prunier F, Schulz R, Sluijter JPG, Van Laake LW, Vinten-Johansen J, Yellon DM, Ytrehus K, Heusch G, Ferdinandy P. Novel targets and future strategies for acute cardioprotection: Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart. Cardiovasc Res 113: 564–585, 2017. doi:10.1093/cvr/cvx049.|||Hausenloy DJ, Yellon DM. Myocardial ischemia-reperfusion injury: a neglected therapeutic target. J Clin Invest 123: 92–100, 2013. doi:10.1172/JCI62874.|||Hawkins HK, Entman ML, Zhu JY, Youker KA, Berens K, Doré M, Smith CW. Acute inflammatory reaction after myocardial ischemic injury and reperfusion. Development and use of a neutrophil-specific antibody. Am J Pathol 148: 1957–1969, 1996.|||Heaberlin JR, Ma Y, Zhang J, Ahuja SS, Lindsey ML, Halade GV. Obese and diabetic KKAy mice show increased mortality but improved cardiac function following myocardial infarction. Cardiovasc Pathol 22: 481–487, 2013. doi:10.1016/j.carpath.2013.06.002.|||Heinzel FR, Luo Y, Dodoni G, Boengler K, Petrat F, Di Lisa F, de Groot H, Schulz R, Heusch G. Formation of reactive oxygen species at increased contraction frequency in rat cardiomyocytes. Cardiovasc Res 71: 374–382, 2006. doi:10.1016/j.cardiores.2006.05.014.|||Heinzel FR, Luo Y, Li X, Boengler K, Buechert A, García-Dorado D, Di Lisa F, Schulz R, Heusch G. Impairment of diazoxide-induced formation of reactive oxygen species and loss of cardioprotection in connexin 43 deficient mice. Circ Res 97: 583–586, 2005. doi:10.1161/01.RES.0000181171.65293.65.|||Heusch G. The coronary circulation as a target of cardioprotection. Circ Res 118: 1643–1658, 2016. doi:10.1161/CIRCRESAHA.116.308640.|||Heusch G. Critical issues for the translation of cardioprotection. Circ Res 120: 1477–1486, 2017. doi:10.1161/CIRCRESAHA.117.310820.|||Heusch G. Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ Res 116: 674–699, 2015. doi:10.1161/CIRCRESAHA.116.305348.|||Heusch G. Myocardial ischemia: lack of coronary blood flow or myocardial oxygen supply/demand imbalance? Circ Res 119: 194–196, 2016. doi:10.1161/CIRCRESAHA.116.308925.|||Heusch G. The regional myocardial flow-function relationship: a framework for an understanding of acute ischemia, hibernation, stunning and coronary microembolization. 1980. Circ Res 112: 1535–1537, 2013. doi:10.1161/CIRCRESAHA.113.301446.|||Heusch G, Deussen A. The effects of cardiac sympathetic nerve stimulation on perfusion of stenotic coronary arteries in the dog. Circ Res 53: 8–15, 1983. doi:10.1161/01.RES.53.1.8.|||Heusch G, Deussen A, Thämer V. Cardiac sympathetic nerve activity and progressive vasoconstriction distal to coronary stenoses: feed-back aggravation of myocardial ischemia. J Auton Nerv Syst 13: 311–326, 1985. doi:10.1016/0165-1838(85)90020-7.|||Heusch G, Gersh BJ. The pathophysiology of acute myocardial infarction and strategies of protection beyond reperfusion: a continual challenge. Eur Heart J 38: 774–784, 2017.|||Heusch G, Guth BD, Seitelberger R, Ross J Jr. Attenuation of exercise-induced myocardial ischemia in dogs with recruitment of coronary vasodilator reserve by nifedipine. Circulation 75: 482–490, 1987. doi:10.1161/01.CIR.75.2.482.|||Heusch G, Kleinbongard P, Böse D, Levkau B, Haude M, Schulz R, Erbel R. Coronary microembolization: from bedside to bench and back to bedside. Circulation 120: 1822–1836, 2009. doi:10.1161/CIRCULATIONAHA.109.888784.|||Heusch G, Libby P, Gersh B, Yellon D, Böhm M, Lopaschuk G, Opie L. Cardiovascular remodelling in coronary artery disease and heart failure. Lancet 383: 1933–1943, 2014. doi:10.1016/S0140-6736(14)60107-0.|||Heusch G, Post H, Michel MC, Kelm M, Schulz R. Endogenous nitric oxide and myocardial adaptation to ischemia. Circ Res 87: 146–152, 2000. doi:10.1161/01.RES.87.2.146.|||Heusch G, Rassaf T. Time to give up on cardioprotection? A critical appraisal of clinical studies on ischemic pre-, post-, and remote conditioning. Circ Res 119: 676–695, 2016. doi:10.1161/CIRCRESAHA.116.308736.|||Heusch G, Schulz R, Rahimtoola SH. Myocardial hibernation: a delicate balance. Am J Physiol Heart Circ Physiol 288: H984–H999, 2005. doi:10.1152/ajpheart.01109.2004.|||Heusch G, Skyschally A, Schulz R. The in-situ pig heart with regional ischemia/reperfusion–ready for translation. J Mol Cell Cardiol 50: 951–963, 2011. doi:10.1016/j.yjmcc.2011.02.016.