Task switching reveals abnormal brain-heart electrophysiological signatures in cognitively healthy individuals with abnormal CSF
Authors:
Journal: International journal of psychophysiology : official journal of the International Organization of Psychophysiology
Publication Type: Journal Article
Date: 2021
DOI: NIHMS1771754
ID: 34666107
Abstract
Electroencephalographic (EEG) alpha oscillations have been related to heart rate variability (HRV) and both change in Alzheimer's disease (AD). We explored if task switching reveals altered alpha power and HRV in cognitively healthy individuals with AD pathology in cerebrospinal fluid (CSF) and whether HRV improves the AD pathology classification by alpha power alone. We compared low and high alpha event-related desynchronization (ERD) and HRV parameters during task switch testing between two groups of cognitively healthy participants classified by CSF amyloid/tau ratio: normal (CH-NAT, n = 19) or pathological (CH-PAT, n = 27). For the task switching paradigm, participants were required to name the color or word for each colored word stimulus, with two sequential stimuli per trial. Trials include color (cC) or word (wW) repeats with low load repeating, and word (cW) or color switch (wC) for high load switching. HRV was assessed for RR interval, standard deviation of RR-intervals (SDNN) and root mean squared successive differences (RMSSD) in time domain, and low frequency (LF), high frequency (HF), and LF/HF ratio in frequency domain. Results showed that CH-PATs compared to CH-NATs presented: 1) increased (less negative) low alpha ERD during low load repeat trials and lower word switch cost (low alpha: p = 0.008, Cohen's d = -0.83, 95% confidence interval -1.44 to -0.22, and high alpha: p = 0.019, Cohen's d = -0.73, 95% confidence interval -1.34 to -0.13); 2) decreasing HRV from rest to task, suggesting hyper-activated sympatho-vagal responses. 3) CH-PATs classification by alpha ERD was improved by supplementing HRV signatures, supporting a potentially compromised brain-heart interoceptive regulation in CH-PATs. Further experiments are needed to validate these findings for clinical significance.
Reference List
- Amieva H, Lafont S, Rouch-Leroyer I, Rainville C, Dartigues JF, Orgogozo JM, Fabrigoule C, 2004a. Evidencing inhibitory deficits in Alzheimer’s disease through interference effects and shifting disabilities in the Stroop test. Arch. Clin. Neuropsychol 19, 791–803.|||Amieva H, Phillips LH, Della Sala S, Henry JD, 2004b. Inhibitory functioning in Alzheimer’s disease. Brain 127, 949–964.|||Arakaki X, Shoga M, Li L, Zouridakis G, Tran T, Fonteh AN, Dawlaty J, Goldweber R, Pogoda JM, Harrington MG, 2018. Alpha desynchronization/synchronization during working memory testing is compromised in acute mild traumatic brain injury (mTBI). PLoS One 13, e0188101.|||Arakaki X, Lee R, King KS, Fonteh AN, Harrington MG, 2019. Alpha desynchronization during simple working memory unmasks pathological aging in cognitively healthy individuals. PLoS One 14, e0208517.|||Arakaki X, Hung S, Wei K, Tran T, Arechavala R, Kleinman M, Kloner R, Fonteh A, King K, Harrington M, 2020. A study of alpha desynchronization, heart rate, and MRI during stroop testing unmasks pre-symptomatic Alzheimer’s disease. Alzheimers Dement 16.|||Arnau S, Loffler C, Rummel J, Hagemann D, Wascher E, Schubert AL, 2020. Inter-trial alpha power indicates mind wandering. Psychophysiology 57, e13581.|||Babiloni C, Del Percio C, Boccardi M, Lizio R, Lopez S, Carducci F, Marzano N, Soricelli A, Ferri R, Triggiani AI, Prestia A, Salinari S, Rasser PE, Basar E, Fama F, Nobili F, Yener G, Emek-Savas DD, Gesualdo L, Mundi C, Thompson PM, Rossini PM, Frisoni GB, 2015. Occipital sources of resting-state alpha rhythms are related to local gray matter density in subjects with amnesic mild cognitive impairment and Alzheimer’s disease. Neurobiol. Aging 36, 556–570.