Quick Links

Viral myocarditis: 1917-2020: From the Influenza A to the COVID-19 pandemics.

Authors: Shereif H Rezkalla|||Robert A Kloner

Journal: Trends in cardiovascular medicine

Publication Type: Journal Article

Date: 2021

DOI: PMC7965406

ID: 33383171

Affiliations:

Affiliations

    Department of Cardiology & Cardiovascular Research, Marshfield Clinic Health System, 1000 North Oak Avenue, Marshfield, WI 54449 USA; Adjunct Professor, University of Wisconsin, School of Medicine USA. Electronic address: rezkalla.shereif@marshfieldclinic.org.|||Chief Science Officer, Scientific Director of Cardiovascular Research Institute, Huntington Medical Research Institutes, Pasadena, CA USA; Professor of Medicine (Clinical Scholar), Cardiovascular Division, Dept. of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA USA. Electronic address: robert.kloner@hmri.org.

Abstract

Myocarditis is common during viral infection with cases described as early as the influenza pandemic of 1917, and the current COVID-19 pandemic is no exception. The hallmark is elevated troponin, which occurs in 36% of COVID patients, with electrocardiogram, echocardiogram, and cardiac magnetic resonance being valuable tools to assist in diagnosis. Cardiac inflammation may occur secondary to direct cardiac invasion with the virus, or to intense cytokine storm, often encountered during the course of the disease. Angiotensin converting enzyme inhibitors, angiotensin receptor blockers, and judicious use of beta-blockers are beneficial in management of myocarditis. Corticosteroids may be avoided during the very early phase of viral replication, but can be of clear benefit in hospitalized, critically ill patients. Statins are beneficial to shorten the course of the disease and may decrease mortality.