|||Heusch P, Nensa F, Heusch G. Is MRI really the gold standard for the quantification of salvage from myocardial infarction? Circ Res 117: 222–224, 2015. doi:10.1161/CIRCRESAHA.117.306929.|||Heymann MA, Payne BD, Hoffman JIE, Rudolph AM. Blood flow measurements with radionuclide-labeled particles. Prog Cardiovasc Dis 20: 55–79, 1977. doi:10.1016/S0033-0620(77)80005-4.|||Heyndrickx GR, Baig H, Nellens P, Leusen I, Fishbein MC, Vatner SF. Depression of regional blood flow and wall thickening after brief coronary occlusions. Am J Physiol Heart Circ Physiol 234: H653–H659, 1978.|||Homans DC, Sublett E, Dai XZ, Bache RJ. Persistence of regional left ventricular dysfunction after exercise-induced myocardial ischemia. J Clin Invest 77: 66–73, 1986. doi:10.1172/JCI112303.|||House SL, Castro AM, Lupu TS, Weinheimer C, Smith C, Kovacs A, Ornitz DM. Endothelial fibroblast growth factor receptor signaling is required for vascular remodeling following cardiac ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 310: H559–H571, 2016. doi:10.1152/ajpheart.00758.2015.|||Hunter I, Soler A, Joseph G, Hutcheson B, Bradford C, Zhang FF, Potter B, Proctor S, Rocic P. Cardiovascular function in male and female JCR:LA-cp rats: effect of high-fat/high-sucrose diet. Am J Physiol Heart Circ Physiol 312: H742–H751, 2017. doi:10.1152/ajpheart.00535.2016.|||Ibáñez B, Heusch G, Ovize M, Van de Werf F. Evolving therapies for myocardial ischemia/reperfusion injury. J Am Coll Cardiol 65: 1454–1471, 2015. doi:10.1016/j.jacc.2015.02.032.|||Ibanez B, Prat-González S, Speidl WS, Vilahur G, Pinero A, Cimmino G, García MJ, Fuster V, Sanz J, Badimon JJ. Early metoprolol administration before coronary reperfusion results in increased myocardial salvage: analysis of ischemic myocardium at risk using cardiac magnetic resonance. Circulation 115: 2909–2916, 2007. doi:10.1161/CIRCULATIONAHA.106.679639.|||Iop L, Chiavegato A, Callegari A, Bollini S, Piccoli M, Pozzobon M, Rossi CA, Calamelli S, Chiavegato D, Gerosa G, De Coppi P, Sartore S. Different cardiovascular potential of adult- and fetal-type mesenchymal stem cells in a rat model of heart cryoinjury. Cell Transplant 17: 679–694, 2008. doi:10.3727/096368908786092739.|||Ip WT, McAlindon A, Miller SE, Bell JR, Curl CL, Huggins CE, Mellor KM, Raaijmakers AJ, Bienvenu LA, McLennan PL, Pepe S, Delbridge LM. Dietary omega-6 fatty acid replacement selectively impairs cardiac functional recovery after ischemia in female (but not male) rats. Am J Physiol Heart Circ Physiol 311: H768–H780, 2016. doi:10.1152/ajpheart.00690.2015.|||Isorni MA, Casanova A, Piquet J, Bellamy V, Pignon C, Puymirat E, Menasche P. Comparative analysis of methods to induce myocardial infarction in a closed-chest rabbit model. BioMed Res Int 2015: 893051, 2015. doi:10.1155/2015/893051.|||Iyer RP, de Castro Brás LE, Cannon PL, Ma Y, DeLeon-Pennell KY, Jung M, Flynn ER, Henry JB, Bratton DR, White JA, Fulton LK, Grady AW, Lindsey ML. Defining the sham environment for post-myocardial infarction studies in mice. Am J Physiol Heart Circ Physiol 311: H822–H836, 2016. doi:10.1152/ajpheart.00067.2016.|||Iyer RP, de Castro Brás LE, Patterson NL, Bhowmick M, Flynn ER, Asher M, Cannon PL, Deleon-Pennell KY, Fields GB, Lindsey ML. Early matrix metalloproteinase-9 inhibition post-myocardial infarction worsens cardiac dysfunction by delaying inflammation resolution. J Mol Cell Cardiol 100: 109–117, 2016. doi:10.1016/j.yjmcc.2016.10.005.|||Iyer RP, Jung M, Lindsey ML. MMP-9 signaling in the left ventricle following myocardial infarction. Am J Physiol Heart Circ Physiol 311: H190–H198, 2016. doi:10.1152/ajpheart.00243.2016.|||Iyer RP, Patterson NL, Zouein FA, Ma Y, Dive V, de Castro Brás LE, Lindsey ML. Early matrix metalloproteinase-12 inhibition worsens post-myocardial infarction cardiac dysfunction by delaying inflammation resolution. Int J Cardiol 185: 198–208, 2015. doi:10.1016/j.ijcard.2015.03.054.|||Jennings RB, Murry CE, Steenbergen C Jr, Reimer KA. Development of cell injury in sustained acute ischemia. Circulation 82, Suppl: II2–II12, 1990.|||Jennings RB, Reimer KA. Lethal myocardial ischemic injury. Am J Pathol 102: 241–255, 1981.