Quick Links

Update on Cardioprotective Strategies for STEMI: Focus on Supersaturated Oxygen Delivery.

Authors: Robert A Kloner|||Jeffrey L Creech|||Gregg W Stone|||William W O'Neill|||Daniel Burkhoff|||J Richard Spears

Journal: JACC. Basic to translational science

Publication Type: Journal Article

Date: 2021

DOI: PMC8733677

ID: 35024508

Affiliations:

Affiliations

    Department of Medicine and Division of Cardiovascular Medicine, Keck School of Medicine at University of Southern California, Los Angeles, California, USA.|||ZOLL TherOx, Irvine, California, USA.|||The Zena and Michael A. Wiener Cardiovascular Institute, Department of Medicine, Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.|||Department of Internal Medicine, Division of Cardiology, Henry Ford Hospital System, Detroit, Michigan, USA.|||Cardiovascular Research Foundation, New York, New York, USA.|||Department of Cardiovascular Medicine, Beaumont Systems, Royal Oak, Michigan, USA.

Abstract

Despite the fact that door-to-balloon times have been greatly reduced, the rates of death and the incidence of heart failure in patients with ST-segment elevation myocardial infarction (MI) have plateaued. There is still an unmet need to further reduce MI size in the reperfusion era. Most adjunctive therapies to enhance myocardial salvage have failed, but some have shown promise. Currently, the only adjunctive therapy in a pivotal trial that has demonstrated reductions in infarct size is localized delivery of supersaturated oxygen (SSO) therapy. This review provides background on prior infarct size reduction efforts. The authors describe the preclinical data that shows the effectiveness of SSO in reducing MI size, improving regional myocardial blood flow and cardiac function, and reducing adverse left ventricular remodeling-presumably by reducing patchy areas of residual ischemia within the reperfused risk zone. Potential mechanisms by which SSO is beneficial are described, including the delivery of high levels of dissolved oxygen through plasma to ischemic, but viable, vascular and myocardial cells, thus allowing their survival and function. The authors then describe the SSO clinical trials, demonstrating that in patients with anterior ST-segment elevation MI, SSO therapy safely and effectively reduces infarct size, improves cardiac function, and reduces adverse left ventricular remodeling.