|||Babiloni C, Arakaki X, Azami H, Bennys K, Blinowska K, Bonanni L, Bujan A, Carrillo MC, Cichocki A, de Frutos-Lucas J, Del Percio C, Dubois B, Edelmayer R, Egan G, Epelbaum S, Escudero J, Evans A, Farina F, Fargo K, Fernandez A, Ferri R, Frisoni G, Hampel H, Harrington MG, Jelic V, Jeong J, Jiang Y, Kaminski M, Kavcic V, Kilborn K, Kumar S, Lam A, Lim L, Lizio R, Lopez D, Lopez S, Lucey B, Maestu F, McGeown WJ, McKeith I, Moretti DV, Nobili F, Noce G, Olichney J, Onofrj M, Osorio R, Parra-Rodriguez M, Rajji T, Ritter P, Soricelli A, Stocchi F, Tarnanas I, Taylor JP, Teipel S, Tucci F, Valdes-Sosa M, Valdes-Sosa P, Weiergraber M, Yener G, Guntekin B, 2021. Measures of resting state EEG rhythms for clinical trials in Alzheimer’s disease: recommendations of an expert panel. Alzheimers Dement 17 (9), 1528–1553. 10.1002/alz.12311.|||Barnett JH, Lewis L, Blackwell AD, Taylor M, 2014. Early intervention in Alzheimer’s disease: a health economic study of the effects of diagnostic timing. BMC Neurol 14, 101.|||Basar E, 2005. Memory as the “whole brain work”: a large-scale model based on “oscillations in super-synergy”. Int. J. Psychophysiol 58, 199–226.|||Basar E, 2008. Oscillations in “brain-body-mind”—a holistic view including the autonomous system. Brain Res 1235, 2–11.|||Bishop CM, 2006. Pattern Recognition and Machine Learning Springer, New York.|||Brown TE, Beightol LA, Koh J, Eckberg DL, 1993. Important influence of respiration on human R-R interval power spectra is largely ignored. J. Appl. Physiol. (1985) 75, 2310–2317.|||Castle M, Comoli E, Loewy AD, 2005. Autonomic brainstem nuclei are linked to the hippocampus. Neuroscience 134, 657–669.|||Chen WG, Schloesser D, Arensdorf AM, Simmons JM, Cui C, Valentino R, Gnadt JW, Nielsen L, Hillaire-Clarke CS, Spruance V, Horowitz TS, Vallejo YF, Langevin HM, 2021. The emerging science of interoception: sensing, integrating, interpreting, and regulating signals within the self. Trends Neurosci 44, 3–16.|||Choi A, Shin H, 2018. Quantitative analysis of the effect of an ectopic beat on the heart rate variability in the resting condition. Front. Physiol 9, 922.|||Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 93, 1996, 1043–1065.|||Cohen MX, 2014. Analyzing Neural Time Series Data: Theory and Practice|||Cohen MX, Donner TH, 2013. Midfrontal conflict-related theta-band power reflects neural oscillations that predict behavior. J. Neurophysiol. 110, 2752–2763.|||Compton RJ, Gearinger D, Wild H, 2019. The wandering mind oscillates: EEG alpha power is enhanced during moments of mind-wandering. Cogn. Affect. Behav. Neurosci 19, 1184–1191.|||de Bruijn RF, Ikram MA, 2014. Cardiovascular risk factors and future risk of Alzheimer’s disease. BMC Med 12, 130.|||Delorme A, Makeig S, 2004. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21.|||Diamond A, 2013. Executive functions. Annu. Rev. Psychol 64, 135–168.|||Donchin E, Coles M, 1988. Is the P300 component a manifestation of context updating. Behav. Brain Sci 11, 71.|||Dziembowska I, Izdebski P, Rasmus A, Brudny J, Grzelczak M, Cysewski P, 2016. Effects of heart rate variability biofeedback on EEG alpha asymmetry and anxiety symptoms in male athletes: a pilot study. Appl. Psychophysiol. Biofeedback 41, 141–150.|||Edlinger G, Guger C, 2005. Correlation changes of EEG and ECG after fast cable CAR ascents. Conf. Proc. IEEE Eng. Med. Biol. Soc 5, 5540–5543.|||Eikelboom WS, Singleton E, van den Berg E, Coesmans M, Mattace Raso F, van Bruchem RL, Goudzwaard JA, de Jong FJ, Koopmanschap M, den Heijer T, Driesen JJM, Vroegindeweij L, Thomeer EC, Hoogers SE, Dijkstra AA, Zuidema SU, Pijnenburg YAL, Scheltens P, van Swieten JC, Ossenkoppele R, Papma JM, 2019. Early recognition and treatment of neuropsychiatric symptoms to improve quality of life in early Alzheimer’s disease: protocol of the BEAT-IT study. Alzheimers Res. Ther 11, 48.