|||Jennings RB, Schaper J, Hill ML, Steenbergen C Jr, Reimer KA. Effect of reperfusion late in the phase of reversible ischemic injury. Changes in cell volume, electrolytes, metabolites, and ultrastructure. Circ Res 56: 262–278, 1985. doi:10.1161/01.RES.56.2.262.|||Jennings RB, Sommers HM, Smyth GA, Flack HA, Linn H. Myocardial necrosis induced by temporary occlusion of a coronary artery in the dog. Arch Pathol 70: 68–78, 1960.|||Jensen JA, Kosek JC, Hunt TK, Goodson WH 3rd, Miller DC. Cardiac cryolesions as an experimental model of myocardial wound healing. Ann Surg 206: 798–803, 1987. doi:10.1097/00000658-198712000-00019.|||Jian Z, Chen YJ, Shimkunas R, Jian Y, Jaradeh M, Chavez K, Chiamvimonvat N, Tardiff JC, Izu LT, Ross RS, Chen-Izu Y. In vivo cannulation methods for cardiomyocytes isolation from heart disease models. PLoS One 11: e0160605, 2016. doi:10.1371/journal.pone.0160605.|||Jones SP. I’ll have the rigor, but hold the mortis. Circ Res 120: 1852–1854, 2017. doi:10.1161/CIRCRESAHA.117.311114.|||Jones SP, Tang XL, Guo Y, Steenbergen C, Lefer DJ, Kukreja RC, Kong M, Li Q, Bhushan S, Zhu X, Du J, Nong Y, Stowers HL, Kondo K, Hunt GN, Goodchild TT, Orr A, Chang CC, Ockaili R, Salloum FN, Bolli R. The NHLBI-sponsored Consortium for preclinicAl assESsment of cARdioprotective therapies (CAESAR): a new paradigm for rigorous, accurate, and reproducible evaluation of putative infarct-sparing interventions in mice, rabbits, and pigs. Circ Res 116: 572–586, 2015. doi:10.1161/CIRCRESAHA.116.305462.|||Jorge E, Amorós-Figueras G, García-Sánchez T, Bragós R, Rosell-Ferrer J, Cinca J. Early detection of acute transmural myocardial ischemia by the phasic systolic-diastolic changes of local tissue electrical impedance. Am J Physiol Heart Circ Physiol 310: H436–H443, 2016. doi:10.1152/ajpheart.00754.2015.|||Jung M, Ma Y, Iyer RP, DeLeon-Pennell KY, Yabluchanskiy A, Garrett MR, Lindsey ML. IL-10 improves cardiac remodeling after myocardial infarction by stimulating M2 macrophage polarization and fibroblast activation. Basic Res Cardiol 112: 33, 2017. doi:10.1007/s00395-017-0622-5.|||Kang PM, Haunstetter A, Aoki H, Usheva A, Izumo S. Morphological and molecular characterization of adult cardiomyocyte apoptosis during hypoxia and reoxygenation. Circ Res 87: 118–125, 2000. doi:10.1161/01.RES.87.2.118.|||Khemtong C, Carpenter NR, Lumata LL, Merritt ME, Moreno KX, Kovacs Z, Malloy CR, Sherry AD. Hyperpolarized 13C NMR detects rapid drug-induced changes in cardiac metabolism. Magn Reson Med 74: 312–319, 2015. doi:10.1002/mrm.25419.|||Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 8: e1000412, 2010. doi:10.1371/journal.pbio.1000412.|||Kim SJ, Peppas A, Hong SK, Yang G, Huang Y, Diaz G, Sadoshima J, Vatner DE, Vatner SF. Persistent stunning induces myocardial hibernation and protection: flow/function and metabolic mechanisms. Circ Res 92: 1233–1239, 2003. doi:10.1161/01.RES.0000076892.18394.B6.|||Kingery JR, Hamid T, Lewis RK, Ismahil MA, Bansal SS, Rokosh G, Townes TM, Ildstad ST, Jones SP, Prabhu SD. Leukocyte iNOS is required for inflammation and pathological remodeling in ischemic heart failure. Basic Res Cardiol 112: 19, 2017. doi:10.1007/s00395-017-0609-2.|||Klein GJ, Harrison L, Ideker RF, Smith WM, Kasell J, Wallace AG, Gallagher JJ. Reaction of the myocardium to cryosurgery: electrophysiology and arrhythmogenic potential. Circulation 59: 364–372, 1979. doi:10.1161/01.CIR.59.2.364.|||Klein HH, Schaper J, Puschmann S, Nienaber C, Kreuzer H, Schaper W. Loss of canine myocardial nicotinamide adenine dinucleotides determines the transition from reversible to irreversible ischemic damage of myocardial cells. Basic Res Cardiol 76: 612–621, 1981. doi:10.1007/BF01908051.|||Kleinbongard P, Böse D, Baars T, Möhlenkamp S, Konorza T, Schöner S, Elter-Schulz M, Eggebrecht H, Degen H, Haude M, Levkau B, Schulz R, Erbel R, Heusch G. Vasoconstrictor potential of coronary aspirate from patients undergoing stenting of saphenous vein aortocoronary bypass grafts and its pharmacological attenuation. Circ Res 108: 344–352, 2011. doi:10.1161/CIRCRESAHA.110.235713.|||Kleinbongard P, Skyschally A, Gent S, Pesch M, Heusch G. STAT3 as a common signal of ischemic conditioning: a lesson on “rigor and reproducibility” in preclinical studies on cardioprotection. Basic Res Cardiol 113: 3, 2018. doi:10.1007/s00395-017-0660-z.