Reference List

    Hausenloy D.J., Botker H.E., Engstrom T., et al. Targeting reperfusion injury in STEMI patients: trials and tribulations. Eur Heart J. 2017;38(13):935–941.|||Kloner R.A., Brown D.A., Csete M., et al. New and revisited approaches to preserve myocardium. Nat Rev Cardiol. 2017;14(11):679–693.|||Maroko P.R., Kjekshus J.K., Sobel B.E., et al. Factors influencing infarct size following experimental coronary artery occlusions. Circulation. 1971;43:67–82.|||Reimer K.A., Lowe J.E., Rasmussen M.M., Jennings R.B. The wavefront phenomenon of ischemic cell death. 1. Myocardial infarct size vs duration of coronary occlusion in dogs. Circulation. 1977;56:786–794.|||Ellis S.G., Henschke C.I., Sandor T., Wynne J., Braunwald E., Kloner R.A. Time course of functional and biochemical recovery of myocardium salvaged by reperfusion. J Am Coll Cardiol. 1983;1:1047–1055.|||Schömig A., Kastrati A., Dirschinger J., et al. Stent versus Thrombolysis for Occluded Coronary Arteries in Patients with Acute Myocardial Infarction Study Investigators. Coronary stenting plus platelet glycoprotein IIb/IIIa blockade compared with tissue plasminogen activator in acute myocardial infarction. N Engl J Med. 2000;343:385–391.|||Gragnano F., Calabro P. Role of dual lipid-lowering therapy in coronary atherosclerosis regression: evidence from recent studies. Atherosclerosis. 2018;269:219–228.|||Docherty K., Campbell R.T., Brooksbank K.J.M., et al. The effect of neprilysin inhibition on left ventricular remodeling in patients with asymptomatic left ventricular systolic dysfunction late after myocardial infarction. Circulation. 2021;144(3):199–209. doi: 10.1161/CIRCULATIONAHA.|||Jenča D., Melenovský V., Stehlik J., et al. Heart failure after myocardial infarction: incidence and predictors. ESC Heart Fail. 2021;8:222–237.|||Krumholz H.M., Normand S.T., Wang Y. Twenty-year trends in outcomes for older adults with acute myocardial infarction in the United States. JAMA Netw Open. 2019;2|||Stone G.W., Selker H.P., Thiele H., et al. Relationship between infarct size and outcomes following primary PCI: patient-level analysis from 10 randomized trials. J Am Coll Cardiol. 2016;67:1674–1683.|||Kloner R.A. No-reflow phenomenon: maintaining vascular integrity. J Cardiovasc Pharmacol Ther. 2011;16:244–250.|||Klug G., Mayr A., Schenk S., et al. Prognostic value at 5 years of microvascular obstruction after acute myocardial infarction assessed by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2012;14:46.|||Gerczuk P.Z., Kloner R.A. An update on cardioprotection: a review of the latest adjunctive therapies to limit myocardial infarction size in clinical trials. J Am Coll Cardiol. 2012;59:969–978.|||Kloner R.A. Current state of clinical translation of cardioprotective agents for acute myocardial infarction. Circ Res. 2013;113:451–463.|||Kloner R.A., Hale S.L., Dai W., Shi J. Cardioprotection: where to from here? Cardiovasc Drugs Ther. 2017;31:53–61.|||Kloner R.A. Does reperfusion injury exist in humans? J Am Coll Cardiol. 1993;21:537–545.|||Yellon D.M., Hausenloy D.J. Myocardial reperfusion injury. N Engl J Med. 2007;357:1121–1135.|||Zahger D., Yano J., Chaux A., Fishbein M.C., Ganz W. Absence of lethal reperfusion injury after 3 hours of reperfusion. A study in a single-canine-heart model of ischemia-reperfusion. Circulation. 1995;91:2989–2994.|||Mahaffey K.W., Puma J.A., Barbagelata N.A., et al. Adenosine as an adjunct to thrombolytic therapy for acute myocardial infarction: results of a multicenter, randomized, placebo-controlled trial: the Acute Myocardial Infarction STudy of ADenosine (AMISTAD) trial. J Am Coll Cardiol. 1999;34:1711–1720.|||Ross A.M., Gibbons R.J., Stone G.W., Kloner R.A., Alexander R.W. A randomized, double-blinded, placebo-controlled multicenter trial of adenosine as an adjunct to reperfusion in the treatment of acute myocardial infarction (AMISTAD-II) J Am Coll Cardiol. 2005;45:1775–1780.|||Kloner R.A., Forman M.B., Gibbons R.J., Ross A.M., Alexander R.W., Stone G.W. Impact of time to therapy and reperfusion modality on the efficacy of adenosine in acute myocardial infarction: the AMISTAD-2 trial. Eur Heart J. 2006;27:2400–2405.|||Duncker D.J., Klassen C.L., Ishibashi Y., Herrlinger S.H., Pavek T.J., Bache R.J. Effect of temperature on myocardial infarction in swine. Am J Physiol. 1996;270:H1189–H1199.|||O'Neill WW. Cooling as an adjunct to primary PCI for myocardial infarction. Paper presented at: Transcatheter Cardiovascular Therapeutics 16th Annual Symposium, September 15-19, 2003; 2003; Washington, DC.|||Noc M., Laanmets P., Neskovic A.N., et al. A multicentre, prospective, randomized controlled trial to assess the safety and effectiveness of cooling as an adjunctive therapy to percutaneous intervention in patients with acute myocardial infarction: the COOL AMI EU Pivotal Trial. Euro-Intervention. 2017;17(6):466–473.|||Kapur N.K., Alkhouli M.A., DeMartini T.J., et al. Unloading the left ventricle before reperfusion in patients with anterior ST-segment-elevation myocardial infarction. Circulation. 2019;139:337–346.|||Primary Unloading and Delayed Reperfusion in ST-Elevation Myocardial Infarction: The STEMI-DTU Trial (DTU-STEMI). Clinical Trials.gov Identifier: NCT03947619. https://clinicaltrials.gov/ct2/show/NCT03947619 Accessed September 3, 2021.|||Egred M., Bagnall A., Spyridopoulos I., et al. Effect of Pressure-controlled intermittent Coronary Sinus Occlusion (PiCSO) on infarct size in anterior STEMI: PiCSO in ACS study. Int J Cardiol Heart Vas. 2020;28:100526.|||Piot C., Croisille P., Staat P., et al. Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N Engl J Med. 2008;359:473–481.