|||Fagan AM, Roe CM, Xiong C, Mintun MA, Morris JC, Holtzman DM, 2007. Cerebrospinal fluid tau/beta-amyloid(42) ratio as a prediction of cognitive decline in nondemented older adults. Arch. Neurol 64, 343–349.|||Fagan AM, Shaw LM, Xiong C, Vanderstichele H, Mintun MA, Trojanowski JQ, Coart E, Morris JC, Holtzman DM, 2011. Comparison of analytical platforms for cerebrospinal fluid measures of beta-amyloid 1–42, total tau, and p-tau181 for identifying Alzheimer disease amyloid plaque pathology. Arch. Neurol 68, 1137–1144.|||Forte G, De Pascalis V, Favieri F, Casagrande M, 2019a. Effects of blood pressure on cognitive performance: a systematic review. J. Clin. Med 9.|||Forte G, Favieri F, Casagrande M, 2019b. Heart rate variability and cognitive function: a systematic review. Front. Neurosci 13, 710.|||Frewen J, Finucane C, Savva GM, Boyle G, Coen RF, Kenny RA, 2013. Cognitive function is associated with impaired heart rate variability in ageing adults: the Irish longitudinal study on ageing wave one results. Clin. Auton. Res 23, 313–323.|||Gladwin TE, de Jong R, 2005. Bursts of occipital theta and alpha amplitude preceding alternation and repetition trials in a task-switching experiment. Biol. Psychol. 68, 309–329.|||Goodfellow I, Bengio Y, Courville A, 2016. Deep Learning The MIT Press, Cambridge, Massachusetts.|||Grabner RH, Fink A, Stipacek A, Neuper C, Neubauer AC, 2004. Intelligence and working memory systems: evidence of neural efficiency in alpha band ERD. Brain Res. Cogn. Brain Res 20, 212–225.|||Harrington MG, Chiang J, Pogoda JM, Gomez M, Thomas K, Marion SD, Miller KJ, Siddarth P, Yi X, Zhou F, Lee S, Arakaki X, Cowan RP, Tran T, Charleswell C, Ross BD, Fonteh AN, 2013. Executive function changes before memory in preclinical Alzheimer’s pathology: a prospective, cross-sectional, case control study. PLoS One 8, e79378.|||Harrington MG, Edminster SP, Buennagel DP, Chiang JP, Sweeney MD, CHui HC, V, Z.B., Fonteh AN, 2019. Four-year longitudinal study of cognitively healthy individuals: CSF amyloid/tau levels and nanoparticle membranes identify high risk for Alzheimer’s disease. Alzheimers Dement 15.|||Hayano J, Yuda E, 2019. Pitfalls of assessment of autonomic function by heart rate variability. J. Physiol. Anthropol 38, 3.|||Hsieh S, Allport A, 1994. Shifting attention in a rapid visual search paradigm. Percept. Mot. Skills 79, 315–335.|||Hu L, Peng W, Valentini E, Zhang Z, Hu Y, 2013. Functional features of nociceptive-induced suppression of alpha band electroencephalographic oscillations. J. Pain 14, 89–99.|||Hutchison KA, Balota DA, Duchek JM, 2010. The utility of Stroop task switching as a marker for early-stage Alzheimer’s disease. Psychol. Aging 25, 545–559.|||Issac TG, Chandra SR, Gupta N, Rukmani MR, Deepika S, Sathyaprabha TN, 2017. Autonomic dysfunction: a comparative study of patients with Alzheimer’s and frontotemporal dementia - a pilot study. J. Neurosci. Rural Pract 8, 84–88.|||Jack CR Jr., Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, Holtzman DM, Jagust W, Jessen F, Karlawish J, Liu E, Molinuevo JL, Montine T, Phelps C, Rankin KP, Rowe CC, Scheltens P, Siemers E, Snyder HM, Sperling R, Contributors, 2018. NIA-AA Research Framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement 14, 535–562.|||Jandackova VK, Scholes S, Britton A, Steptoe A, 2016. Are changes in heart rate variability in middle-aged and older people normative or caused by pathological conditions? Findings from a large population-based longitudinal cohort study. J. Am. Heart Assoc 5.|||Jersild AT, 1927. Mental Set and Shift (New York: ).|||Kennelly SP, Lawlor BA, Kenny RA, 2009. Blood pressure and dementia - a comprehensive review. Ther. Adv. Neurol. Disord 2, 241–260.