|||Kleinbongard P, Skyschally A, Heusch G. Cardioprotection by remote ischemic conditioning and its signal transduction. Pflugers Arch 469: 159–181, 2017. doi:10.1007/s00424-016-1922-6.|||Kloner RA. Current state of clinical translation of cardioprotective agents for acute myocardial infarction. Circ Res 113: 451–463, 2013. doi:10.1161/CIRCRESAHA.112.300627.|||Kloner RA. No-reflow phenomenon: maintaining vascular integrity. J Cardiovasc Pharmacol Ther 16: 244–250, 2011. doi:10.1177/1074248411405990.|||Kloner RA, Ellis SG, Lange R, Braunwald E. Studies of experimental coronary artery reperfusion. Effects on infarct size, myocardial function, biochemistry, ultrastructure and microvascular damage. Circulation 68: I8–I15, 1983.|||Kloner RA, Ganote CE, Jennings RB. The “no-reflow” phenomenon after temporary coronary occlusion in the dog. J Clin Invest 54: 1496–1508, 1974. doi:10.1172/JCI107898.|||Kloner RA, Przyklenk K, Whittaker P, Hale S. Preconditioning stimuli and inadvertent preconditioning. J Mol Cell Cardiol 27: 743–747, 1995. doi:10.1016/0022-2828(95)90079-9.|||Klotz L, Norman S, Vieira JM, Masters M, Rohling M, Dubé KN, Bollini S, Matsuzaki F, Carr CA, Riley PR. Cardiac lymphatics are heterogeneous in origin and respond to injury. Nature 522: 62–67, 2015. doi:10.1038/nature14483.|||Kolwicz SC Jr, Purohit S, Tian R. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ Res 113: 603–616, 2013. doi:10.1161/CIRCRESAHA.113.302095.|||Koudstaal S, Jansen of Lorkeers S, Gho JM, van Hout GP, Jansen MS, Grundeman PF, Pasterkamp G, Doevendans PA, Hoefer IE, Chamuleau SA. Myocardial infarction and functional outcome assessment in pigs. J Vis Exp 86: e51269, 2014. doi:10.3791/51269.|||Kowallik P, Schulz R, Guth BD, Schade A, Paffhausen W, Gross R, Heusch G. Measurement of regional myocardial blood flow with multiple colored microspheres. Circulation 83: 974–982, 1991. doi:10.1161/01.CIR.83.3.974.|||Kudej RK, Ghaleh B, Sato N, Shen YT, Bishop SP, Vatner SF. Ineffective perfusion-contraction matching in conscious, chronically instrumented pigs with an extended period of coronary stenosis. Circ Res 82: 1199–1205, 1998. doi:10.1161/01.RES.82.11.1199.|||Lal N, Chiu AP, Wang F, Zhang D, Jia J, Wan A, Vlodavsky I, Hussein B, Rodrigues B. Loss of VEGFB and its signaling in the diabetic heart is associated with increased cell death signaling. Am J Physiol Heart Circ Physiol 312: H1163–H1175, 2017. doi:10.1152/ajpheart.00659.2016.|||Lautamäki R, Schuleri KH, Sasano T, Javadi MS, Youssef A, Merrill J, Nekolla SG, Abraham MR, Lardo AC, Bengel FM. Integration of infarct size, tissue perfusion, and metabolism by hybrid cardiac positron emission tomography/computed tomography: evaluation in a porcine model of myocardial infarction. Circ Cardiovasc Imaging 2: 299–305, 2009. doi:10.1161/CIRCIMAGING.108.846253.|||Lefer DJ, Bolli R. Development of an NIH consortium for preclinicAl AssESsment of CARdioprotective therapies (CAESAR): a paradigm shift in studies of infarct size limitation. J Cardiovasc Pharmacol Ther 16: 332–339, 2011. doi:10.1177/1074248411414155.|||Li B, Li Q, Wang X, Jana KP, Redaelli G, Kajstura J, Anversa P. Coronary constriction impairs cardiac function and induces myocardial damage and ventricular remodeling in mice. Am J Physiol Heart Circ Physiol 273: H2508–H2519, 1997.|||Li RK, Jia ZQ, Weisel RD, Mickle DA, Zhang J, Mohabeer MK, Rao V, Ivanov J. Cardiomyocyte transplantation improves heart function. Ann Thorac Surg 62: 654–660, discussion 660–651, 1996.|||Li S, Zhong S, Zeng K, Luo Y, Zhang F, Sun X, Chen L. Blockade of NF-kappaB by pyrrolidine dithiocarbamate attenuates myocardial inflammatory response and ventricular dysfunction following coronary microembolization induced by homologous microthrombi in rats. Basic Res Cardiol 105: 139–150, 2010. doi:10.1007/s00395-009-0067-6.|||Liao R, Podesser BK, Lim CC. The continuing evolution of the Langendorff and ejecting murine heart: new advances in cardiac phenotyping. Am J Physiol Heart Circ Physiol 303: H156–H167, 2012. doi:10.1152/ajpheart.00333.2012.|||Lim H, Fallavollita JA, Hard R, Kerr CW, Canty JM Jr. Profound apoptosis-mediated regional myocyte loss and compensatory hypertrophy in pigs with hibernating myocardium. Circulation 100: 2380–2386, 1999. doi:10.1161/01.CIR.100.23.2380.