Reference List

    Oxford JS, Gill D. A possible European origin of the Spanish influenza and the first attempts to reduce mortality to combat superinfecting bacteria: an opinion from a virologist and a military historian. Hum Vaccin Immunother. 2019;15(9):2009–2012. doi: 10.1080/21645515.2019.1607711. PMID: 31121112.|||Morens DM, Taubenberger JK. Influenza cataclysm, 1918. N Engl J Med. 2018;379(24):2285–2287. doi: 10.1056/NEJMp1814447. PMID: 30575465.|||Killingray D, Phillips H, editors. The spanish influenza pandemic of 1918-1919: new perspectives. Routledge; 2003. ISBN-10: 041523445X.|||Kalil AC, Thomas PG. Influenza virus-related critical illness: pathophysiology and epidemiology. Crit Care. 2019;23(1):258. doi: 10.1186/s13054-019-2539-x. PMID: 31324202.|||Valdés O, Acosta B, Piñón A, Savón C, Goyenechea A, Gonzalez G, et al. First report on fatal myocarditis associated with adenovirus infection in Cuba. J Med Virol. 2008;80(10):1756–1761. doi: 10.1002/jmv.21274. PMID: 18712847.|||Rezkalla SH, Kloner RA. Influenza-related viral myocarditis. WMJ. 2010;109(4):209–213. PMID: 20945722.|||Ukimura A, Izumi T, Matsumori A. Clinical research committee on myocarditis associated with 2009 influenza A (H1N1) pandemic in Japan organized by Japanese circulation Society. A national survey on myocarditis associated with the 2009 influenza A (H1N1) pandemic in Japan. Circ J. 2010;74(10):2193–2199. doi: 10.1253/circj.cj-10-0452. PMID: 20697177.|||Sellers SA, Hagan RS, Hayden FG, Fischer WA. The hidden burden of influenza: a review of the extra-pulmonary complications of influenza infection. Influenza Other Respir Viruses. 2017;11(5):372–393. doi: 10.1111/irv.12470. PMID: 28745014.|||Hsiao JF, Koshino Y, Bonnichsen CR, Yu Y, Miller FA, Jr, Pellikka PA, et al. Speckle tracking echocardiography in acute myocarditis. Int J Cardiovasc Imaging. 2013;29(2):275–284. doi: 10.1007/s10554-012-0085-6. PMID: 22736428.|||Li G, Fontaine GH, Saguner AM. Endomyocardial biopsy in patients with acute myocarditis, idiopathic dilated cardiomyopathy, and arrhythmogenic right ventricular dysplasia. Int J Clin Exp Pathol. 2018;11(9):4270–4275. PMID: 31949823.|||Friedrich MG, Marcotte F. Cardiac magnetic resonance assessment of myocarditis. Circ Cardiovasc Imaging. 2013;6(5):833–839. doi: 10.1161/CIRCIMAGING.113.000416. PMID: 24046380.|||Khatib R, Chason JL, Silberberg BK, Lerner AM. Age-dependent pathogenicity of group B coxsackieviruses in Swiss-Webster mice: infectivity for myocardium and pancreas. J Infect Dis. 1980;141(3):394–403. doi: 10.1093/infdis/141.3.394. PMID: 6245156.|||Rezkalla S, Khatib G, Khatib R. Coxsackievirus B3 murine myocarditis: deleterious effects of nonsteroidal anti-inflammatory agents. J Lab Clin Med. 1986;107(4):393–395. PMID: 2420912.|||Costanzo-Nordin MR, Reap EA, O'Connell JB, Robinson JA, Scanlon PJ. A nonsteroid anti-inflammatory drug exacerbates Coxsackie B3 murine myocarditis. J Am Coll Cardiol. 1985;6(5):1078–1082. doi: 10.1016/s0735-1097(85)80312-0. PMID: 2995470.|||Rezkalla S, Kloner RA, Khatib G, Khatib R. Beneficial effects of captopril in acute coxsackievirus B3 murine myocarditis. Circulation. 1990;81(3):1039–1046. doi: 10.1161/01.cir.81.3.1039. PMID: 2155071.|||Matsumori A, Kawai C. An experimental model for congestive heart failure after encephalomyocarditis virus myocarditis in mice. Circulation. 1982;65(6):1230–1235. doi: 10.1161/01.cir.65.6.1230. PMID: 6280889.|||Matsumori A. Lessons learned from experimental myocarditis. Herz. 2012;37(8):817–821. doi: 10.1007/s00059-012-3692-z. PMID: 23092967.