|||Kim DH, Lipsitz LA, Ferrucci L, Varadhan R, Guralnik JM, Carlson MC, Fleisher LA, Fried LP, Chaves PH, 2006. Association between reduced heart rate variability and cognitive impairment in older disabled women in the community: Women’s Health and Aging Study I. J. Am. Geriatr. Soc 54, 1751–1757.|||Klimesch W, 1996. Memory processes, brain oscillations and EEG synchronization. Int. J. Psychophysiol 24, 61–100.|||Klimesch W, 1997. EEG-alpha rhythms and memory processes. Int. J. Psychophysiol 26, 319–340.|||Klimesch W, 2012. Alpha-band oscillations, attention, and controlled access to stored information. Trends Cogn. Sci 16, 606–617.|||Klimesch W, Doppelmayr M, Pachinger T, Russegger H, 1997. Event-related desynchronization in the alpha band and the processing of semantic information. Brain Res. Cogn. Brain Res 6, 83–94.|||Klimesch W, Sauseng P, Hanslmayr S, 2007. EEG alpha oscillations: the inhibition-timing hypothesis. Brain Res. Rev 53, 63–88.|||Krause CM, Lang AH, Laine M, Kuusisto M, Porn B, 1996. Event-related EEG desynchronization and synchronization during an auditory memory task. Electroencephalogr. Clin. Neurophysiol 98, 319–326.|||Laborde S, Mosley E, Mertgen A, 2018. Vagal tank theory: the three Rs of cardiac vagal control functioning - resting, reactivity, and recovery. Front. Neurosci 12, 458.|||Leuzy A, Heurling K, Ashton NJ, Scholl M, Zimmer ER, 2018. In vivo detection of Alzheimer’s disease. Yale J. Biol. Med 91, 291–300.|||Leys D, Henon H, Mackowiak-Cordoliani MA, Pasquier F, 2005. Poststroke dementia. Lancet Neurol 4, 752–759.|||Lin F, Ren P, Wang X, Anthony M, Tadin D, Heffner KL, 2017. Cortical thickness is associated with altered autonomic function in cognitively impaired and non-impaired older adults. J. Physiol. 595, 6969–6978.|||Magosso E, Ricci G, Ursino M, 2019. Modulation of brain alpha rhythm and heart rate variability by attention-related mechanisms. AIMS Neurosci 6, 1–24.|||Mielke MM, Okonkwo OC, Oishi K, Mori S, Tighe S, Miller MI, Ceritoglu C, Brown T, Albert M, Lyketsos CG, 2012. Fornix integrity and hippocampal volume predict memory decline and progression to Alzheimer’s disease. Alzheimers Dement 8, 105–113.|||Monsell S, 2003. Task switching. Trends Cogn. Sci 7, 134–140.|||Nakamura A, Cuesta P, Fernandez A, Arahata Y, Iwata K, Kuratsubo I, Bundo M, Hattori H, Sakurai T, Fukuda K, Washimi Y, Endo H, Takeda A, Diers K, Bajo R, Maestu F, Ito K, Kato T, 2018. Electromagnetic signatures of the preclinical and prodromal stages of Alzheimer’s disease. Brain 141, 1470–1485.|||Nicolini P, Ciulla MM, Malfatto G, Abbate C, Mari D, Rossi PD, Pettenuzzo E, Magrini F, Consonni D, Lombardi F, 2014. Autonomic dysfunction in mild cognitive impairment: evidence from power spectral analysis of heart rate variability in a cross-sectional case-control study. PLoS One 9, e96656.|||Nicolini P, Mari D, Abbate C, Inglese S, Bertagnoli L, Tomasini E, Rossi PD, Lombardi F, 2020. Autonomic function in amnestic and non-amnestic mild cognitive impairment: spectral heart rate variability analysis provides evidence for a brain-heart axis. Sci. Rep 10, 11661.|||Ott A, Breteler MM, de Bruyne MC, van Harskamp F, Grobbee DE, Hofman A, 1997. Atrial fibrillation and dementia in a population-based study. The Rotterdam Study. Stroke 28, 316–321.|||Pagano S, Fait E, Monti A, Brignani D, Mazza V, 2015. Electrophysiological correlates of subitizing in healthy aging. PLoS One 10, e0131063.|||Pettigrew C, Martin RC, 2016. The role of working memory capacity and interference resolution mechanisms in task switching. Q. J. Exp. Psychol. (Hove) 69, 2431–2451.|||Pfurtscheller G, Aranibar A, 1977. Event-related cortical desynchronization detected by power measurements of scalp EEG. Electroencephalogr. Clin. Neurophysiol 42, 817–826.