|||Lindsey ML, Iyer RP, Jung M, DeLeon-Pennell KY, Ma Y. Matrix metalloproteinases as input and output signals for post-myocardial infarction remodeling. J Mol Cell Cardiol 91: 134–140, 2016. doi:10.1016/j.yjmcc.2015.12.018.|||Lindsey ML, Iyer RP, Zamilpa R, Yabluchanskiy A, DeLeon-Pennell KY, Hall ME, Kaplan A, Zouein FA, Bratton D, Flynn ER, Cannon PL, Tian Y, Jin YF, Lange RA, Tokmina-Roszyk D, Fields GB, de Castro Brás LE. A novel collagen matricryptin reduces left ventricular dilation post-myocardial infarction by promoting scar formation and angiogenesis. J Am Coll Cardiol 66: 1364–1374, 2015. doi:10.1016/j.jacc.2015.07.035.|||Lindsey ML, Kassiri Z, Virag JA, de Castro Brás LE, Scherrer-Crosbie M. Guidelines for measuring cardiac physiology in mice. Am J Physiol Heart Circ Physiol. doi:10.1152/ajpheart.00339.2017.|||Liu J, Wang P, Douglas SL, Tate JM, Sham S, Lloyd SG. Impact of high-fat, low-carbohydrate diet on myocardial substrate oxidation, insulin sensitivity, and cardiac function after ischemia-reperfusion. Am J Physiol Heart Circ Physiol 311: H1–H10, 2016. doi:10.1152/ajpheart.00809.2015.|||Liu SQ, Ma XL, Qin G, Liu Q, Li YC, Wu YH. Trans-system mechanisms against ischemic myocardial injury. Compr Physiol 5: 167–192, 2015. doi:10.1002/cphy.c140026.|||Liu SQ, Tefft BJ, Roberts DT, Zhang LQ, Ren Y, Li YC, Huang Y, Zhang D, Phillips HR, Wu YH. Cardioprotective proteins upregulated in the liver in response to experimental myocardial ischemia. Am J Physiol Heart Circ Physiol 303: H1446–H1458, 2012. doi:10.1152/ajpheart.00362.2012.|||Long X, Boluyt MO, Hipolito ML, Lundberg MS, Zheng JS, O’Neill L, Cirielli C, Lakatta EG, Crow MT. p53 and the hypoxia-induced apoptosis of cultured neonatal rat cardiac myocytes. J Clin Invest 99: 2635–2643, 1997. doi:10.1172/JCI119452.|||Lopaschuk GD, Jaswal JS. Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation. J Cardiovasc Pharmacol 56: 130–140, 2010. doi:10.1097/FJC.0b013e3181e74a14.|||Lopez EF, Kabarowski JH, Ingle KA, Kain V, Barnes S, Crossman DK, Lindsey ML, Halade GV. Obesity superimposed on aging magnifies inflammation and delays the resolving response after myocardial infarction. Am J Physiol Heart Circ Physiol 308: H269–H280, 2015. doi:10.1152/ajpheart.00604.2014.|||Luo M, Guan X, Luczak ED, Lang D, Kutschke W, Gao Z, Yang J, Glynn P, Sossalla S, Swaminathan PD, Weiss RM, Yang B, Rokita AG, Maier LS, Efimov IR, Hund TJ, Anderson ME. Diabetes increases mortality after myocardial infarction by oxidizing CaMKII. J Clin Invest 123: 1262–1274, 2013. doi:10.1172/JCI65268.|||Ma N, Ladilov Y, Moebius JM, Ong L, Piechaczek C, Dávid A, Kaminski A, Choi YH, Li W, Egger D, Stamm C, Steinhoff G. Intramyocardial delivery of human CD133+ cells in a SCID mouse cryoinjury model: Bone marrow vs. cord blood-derived cells. Cardiovasc Res 71: 158–169, 2006. doi:10.1016/j.cardiores.2006.03.020.|||Ma Y, Iyer RP, Jung M, Czubryt MP, Lindsey ML. Cardiac fibroblast activation post-myocardial infarction: current knowledge gaps. Trends Pharmacol Sci 38: 448–458, 2017. doi:10.1016/j.tips.2017.03.001.|||Ma Y, Yabluchanskiy A, Iyer RP, Cannon PL, Flynn ER, Jung M, Henry J, Cates CA, Deleon-Pennell KY, Lindsey ML. Temporal neutrophil polarization following myocardial infarction. Cardiovasc Res 110: 51–61, 2016. doi:10.1093/cvr/cvw024.|||Maddaford TG, Hurtado C, Sobrattee S, Czubryt MP, Pierce GN. A model of low-flow ischemia and reperfusion in single, beating adult cardiomyocytes. Am J Physiol 277: H788–H798, 1999.|||Mahmoud AI, Porrello ER, Kimura W, Olson EN, Sadek HA. Surgical models for cardiac regeneration in neonatal mice. Nat Protoc 9: 305–311, 2014. doi:10.1038/nprot.2014.021.|||Martin C, Schulz R, Post H, Boengler K, Kelm M, Kleinbongard P, Gres P, Skyschally A, Konietzka I, Heusch G. Microdialysis-based analysis of interstitial NO in situ: NO synthase-independent NO formation during myocardial ischemia. Cardiovasc Res 74: 46–55, 2007. doi:10.1016/j.cardiores.2006.12.020.|||Martin C, Schulz R, Rose J, Heusch G. Inorganic phosphate content and free energy change of ATP hydrolysis in regional short-term hibernating myocardium. Cardiovasc Res 39: 318–326, 1998. doi:10.1016/S0008-6363(98)00086-8.