|||Bahk TJ, Daniels MD, Leon JS, Wang K, Engman DM. Comparison of angiotensin converting enzyme inhibition and angiotensin II receptor blockade for the prevention of experimental autoimmune myocarditis. Int J Cardiol. 2008;125(1):85–93. doi: 10.1016/j.ijcard.2007.04.062. PMID: 17588693.|||Lagan J, Schmitt M, Miller CA. Clinical applications of multi-parametric CMR in myocarditis and systemic inflammatory diseases. Int J Cardiovasc Imaging. 2018;34(1):35–54. doi: 10.1007/s10554-017-1063-9. Epub 2017 Jan 27. PMID: 28130644.|||Knight DS, Kotecha T, Razvi Y, Chacko L, Brown JT, Jeetley PS, et al. COVID-19: myocardial injury in survivors. Circulation. 2020;142(11):1120–1122. doi: 10.1161/CIRCULATIONAHA.120.049252. PMID: 32673505.|||Lu C, Qin F, Yan Y, Liu T, Li J, Chen H. Immunosuppressive treatment for myocarditis: a meta-analysis of randomized controlled trials. J Cardiovasc Med (Hagerstown) 2016;17(8):631–637. doi: 10.2459/JCM.0000000000000134. PMID: 25003999.|||Frustaci A, Chimenti C. Immunosuppressive therapy in myocarditis. Circ J. 2015;79(1):4–7. doi: 10.1253/circj.CJ-14-1192. PMID: 25452202.|||Mason JW, O'Connell JB, Herskowitz A, Rose NR, McManus BM, Billingham Meet. A clinical trial of immunosuppressive therapy for myocarditis. The myocarditis treatment trial investigators. N Engl J Med. 1995;333(5):269–275. doi: 10.1056/NEJM199508033330501. PMID: 7596370.|||Caldeira D, Lopes LR, Vaz-Carneiro A, Costa J. Cochrane corner: corticosteroids for viral myocarditis. Rev Port Cardiol. 2015;34(1):65–67. doi: 10.1016/j.repc.2014.08.006. PMID: 25528972.|||Li Y, Yu Y, Chen S, Liao Y, Du J. Corticosteroids and intravenous immunoglobulin in pediatric myocarditis: a meta-analysis. Front Pediatr. 2019;7:342. doi: 10.3389/fped.2019.00342. PMID: 31475124.|||Olinde KD, O'Connell JB. Inflammatory heart disease: pathogenesis, clinical manifestations, and treatment of myocarditis. Ann Rev Med. 1994;45:481–490. doi: 10.1146/annurev.med.45.1.481. PMID: 8198397.|||Frustaci A, Russo MA, Chimenti C. Randomized study on the efficacy of immunosuppressive therapy in patients with virus-negative inflammatory cardiomyopathy: the TIMIC study. Eur Heart J. 2009;30(16):1995–2002. doi: 10.1093/eurheartj/ehp249. PMID: 19556262.|||Deftereos S, Giannopoulos G, Angelidis C, Alexopoulos N, Filippatos G, Papoutsidakis N, et al. Anti-inflammatory treatment with colchicine in acute myocardial infarction: a pilot study. Circulation. 2015;132(15):1395–1403. doi: 10.1161/CIRCULATIONAHA.115.017611. PMID: 26265659.|||Imazio M, Andreis A, Brucato A, Adler Y, De Ferrari GM. Colchicine for acute and chronic coronary syndromes. Heart. 2020;106(20):1555–1560. doi: 10.1136/heartjnl-2020-317108. PMID: 32611559.|||Kalimuddin S, Sessions OM, Hou Y, Ooi EE, Sim D, Cumaraswamy S, et al. Successful clearance of human parainfluenza virus type 2 viraemia with intravenous ribavirin and immunoglobulin in a patient with acute myocarditis. J Clin Virol. 2013;56(1):37–40. doi: 10.1016/j.jcv.2012.10.005. PMID: 23137789.|||Mirić M, Misković A, Vasiljević JD, Keserović N, Pesić M. Interferon and thymic hormones in the therapy of human myocarditis and idiopathic dilated cardiomyopathy. Eur Heart J. 1995;16(Suppl O):150–152. doi: 10.1093/eurheartj/16.suppl_o.150. PMID: 8682086.|||Robinson J, Hartling L, Vandermeer B, Klassen TP. Intravenous immunoglobulin for presumed viral myocarditis in children and adults. Cochrane Database Syst Rev. 2015;(5) doi: 10.1002/14651858.CD004370.pub3. Update in: Cochrane Database Syst Rev. 2020 Aug 19;8:CD004370. PMID: 25992494.|||Tersalvi G, Vicenzi M, Calabretta D, Biasco L, Pedrazzini G, Winterton D. Elevated troponin in patients with coronavirus disease 2019: possible mechanisms. J Card Fail. 2020;26(6):470–475. doi: 10.1016/j.cardfail.2020.04.009. PMID: 32315733.