|||Pfurtscheller G, Klimesch W, 1992. Functional topography during a visuoverbal judgment task studied with event-related desynchronization mapping. J. Clin. Neurophysiol 9, 120–131.|||Pfurtscheller G, Lopes da Silva FH, 1999. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol 110, 1842–1857.|||Prinsloo GE, Rauch HG, Karpul D, Derman WE, 2013. The effect of a single session of short duration heart rate variability biofeedback on EEG: a pilot study. Appl. Psychophysiol. Biofeedback 38, 45–56.|||Ritchie C, Smailagic N, Noel-Storr AH, Ukoumunne O, Ladds EC, Martin S, 2017. CSF tau and the CSF tau/ABeta ratio for the diagnosis of Alzheimer’s disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst. Rev 3, CD010803.|||Sauseng P, Klimesch W, Freunberger R, Pecherstorfer T, Hanslmayr S, Doppelmayr M, 2006. Relevance of EEG alpha and theta oscillations during task switching. Exp. Brain Res 170, 295–301.|||Sawilowsky S, 2009. New effect size rules of thumb. J. Mod. Appl. Stat. Methods 8, 8.|||Schneider DW, 2015. Attentional control of response selection in task switching. J. Exp. Psychol. Hum. Percept. Perform 41, 1315–1324.|||Shaffer F, Meehan ZM, 2020. A practical guide to resonance frequency assessment for heart rate variability biofeedback. Front. Neurosci 14, 570400.|||Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, Iwatsubo T, Jack CR Jr., Kaye J, Montine TJ, Park DC, Reiman EM, Rowe CC, Siemers E, Stern Y, Yaffe K, Carrillo MC, Thies B, Morrison-Bogorad M, Wagster MV, Phelps CH, 2011. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292.|||Sullivan MP, Faust ME, 1993. Evidence for identity inhibition during selective attention in old adults. Psychol. Aging 8, 589–598.|||Thayer JF, Lane RD, 2009. Claude Bernard and the heart-brain connection: further elaboration of a model of neurovisceral integration. Neurosci. Biobehav. Rev 33, 81–88.|||Thayer JF, Hansen AL, Saus-Rose E, Johnsen BH, 2009. Heart rate variability, prefrontal neural function, and cognitive performance: the neurovisceral integration perspective on self-regulation, adaptation, and health. Ann. Behav. Med 37, 141–153.|||Vazquez-Marrufo M, Galvao-Carmona A, Benitez Lugo ML, Ruiz-Pena JL, Borges Guerra M, Izquierdo Ayuso G, 2017. Retest reliability of individual alpha ERD topography assessed by human electroencephalography. PLoS One 12, e0187244.|||Vermeer SE, Hollander M, van Dijk EJ, Hofman A, Koudstaal PJ, Breteler MM, Rotterdam Scan S, 2003a. Silent brain infarcts and white matter lesions increase stroke risk in the general population: the Rotterdam Scan Study. Stroke 34, 1126–1129.|||Vermeer SE, Prins ND, den Heijer T, Hofman A, Koudstaal PJ, Breteler MM, 2003b. Silent brain infarcts and the risk of dementia and cognitive decline. N. Engl. J. Med 348, 1215–1222.|||Verstraeten E, Cluydts R, 2002. Attentional switching-related human EEG alpha oscillations. Neuroreport 13, 681–684.|||Watanabe N, Reece J, Polus BI, 2007. Effects of body position on autonomic regulation of cardiovascular function in young, healthy adults. Chiropr. Osteopat 15, 19.|||Wu S, Hitchman G, Tan J, Zhao Y, Tang D, Wang L, Chen A, 2015. The neural dynamic mechanisms of asymmetric switch costs in a combined Stroop-task-switching paradigm. Sci. Rep 5, 10240.|||Wutzl B, Golaszewski SM, Leibnitz K, Langthaler PB, Kunz AB, Leis S, Schwenker K, Thomschewski A, Bergmann J, Trinka E, 2021. Narrative review: quantitative EEG in disorders of consciousness. Brain Sci 11.|||Yeung N, Monsell S, 2003. Switching between tasks of unequal familiarity: the role of stimulus-attribute and response-set selection. J. Exp. Psychol. Hum. Percept. Perform 29, 455–469.|||Zulli R, Nicosia F, Borroni B, Agosti C, Prometti P, Donati P, De Vecchi M, Romanelli G, Grassi V, Padovani A, 2005. QT dispersion and heart rate variability abnormalities in Alzheimer’s disease and in mild cognitive impairment. J. Am. Geriatr. Soc 53, 2135–2139.