|||Masoud WG, Ussher JR, Wang W, Jaswal JS, Wagg CS, Dyck JR, Lygate CA, Neubauer S, Clanachan AS, Lopaschuk GD. Failing mouse hearts utilize energy inefficiently and benefit from improved coupling of glycolysis and glucose oxidation. Cardiovasc Res 101: 30–38, 2014. doi:10.1093/cvr/cvt216.|||Matsuzaki M, Gallagher KP, Kemper WS, White F, Ross J Jr. Sustained regional dysfunction produced by prolonged coronary stenosis: gradual recovery after reperfusion. Circulation 68: 170–182, 1983. doi:10.1161/01.CIR.68.1.170.|||Matsuzaki M, Gallagher KP, Patritti J, Tajimi T, Kemper WS, White FC, Ross J Jr. Effects of a calcium-entry blocker (diltiazem) on regional myocardial flow and function during exercise in conscious dogs. Circulation 69: 801–814, 1984. doi:10.1161/01.CIR.69.4.801.|||Matsuzaki M, Guth B, Tajimi T, Kemper WS, Ross J Jr. Effect of the combination of diltiazem and atenolol on exercise-induced regional myocardial ischemia in conscious dogs. Circulation 72: 233–243, 1985. doi:10.1161/01.CIR.72.1.233.|||Matsuzaki M, Patritti J, Tajimi T, Miller M, Kemper WS, Ross J Jr. Effects of β-blockade on regional myocardial flow and function during exercise. Am J Physiol Heart Circ Physiol 247: H52–H60, 1984.|||Maxwell MP, Hearse DJ, Yellon DM. Species variation in the coronary collateral circulation during regional myocardial ischaemia: a critical determinant of the rate of evolution and extent of myocardial infarction. Cardiovasc Res 21: 737–746, 1987. doi:10.1093/cvr/21.10.737.|||Mayorga M, Kiedrowski M, Shamhart P, Forudi F, Weber K, Chilian WM, Penn MS, Dong F. Early upregulation of myocardial CXCR4 expression is critical for dimethyloxalylglycine-induced cardiac improvement in acute myocardial infarction. Am J Physiol Heart Circ Physiol 310: H20–H28, 2016. doi:10.1152/ajpheart.00449.2015.|||McCall FC, Telukuntla KS, Karantalis V, Suncion VY, Heldman AW, Mushtaq M, Williams AR, Hare JM. Myocardial infarction and intramyocardial injection models in swine. Nat Protoc 7: 1479–1496, 2012. doi:10.1038/nprot.2012.075.|||Meschiari CA, Jung M, Iyer RP, Yabluchanskiy A, Toba H, Garrett MR, Lindsey ML. Macrophage overexpression of matrix metalloproteinase-9 in aged mice improves diastolic physiology and cardiac wound healing after myocardial infarction. Am J Physiol Heart Circ Physiol 314: H224−H235, 2018. doi:10.1152/ajpheart.00453.2017.|||Meyer C, Scherschel K. Ventricular tachycardia in ischemic heart disease: the sympathetic heart and its scars. Am J Physiol Heart Circ Physiol 312: H549–H551, 2017. doi:10.1152/ajpheart.00061.2017.|||Michael LH, Ballantyne CM, Zachariah JP, Gould KE, Pocius JS, Taffet GE, Hartley CJ, Pham TT, Daniel SL, Funk E, Entman ML. Myocardial infarction and remodeling in mice: effect of reperfusion. Am J Physiol Heart Circ Physiol 277: H660–H668, 1999.|||Michael LH, Entman ML, Hartley CJ, Youker KA, Zhu J, Hall SR, Hawkins HK, Berens K, Ballantyne CM. Myocardial ischemia and reperfusion: a murine model. Am J Physiol Heart Circ Physiol 269: H2147–H2154, 1995.|||Morrissey PJ, Murphy KR, Daley JM, Schofield L, Turan NN, Arunachalam K, Abbott JD, Koren G. A novel method of standardized myocardial infarction in aged rabbits. Am J Physiol Heart Circ Physiol 312: H959–H967, 2017. doi:10.1152/ajpheart.00582.2016.|||Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74: 1124–1136, 1986. doi:10.1161/01.CIR.74.5.1124.|||Nakanishi K, Vinten-Johansen J, Lefer DJ, Zhao Z, Fowler WC 3rd, McGee DS, Johnston WE. Intracoronary l-arginine during reperfusion improves endothelial function and reduces infarct size. Am J Physiol Heart Circ Physiol 263: H1650–H1658, 1992.|||Neely JR, Liebermeister H, Battersby EJ, Morgan HE. Effect of pressure development on oxygen consumption by isolated rat heart. Am J Physiol Heart Circ Physiol 212: 804–814, 1967.|||Negoro S, Kunisada K, Fujio Y, Funamoto M, Darville MI, Eizirik DL, Osugi T, Izumi M, Oshima Y, Nakaoka Y, Hirota H, Kishimoto T, Yamauchi-Takihara K. Activation of signal transducer and activator of transcription 3 protects cardiomyocytes from hypoxia/reoxygenation-induced oxidative stress through the upregulation of manganese superoxide dismutase. Circulation 104: 979–981, 2001. doi:10.1161/hc3401.095947.