|||Alhogbani T. Acute myocarditis associated with novel Middle east respiratory syndrome coronavirus. Ann Saudi Med. 2016;36(1):78–80. doi: 10.5144/0256-4947.2016.78. PMID: 26922692.|||Chan KW, Wong VT, Tang SCW. COVID-19: an update on the epidemiological, clinical, preventive and therapeutic evidence and guidelines of integrative chinese-western medicine for the management of 2019 novel coronavirus disease. Am J Chin Med. 2020;48(3):737–762. doi: 10.1142/S0192415X20500378. PMID: 32164424.|||Kang Y, Chen T, Mui D, Ferrari V, Jagasia D, Scherrer-Crosbie M, et al. Cardiovascular manifestations and treatment considerations in COVID-19. Heart. 2020;106(15):1132–1141. doi: 10.1136/heartjnl-2020-317056. PMID: 32354800.|||Zhou R. Does SARS-CoV-2 cause viral myocarditis in COVID-19 patients? Eur Heart J. 2020;41(22):2123. doi: 10.1093/eurheartj/ehaa392. PMID: 32363381.|||Deng Q, Hu B, Zhang Y, Wang H, Zhou X, Hu W, et al. Suspected myocardial injury in patients with COVID-19: evidence from front-line clinical observation in Wuhan, China. Int J Cardiol. 2020;311:116–121. doi: 10.1016/j.ijcard.2020.03.087. PMID: 32291207.|||Anupama BK, Chaudhuri D. A review of acute myocardial injury in coronavirus disease 2019. Cureus. 2020;12(6):e8426. doi: 10.7759/cureus.8426. PMID: 32642342.|||Rizzo P, Vieceli Dalla Sega F, Fortini F, Marracino L, Rapezzi C, Ferrari R. COVID-19 in the heart and the lungs: could we "Notch" the inflammatory storm? Basic Res Cardiol. 2020;115(3):31. doi: 10.1007/s00395-020-0791-5. PMID: 32274570.|||Peretto G, Sala S, Caforio ALP. Acute myocardial injury, MINOCA, or myocarditis? Improving characterization of coronavirus-associated myocardial involvement. Eur Heart J. 2020;41(22):2124–2125. doi: 10.1093/eurheartj/ehaa396. PMID: 32363406.|||Babapoor-Farrokhran S, Gill D, Walker J, Rasekhi RT, Bozorgnia B, Amanullah A. Myocardial injury and COVID-19: possible mechanisms. Life Sci. 2020;253 doi: 10.1016/j.lfs.2020.117723. PMID: 32360126.|||Wang J, Saguner AM, An J, Ning Y, Yan Y, Li G. Dysfunctional coagulation in COVID-19: from cell to bedside. Adv Ther. 2020;37(7):3033–3039. doi: 10.1007/s12325-020-01399-7. PMID: 32504450.|||Schiavone M, Gobbi C, Biondi-Zoccai G, D'Ascenzo F, Palazzuoli A, Gasperetti A, et al. Acute coronary syndromes and covid-19: exploring the uncertainties. J Clin Med. 2020;9(6):1683. doi: 10.3390/jcm9061683. PMID: 32498230.|||Marchetti M. COVID-19-driven endothelial damage: complement, HIF-1, and ABL2 are potential pathways of damage and targets for cure. Ann Hematol. 2020;99(8):1701–1707. doi: 10.1007/s00277-020-04138-8. PMID: 32583086.|||Fox SE, Li G, Akmatbekov A, Harbert JL, Lameira FS, Brown JQ, et al. Unexpected features of cardiac pathology in COVID-19 infection. Circulation. 2020;142(11):1123–1125. doi: 10.1161/CIRCULATIONAHA.120.049465. PMID: 32689809.|||Froldi G, Dorigo P. Endothelial dysfunction in coronavirus disease 2019 (COVID-19): gender and age influences. Med Hypotheses. 2020;144 doi: 10.1016/j.mehy.2020.110015. PMID: 32592919.|||Pons S, Fodil S, Azoulay E, Zafrani L. The vascular endothelium: the cornerstone of organ dysfunction in severe SARS-CoV-2 infection. Crit Care. 2020;24(1):353. doi: 10.1186/s13054-020-03062-7. PMID: 32546188.|||Ozdemir B, Yazici A. Could the decrease in the endothelial nitric oxide (NO) production and NO bioavailability be the crucial cause of COVID-19 related deaths? Med Hypotheses. 2020;144 doi: 10.1016/j.mehy.2020.109970. PMID: 32534341.|||Wichmann D, Sperhake JP, Lütgehetmann M, Steurer S, Edler C, Heinemann A, et al. Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study. Ann Intern Med. 2020;173(4):268–277. doi: 10.7326/M20-2003. PMID: 32374815.|||Tavazzi G, Pellegrini C, Maurelli M, Belliato M, Sciutti F, Bottazzi A, et al. Myocardial localization of coronavirus in COVID-19 cardiogenic shock. Eur J Heart Fail. 2020;22(5):911–915. doi: 10.1002/ejhf.1828. PMID: 32275347.|||Coperchini F, Chiovato L, Croce L, Magri F, Rotondi M. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev. 2020;53:25–32. doi: 10.1016/j.cytogfr.2020.05.003. PMID: 32446778.|||Fox SE, Akmatbekov A, Harbert JL, Li G, Quincy Brown J, Vander Heide RS. Pulmonary and cardiac pathology in African American patients with COVID-19: an autopsy series from New Orleans. Lancet Respir Med. 2020;8(7):681–686. doi: 10.1016/S2213-2600(20)30243-5. PMID: 32473124.|||Schurink B, Roos E, Radonic T, Barbe E, Bouman CSC, de Boer HH, et al. Viral presence and immunopathology in patients with lethal COVID-19: a prospective autopsy cohort study. Lancet Microbe. 2020 doi: 10.1016/S2666-5247(20)30144-0. Epub ahead of print. PMID: 33015653.|||Fox SE, Lameira FS, Rinker EB. Cardiac endotheliitis and multisystem inflammatory syndrome after COVID-19. Ann Intern Med. 2020:L20–0882. doi: 10.7326/L20-0882. Epub ahead of print. PMID: 32726150.|||Brooks M. First evidence of SARS-CoV-2 in heart cells. Medscape Medical News. 2020 Sept 27.|||Lippi G, Lavie CJ, Sanchis-Gomar F. Cardiac troponin I in patients with coronavirus disease 2019 (COVID-19): evidence from a meta-analysis. Prog Cardiovasc Dis. 2020;63(3):390–391. doi: 10.1016/j.pcad.2020.03.001. PMID: 32169400.|||Lala A, Johnson KW, Januzzi JL, Russak AJ, Paranjpe I, Richter F, et al. Prevalence and impact of myocardial injury in patients hospitalized with COVID-19 infection. J Am Coll Cardiol. 2020;76(5):533–546. doi: 10.1016/j.jacc.2020.06.007. PMID: 32517963.|||Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F, et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020;5(7):802–810. doi: 10.1001/jamacardio.2020.0950. PMID: 32211816.|||Lang JP, Wang X, Moura FA, Siddiqi HK, Morrow DA, Bohula EA. A current review of COVID-19 for the cardiovascular specialist. Am Heart J. 2020;226:29–44. doi: 10.1016/j.ahj.2020.04.025. PMID: 32497913.|||Bonnet M, Craighero F, Harbaoui B. Acute myocarditis with ventricular noncompaction in a COVID-19 patient. JACC Heart Fail. 2020;8(7):599–600. doi: 10.1016/j.jchf.2020.05.004. PMID: 32616174.|||Zeng JH, Liu YX, Yuan J, Wang FX, Wu WB, Li JX, et al. First case of COVID-19 complicated with fulminant myocarditis: a case report and insights. Infection. 2020;48(5):773–777. doi: 10.1007/s15010-020-01424-5. PMID: 32277408.|||Chen C, Zhou Y, Wang DW. SARS-CoV-2: a potential novel etiology of fulminant myocarditis. Herz. 2020;45(3):230–232. doi: 10.1007/s00059-020-04909-z. PMID: 32140732.|||Kim IC, Kim JY, Kim HA, Han S. COVID-19-related myocarditis in a 21-year-old female patient. Eur Heart J. 2020;41(19):1859. doi: 10.1093/eurheartj/ehaa288. PMID: 32282027.|||Paul JF, Charles P, Richaud C, Caussin C, Diakov C. Myocarditis revealing COVID-19 infection in a young patient. Eur Heart J Cardiovasc Imaging. 2020;21(7):776. doi: 10.1093/ehjci/jeaa107. PMID: 32338706.|||Gnecchi M, Moretti F, Bassi EM, Leonardi S, Totaro R, Perotti L, et al. Myocarditis in a 16-year-old boy positive for SARS-CoV-2. Lancet. 2020 Jun;395(10242):e116. doi: 10.1016/S0140-6736(20)31307-6. PMID: 32593338.|||Sala S, Peretto G, Gramegna M, Palmisano A, Villatore A, Vignale D, et al. Acute myocarditis presenting as a reverse Tako-Tsubo syndrome in a patient with SARS-CoV-2 respiratory infection. Eur Heart J. 2020;41(19):1861–1862. doi: 10.1093/eurheartj/ehaa286. PMID: 32267502.