|||Staat P., Rioufol G., Piot C., et al. Postconditioning the human heart. Circulation. 2005;112:2143–2148.|||Traverse J.H., Swingen C.M., Henry T.D., et al. NHLBI-sponsored randomized trial of postconditioning during primary percutaneous coronary intervention for ST-elevation myocardial infarction. Circ Res. 2019;124:769–778.|||Cung T.T., Morel O., Cayla G., et al. Cyclosporine before PCI in patients with acute myocardial infarction. N Engl J Med. 2015;373:1021–1031.|||Ikonomidis I., Vlastos D., Andreadou I., et al. Vascular conditioning prevents adverse left ventricular remodelling after acute myocardial infarction: a randomised remote conditioning study. Basic Res Cardiol. 2021;116:9.|||Bøtker H.E., Kharbanda R., Schmidt M.R., et al. Remote ischaemic conditioning before hospital admission, as a complement to angioplasty, and effect on myocardial salvage in patients with acute myocardial infarction: a randomised trial. Lancet. 2010;375:727–734.|||Sloth A.D., Schmidt M.R., Munk K., CONDI Investigators Improved long-term clinical outcomes in patients with ST-elevation myocardial infarction undergoing remote ischaemic conditioning as an adjunct to primary percutaneous coronary intervention. Eur Heart J. 2014;35:168–175.|||Hausenloy D.J., Kharbanda R.K., Møller U.K., et al. Effect of remote ischaemic conditioning on clinical outcomes in patients with acute myocardial infarction (CONDI-2/ERIC-PPCI): a single-blind randomised controlled trial. Lancet. 2019;394:1415–1424.|||Kitakaze M., Asakura M., Kim J., et al. Human atrial natriuretic peptide and nicorandil as adjuncts to reperfusion treatment for acute myocardial infarction (J-WIND): two randomised trials. Lancet. 2007;370:1483–1493.|||Lønborg J., Vejlstrup N., Kelbæk H., et al. Impact of acute hyperglycemia on myocardial infarct size, area at risk, and salvage in patients with STEMI and the association with exenatide treatment: results from a randomized study. Diabetes. 2014;63:2474–2485.|||Roos S.T., Timmers L., Biesbroek P.S., et al. No benefit of additional treatment with exenatide in patients with an acute myocardial infarction. Int J Cardiol. 2016;220:809–814.|||Stone G.W., Martin J.L., de Boer M.J., et al. Effect of supersaturated oxygen delivery on infarct size after percutaneous coronary intervention in acute myocardial infarction. Circ Cardiovasc Interv. 2009;2:366–375.|||Spears J.R. Reperfusion microvascular ischemia after prolonged coronary occlusion: implications and treatment with local supersaturated oxygen delivery. Hypoxia (Auckl) 2019;7:65–79.|||Bolli R., Triana J.F., Jeroudi M.O. Prolonged impairment of coronary vasodilation after reversible ischemia. Evidence for microvascular "stunning". Circ Res. 1990;67:332–343.|||Kloner R.A., Alker K.J. The effect of streptokinase on intramyocardial hemorrhage, infarct size, and the no-reflow phenomenon during coronary reperfusion. Circulation. 1984;70:513–521.|||Spears J.R., Prcevski P., Xu R., et al. Aqueous oxygen attenuation of reperfusion microvascular ischemia in a canine model of myocardial infarction. ASAIO J. 2003;49:716–720.|||Spears J.R., Henney C., Prcevski P., et al. Aqueous oxygen hyperbaric reperfusion in a porcine model of myocardial infarction. J Invasive Cardiol. 2002;14:160–166.|||Bartorelli A.L. Hyperoxemic perfusion for treatment of reperfusion microvascular ischemia in patients with myocardial infarction. Am J Cardiovasc Drugs. 2003;3:253–263.|||Kantor B., McKenna C.J., Camrud A.R., et al. Coronary reperfusion with aqueous oxygen improves left ventricular ejection fraction and may reduce mortality in an ischemic porcine model. Am J Cardiol. 1998;82:86S.|||Kaluza G., Creech J., Afari M. TCT-498 Chronic myocardial tissue effects of intracoronary supersaturated oxygen in a porcine model of anterior myocardial infarction. J Am Coll Cardiol. 2012;60 (17) (suppl):B144.|||Dixon S.R., Bartorelli A.L., Marcovitz P.A., et al. Initial experience with hyperoxemic reperfusion after primary angioplasty for acute myocardial infarction: results of a pilot study utilizing intracoronary aqueous oxygen therapy. J Am Coll Cardiol. 2002;39:387–392.|||O'Neill W.W., Martin J.L., Dixon S.R., et al. Acute Myocardial Infarction with Hyperoxemic Therapy (AMIHOT): a prospective, randomized trial of intracoronary hyperoxemic reperfusion after percutaneous coronary intervention. J Am Coll Cardiol. 2007;50:397–405.|||Warda H.M., Bax J.J., Bosch J.G., et al. Effect of intracoronary aqueous oxygen on left ventricular remodeling after anterior wall ST-elevation acute myocardial infarction. Am J Cardiol. 2005;96:22–24.|||Bhatt A.S., Ambrosy A.P., Velazquez E.J. Adverse remodeling and reverse remodeling after myocardial infarction. Curr Cardiol Rep. 2017;19:71.|||Pfeffer M.A., Braunwald E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation. 1990;81:1161–1172.|||Hanson I.D., David S.W., Dixon S.R., et al. “Optimized” delivery of intracoronary supersaturated oxygen in acute anterior myocardial infarction: a feasibility and safety study. Catheter Cardiovasc Interv. 2015;86(suppl 1):S51–S57.|||David S.W., Khan Z.A., Patel N.C., et al. Evaluation of intracoronary hyperoxemic oxygen therapy in acute anterior myocardial infarction: the IC-HOT study. Catheter Cardiovasc Interv. 2019;93:882–890.|||Stone G.W., Maehara A., Witzenbichler B., et al. Intracoronary abciximab and aspiration thrombectomy in patients with large anterior myocardial infarction: the INFUSE-AMI randomized trial. JAMA. 2012;307:1817–1826.|||Chen S., David S.W., Khan Z.A., et al. One-year outcomes of supersaturated oxygen therapy in acute anterior myocardial infarction: the IC-HOT study. Catheter Cardiovasc Interv. 2021;97:1120–1126.