|||Nossuli TO, Lakshminarayanan V, Baumgarten G, Taffet GE, Ballantyne CM, Michael LH, Entman ML. A chronic mouse model of myocardial ischemia-reperfusion: essential in cytokine studies. Am J Physiol Heart Circ Physiol 278: H1049–H1055, 2000. doi:10.1152/ajpheart.2000.278.4.H1049.|||Nuzzo R. Scientific method: statistical errors. Nature 506: 150–152, 2014. doi:10.1038/506150a.|||O’Konski MS, White FC, Longhurst J, Roth D, Bloor CM. Ameroid constriction of the proximal left circumflex coronary artery in swine. A model of limited coronary collateral circulation. Am J Cardiovasc Pathol 1: 69–77, 1987.|||O’Quinn MP, Palatinus JA, Harris BS, Hewett KW, Gourdie RG. A peptide mimetic of the connexin43 carboxyl terminus reduces gap junction remodeling and induced arrhythmia following ventricular injury. Circ Res 108: 704–715, 2011. doi:10.1161/CIRCRESAHA.110.235747.|||Oduk Y, Zhu W, Kannappan R, Zhao M, Borovjagin AV, Oparil S, Zhang J. VEGF nanoparticles repair the heart after myocardial infarction. Am J Physiol Heart Circ Physiol 314: H278−H284, 2018. doi:10.1152/ajpheart.00471.2017.|||Omiya S, Omori Y, Taneike M, Protti A, Yamaguchi O, Akira S, Shah AM, Nishida K, Otsu K. Toll-like receptor 9 prevents cardiac rupture after myocardial infarction in mice independently of inflammation. Am J Physiol Heart Circ Physiol 311: H1485–H1497, 2016. doi:10.1152/ajpheart.00481.2016.|||Ongstad EL, O’Quinn MP, Ghatnekar GS, Yost MJ, Gourdie RG. A connexin43 mimetic peptide promotes regenerative healing and improves mechanical properties in skin and heart. Adv Wound Care (New Rochelle) 2: 55–62, 2013. doi:10.1089/wound.2011.0341.|||Ostádal B, Ostádalová I, Kolár F, Charvátová Z, Netuka I. Ontogenetic development of cardiac tolerance to oxygen deprivation–possible mechanisms. Physiol Res 58, Suppl 2: S1–S12, 2009.|||Ostadalova I, Ostadal B, Kolár F, Parratt JR, Wilson S. Tolerance to ischaemia and ischaemic preconditioning in neonatal rat heart. J Mol Cell Cardiol 30: 857–865, 1998. doi:10.1006/jmcc.1998.0653.|||Page BJ, Banas MD, Suzuki G, Weil BR, Young RF, Fallavollita JA, Palka BA, Canty JM Jr. Revascularization of chronic hibernating myocardium stimulates myocyte proliferation and partially reverses chronic adaptations to ischemia. J Am Coll Cardiol 65: 684–697, 2015. doi:10.1016/j.jacc.2014.11.040.|||Panizzi P, Swirski FK, Figueiredo JL, Waterman P, Sosnovik DE, Aikawa E, Libby P, Pittet M, Weissleder R, Nahrendorf M. Impaired infarct healing in atherosclerotic mice with Ly-6C(hi) monocytosis. J Am Coll Cardiol 55: 1629–1638, 2010. doi:10.1016/j.jacc.2009.08.089.|||Pantely GA, Malone SA, Rhen WS, Anselone CG, Arai A, Bristow J, Bristow JD. Regeneration of myocardial phosphocreatine in pigs despite continued moderate ischemia. Circ Res 67: 1481–1493, 1990. doi:10.1161/01.RES.67.6.1481.|||Park KM, Teoh JP, Wang Y, Broskova Z, Bayoumi AS, Tang Y, Su H, Weintraub NL, Kim IM. Carvedilol-responsive microRNAs, miR-199a-3p and -214 protect cardiomyocytes from simulated ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 311: H371–H383, 2016. doi:10.1152/ajpheart.00807.2015.|||Parrish DC, Francis Stuart SD, Olivas A, Wang L, Nykjaer A, Ripplinger CM, Habecker BA. Transient denervation of viable myocardium after myocardial infarction does not alter arrhythmia susceptibility. Am J Physiol Heart Circ Physiol 314: H415−H423, 2018. doi:10.1152/ajpheart.00300.2017.|||Pizzuto MF, Suzuki G, Banas MD, Heavey B, Fallavollita JA, Canty JM Jr. Dissociation of hemodynamic and electrocardiographic indexes of myocardial ischemia in pigs with hibernating myocardium and sudden cardiac death. Am J Physiol Heart Circ Physiol 304: H1697–H1707, 2013. doi:10.1152/ajpheart.00166.2013.|||Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, Sadek HA. Transient regenerative potential of the neonatal mouse heart. Science 331: 1078–1080, 2011. doi:10.1126/science.1200708.|||Portal L, Martin V, Assaly R, d’Anglemont de Tassigny A, Michineau S, Berdeaux A, Ghaleh B, Pons S. A model of hypoxia-reoxygenation on isolated adult mouse cardiomyocytes: characterization, comparison with ischemia-reperfusion, and application to the cardioprotective effect of regular treadmill exercise. J Cardiovasc Pharmacol Ther 18: 367–375, 2013. doi:10.1177/1074248412475158.