|||Kochi AN, Tagliari AP, Forleo GB, Fassini GM, Tondo C. Cardiac and arrhythmic complications in patients with COVID-19. J Cardiovasc Electrophysiol. 2020;31(5):1003–1008. doi: 10.1111/jce.14479. PMID: 32270559.|||Oberweis ML, Codreanu A, Boehm W, Olivier D, Pierron C, Tsobo C, et al. Pediatric life-threatening coronavirus disease 2019 with myocarditis. Pediatr Infect Dis J. 2020;39(7):e147–e149. doi: 10.1097/INF.0000000000002744. PMID: 32427645.|||Cameli M, Pastore MC, Soliman Aboumarie H, Mandoli GE, D'Ascenzi F, Cameli P, et al. Usefulness of echocardiography to detect cardiac involvement in COVID-19 patients. Echocardiography. 2020 10.1111/echo.14779. doi: 10.1111/echo.14779. Epub ahead of print. PMID: 32654210.|||Szekely Y, Lichter Y, Taieb P, Banai A, Hochstadt A, Merdler I, et al. Spectrum of cardiac manifestations in COVID-19: a systematic echocardiographic study. Circulation. 2020;142(4):342–353. doi: 10.1161/CIRCULATIONAHA.120.047971. PMID: 32469253.|||Lavie CJ, Sanchis-Gomar F, Lippi G. Cardiac injury in COVID-19-echoing prognostication. J Am Coll Cardiol. 2020;76(18):2056–2059. doi: 10.1016/j.jacc.2020.08.068. PMID: 33121711.|||Kociol RD, Cooper LT, Fang JC, Moslehi JJ, Pang PS, Sabe MA, et al. Recognition and initial management of fulminant myocarditis: a scientific statement from the American heart association. Circulation. 2020;141(6):e69–e92. doi: 10.1161/CIR.0000000000000745. PMID: 31902242.|||Huang L, Zhao P, Tang D, Zhu T, Han R, Zhan C, et al. Cardiac involvement in patients recovered from COVID-2019 identified using magnetic resonance imaging. JACC Cardiovasc Imaging. 2020 doi: 10.1016/j.jcmg.2020.05.004. S1936-878X(20)30403-4PMID: 32763118.|||Alger HM, Rutan C, Williams JH, et al. American heart association COVID-19 CVD registry powered by get with the guidelines. Circ Cardiovasc Qual Outcomes. 2020;13(8) doi: 10.1161/CIRCOUTCOMES.120.006967. PMID: 32546000.|||Garot J, Amour J, Pezel T, Dermoch F, Messadaa K, Felten ML, et al. SARS-CoV-2 fulminant myocarditis. JACC Case Rep. 2020;2(9):1342–1346. doi: 10.1016/j.jaccas.2020.05.060. PMID: 32835276.|||Khalid Y, Dasu N, Dasu K. A case of novel coronavirus (COVID-19)-induced viral myocarditis mimicking a Takotsubo cardiomyopathy. HeartRhythm Case Rep. 2020;6(8):473–476. doi: 10.1016/j.hrcr.2020.05.020. PMID: 32817822.|||Ho JS, Sia CH, Chan MY, Lin W, Wong RC. Coronavirus-induced myocarditis: A meta-summary of cases. Heart Lung. 2020;49(6):681–685. doi: 10.1016/j.hrtlng.2020.08.013. PMID: 32861884.|||Bastard P, Rosen LB, Zhang Q, Michailidis E, Hoffman HH, Zhang Y, et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020;370(6515):eabd4585. doi: 10.1126/science.abd4585. PMID: 32972996.|||Sawalha K, Abozenah M, Kadado AJ, et al. Systematic review of COVID-19 related myocarditis: insights on management and outcome [published online ahead of print, 2020 Aug 18] Cardiovasc Revasc Med. 2020;S1553-8389(20):30497–30498. doi: 10.1016/j.carrev.2020.08.028. PMID: 32847728.|||Akhmerov A, Marbán E. COVID-19 and the heart. Circ Res. 2020;126(10):1443–1455. doi: 10.1161/CIRCRESAHA.120.317055. PMID: 32252591.|||Amat-Santos IJ, Santos-Martinez S, López-Otero D, Nombela-Franco L, Gutiérrez-Ibanes E, Del Valle R, et al. Ramipril in high-risk patients with COVID-19. J Am Coll Cardiol. 2020;76(3):268–276. doi: 10.1016/j.jacc.2020.05.040. PMID: 32470515.|||Vaduganathan M, Vardeny O, Michel T, McMurray JJV, Pfeffer MA, Solomon SD. Renin-Angiotensin-Aldosterone system inhibitors in patients with Covid-19. N Engl J Med. 2020;382(17):1653–1659. doi: 10.1056/NEJMsr2005760. PMID: 32227760.