|||Pound KM, Sorokina N, Ballal K, Berkich DA, Fasano M, Lanoue KF, Taegtmeyer H, O’Donnell JM, Lewandowski ED. Substrate-enzyme competition attenuates upregulated anaplerotic flux through malic enzyme in hypertrophied rat heart and restores triacylglyceride content: attenuating upregulated anaplerosis in hypertrophy. Circ Res 104: 805–812, 2009. doi:10.1161/CIRCRESAHA.108.189951.|||Przyklenk K. Ischaemic conditioning: pitfalls on the path to clinical translation. Br J Pharmacol 172: 1961–1973, 2015. doi:10.1111/bph.13064.|||Przyklenk K. Reduction of myocardial infarct size with ischemic “conditioning”: physiologic and technical considerations. Anesth Analg 117: 891–901, 2013. doi:10.1213/ANE.0b013e318294fc63.|||Przyklenk K, Bauer B, Ovize M, Kloner RA, Whittaker P. Regional ischemic “preconditioning” protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation 87: 893–899, 1993. doi:10.1161/01.CIR.87.3.893.|||Przyklenk K, Maynard M, Greiner DL, Whittaker P. Cardioprotection with postconditioning: loss of efficacy in murine models of type-2 and type-1 diabetes. Antioxid Redox Signal 14: 781–790, 2011. doi:10.1089/ars.2010.3343.|||Ramirez FD, Motazedian P, Jung RG, Di Santo P, MacDonald ZD, Moreland R, Simard T, Clancy AA, Russo JJ, Welch VA, Wells GA, Hibbert B. Methodological rigor in preclinical cardiovascular studies: targets to enhance reproducibility and promote research translation. Circ Res 120: 1916–1926, 2017. doi:10.1161/CIRCRESAHA.117.310628.|||Reimer KA, Jennings RB, Tatum AH. Pathobiology of acute myocardial ischemia: metabolic, functional and ultrastructural studies. Am J Cardiol 52: 72A–81A, 1983. doi:10.1016/0002-9149(83)90180-7.|||Reimer KA, Lowe JE, Rasmussen MM, Jennings RB. The wavefront phenomenon of ischemic cell death. 1. Myocardial infarct size vs duration of coronary occlusion in dogs. Circulation 56: 786–794, 1977. doi:10.1161/01.CIR.56.5.786.|||Rezkalla SH, Kloner RA. Coronary no-reflow phenomenon: from the experimental laboratory to the cardiac catheterization laboratory. Catheter Cardiovasc Interv 72: 950–957, 2008. doi:10.1002/ccd.21715.|||Ripplinger CM, Noujaim SF, Linz D. The nervous heart. Prog Biophys Mol Biol 120: 199–209, 2016. doi:10.1016/j.pbiomolbio.2015.12.015.|||Riva E, Hearse DJ. Age-dependent changes in myocardial susceptibility to ischemic injury. Cardioscience 4: 85–92, 1993.|||Robertson C, Tran DD, George SC. Concise review: maturation phases of human pluripotent stem cell-derived cardiomyocytes. Stem Cells 31: 829–837, 2013. doi:10.1002/stem.1331.|||Robey TE, Murry CE. Absence of regeneration in the MRL/MpJ mouse heart following infarction or cryoinjury. Cardiovasc Pathol 17: 6–13, 2008. doi:10.1016/j.carpath.2007.01.005.|||Roell W, Fan Y, Xia Y, Stoecker E, Sasse P, Kolossov E, Bloch W, Metzner H, Schmitz C, Addicks K, Hescheler J, Welz A, Fleischmann BK. Cellular cardiomyoplasty in a transgenic mouse model. Transplantation 73: 462–465, 2002. doi:10.1097/00007890-200202150-00022.|||Ross J., Jr Myocardial perfusion-contraction matching. Implications for coronary heart disease and hibernation. Circulation 83: 1076–1083, 1991. doi:10.1161/01.CIR.83.3.1076.|||Roth DM, Maruoka Y, Rogers J, White FC, Longhurst JC, Bloor CM. Development of coronary collateral circulation in left circumflex ameroid-occluded swine myocardium. Am J Physiol 253: H1279–H1288, 1987.|||Sabbah HN, Stein PD, Kono T, Gheorghiade M, Levine TB, Jafri S, Hawkins ET, Goldstein S. A canine model of chronic heart failure produced by multiple sequential coronary microembolizations. Am J Physiol Heart Circ Physiol 260: H1379–H1384, 1991.|||Saeed M, Watzinger N, Krombach GA, Lund GK, Wendland MF, Chujo M, Higgins CB. Left ventricular remodeling after infarction: sequential MR imaging with oral nicorandil therapy in rat model. Radiology 224: 830–837, 2002. doi:10.1148/radiol.2243011372.|||Sakamoto H, Parish LM, Hamamoto H, Ryan LP, Eperjesi TJ, Plappert TJ, Jackson BM, St John-Sutton MG, Gorman JH 3rd, Gorman RC. Effect of reperfusion on left ventricular regional remodeling strains after myocardial infarction. Ann Thorac Surg 84: 1528–1536, 2007. doi:10.1016/j.athoracsur.2007.05.060.|||Sánchez-González J, Fernandez-Jiménez R, Nothnagel ND, López-Martín G, Fuster V, Ibañez B. Optimization of dual-saturation single bolus acquisition for quantitative cardiac perfusion and myocardial blood flow maps. J Cardiovasc Magn Reson 17: 21, 2015. doi:10