|||Bugiardini R, Yoon J, Kedev S, Stankovic G, Vasiljevic Z, Miličić D, et al. Prior beta-blocker therapy for hypertension and sex-based differences in heart failure among patients with incident coronary heart disease. Hypertension. 2020;76(3):819–826. doi: 10.1161/HYPERTENSIONAHA.120.15323. PMID: 32654558.|||Siripanthong B, Nazarian S, Muser D, Deo R, Santangeli P, Khanji MY, et al. Recognizing COVID-19-related myocarditis: the possible pathophysiology and proposed guideline for diagnosis and management. Heart Rhythm. 2020;17(9):1463–1471. doi: 10.1016/j.hrthm.2020.05.001. PMID: 32387246.|||Mazzanti A, Briani M, Kukavica D, Bulian F, Marelli S, Trancuccio A, et al. Association of hydroxychloroquine with QTc interval in patients with COVID-19. Circulation. 2020 doi: 10.1161/CIRCULATIONAHA.120.048476. Epub ahead of print. PMID: 32501756.|||Shirazi S, Mami S, Mohtadi N, Ghaysouri A, Tavan H, Nazari A, et al. Sudden cardiac death in COVID-19 patients, a report of three cases. Future Cardiol. 2020 3 doi: 10.2217/fca-2020-0082. 10.2217/fca-2020-0082Epub ahead of print. PMID: 32615807.|||Elavarasi A, Prasad M, Seth T, Sahoo RK, Madan K, Nischal N, et al. Chloroquine and hydroxychloroquine for the treatment of COVID-19: a systematic review and meta-analysis. J Gen Intern Med. 2020:1–7. doi: 10.1007/s11606-020-06146-w. Epub ahead of print. PMID: 32885373.|||World Health Organization (WHO). Scientific Brief; 2020. The use of non-steroidal anti-inflammatory drugs (NSAIDs) in patients with COVID-19.|||Mehra MR, Ruschitzka F. COVID-19 illness and heart failure: a missing link? JACC Heart Fail. 2020;8(6):512–514. doi: 10.1016/j.jchf.2020.03.004. PMID: 32360242.|||WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group. Sterne JAC, Murthy S, Diaz JV, Slutsky AS, Villar J, et al. Association between administration of systemic corticosteroids and mortality among critically ill patients with COVID-19: a meta-analysis. JAMA. 2020 2 doi: 10.1001/jama.2020.17023. Epub ahead of print. PMID: 32876694.|||Daniels LB, Sitapati AM, Zhang J, Zou J, Bui QM, Ren J, et al. Relation of statin use prior to admission to severity and recovery among COVID-19 inpatients. Am J Cardiol. 2020;S0002-9149(20) doi: 10.1016/j.amjcard.2020.09.012. 30947-4PMID: 32946859.|||Kow CS, Hasan SS. Use of statins in patients with COVID-19. QJM. 2020;113(8):604–605. doi: 10.1093/qjmed/hcaa172. PMID: 32415971.|||Rodriguez-Nava G, Trelles-Garcia DP, Yanez-Bello MA, Chung CW, Trelles-Garcia VP, Friedman HJ. Atorvastatin associated with decreased hazard for death in COVID-19 patients admitted to an ICU: a retrospective cohort study. Crit Care. 2020;24(1):429. doi: 10.1186/s13054-020-03154-4. PMID: 32664990.|||Gupta A, Madhavan MV, Poterucha TJ, DeFilippis EM, Hennessey JA, Redfors B, et al. Association between antecedent statin use and decreased mortality in hospitalized patients with COVID-19. Res Sq [Preprint] 2020 doi: 10.21203/rs.3.rs-56210/v1. rs.3.rs-56210PMID: 32818209.|||Bangi S, Barve R, Qamar A. Protective effects of CVD and DM medications in SARS-CoV-2 infection. SN Compr Clin Med. 2020:1–3. doi: 10.1007/s42399-020-00452-4. Epub ahead of print. PMID: 32838195.|||Liu L, Wang P, Nair MS, Yu J, Rapp M, Wang Q, et al. Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike. Nature. 2020;584(7821):450–456. doi: 10.1038/s41586-020-2571-7. PMID: 32698192.|||Nidorf SM, Fiolet ATL, Mosterd A, et al. Colchicine in Patients with Chronic Coronary Disease. N Engl J Med. 2020;383(19):1838–1847. doi: 10.1056/NEJMoa2021372. 29.