Quick Links

Gabrb3 endothelial cell-specific knockout mice display abnormal blood flow, hypertension, and behavioral dysfunction.

Authors: Anass Agrud|||Sivan Subburaju|||Pranay Goel|||Jun Ren|||Ashwin Srinivasan Kumar|||Barbara J Caldarone|||Wangde Dai|||Jesus Chavez|||Dai Fukumura|||Rakesh K Jain|||Robert A Kloner|||Anju Vasudevan

Journal: Scientific reports

Publication Type: Journal Article

Date: 2022

DOI: PMC8941104

ID: 35318369

Affiliations:

Affiliations

    Angiogenesis and Brain Development Laboratory, Huntington Medical Research Institutes (HMRI), 686 S Fair Oaks Avenue, Pasadena, CA, 91105, USA.|||Angiogenesis and Brain Development Laboratory, Huntington Medical Research Institutes (HMRI), 686 S Fair Oaks Avenue, Pasadena, CA, 91105, USA.|||Angiogenesis and Brain Development Laboratory, Huntington Medical Research Institutes (HMRI), 686 S Fair Oaks Avenue, Pasadena, CA, 91105, USA.|||Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.|||Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.|||Mouse Behavior Core, Department of Genetics, Harvard Medical School, Boston, MA, USA.|||Huntington Medical Research Institutes, Pasadena, CA, USA.|||Huntington Medical Research Institutes, Pasadena, CA, USA.|||Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.|||Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.|||Huntington Medical Research Institutes, Pasadena, CA, USA.|||Angiogenesis and Brain Development Laboratory, Huntington Medical Research Institutes (HMRI), 686 S Fair Oaks Avenue, Pasadena, CA, 91105, USA. anju.vasudevan@hmri.org.

Abstract

Our recent studies uncovered a novel GABA signaling pathway in embryonic forebrain endothelial cells that works independently from neuronal GABA signaling and revealed that disruptions in endothelial GABA receptor-GABA signaling from early embryonic stages can directly contribute to the origin of psychiatric disorders. In the GABA receptor β3 subunit endothelial cell conditional knockout (Gabrb3) mice, the β3 subunit is deleted selectively from endothelial cells, therefore endothelial GABA receptors become inactivated and dysfunctional. There is a reduction in vessel densities and increased vessel morphology in the Gabrb3 telencephalon that persists in the adult neocortex. Gabrb3 mice show behavioral deficits such as impaired reciprocal social interactions, communication deficits, heightened anxiety, and depression. Here, we characterize the functional changes in Gabrb3 mice by evaluating cortical blood flow, examine the consequences of loss of endothelial Gabrb3 on cardiac tissue, and define more in-depth altered behaviors. Red blood cell velocity and blood flow were increased in the cortical microcirculation of the Gabrb3 mice. The Gabrb3 mice had a reduction in vessel densities in the heart, similar to the brain; exhibited wavy, myocardial fibers, with elongated 'worm-like' nuclei in their cardiac histology, and developed hypertension. Additional alterations in behavioral function were observed in the Gabrb3 mice such as increased spontaneous exploratory activity and rearing in an open field, reduced short term memory, decreased ambulatory activity in CLAMS testing, and altered prepulse inhibition to startle, an important biomarker of psychiatric diseases such as schizophrenia. Our results imply that vascular Gabrb3 is a key player in the brain as well as the heart, and its loss in both organs can lead to concurrent development of psychiatric and cardiac dysfunction.


Chemical List

    Gabrb3 protein, mouse|||Receptors, GABA-A|||gamma-Aminobutyric Acid

Reference List

    Lewis DA, Levitt P. Schizophrenia as a disorder of neurodevelopment. Annu. Rev. Neurosci. 2002;25:409–432. doi: 10.1146/annurev.neuro.25.112701.142754.|||Owen MJ, O'Donovan MC, Thapar A, Craddock N. Neurodevelopmental hypothesis of schizophrenia. Br. J. Psychiatry. 2011;198:173–175. doi: 10.1192/bjp.bp.110.084384.|||Leonardo ED, Hen R. Anxiety as a developmental disorder. Neuropsychopharmacology. 2008;33:134–140. doi: 10.1038/sj.npp.1301569.|||Ansorge MS, Hen R, Gingrich JA. Neurodevelopmental origins of depressive disorders. Curr. Opin. Pharmacol. 2007;7:8–17. doi: 10.1016/j.coph.2006.11.006.|||Nuss P. Anxiety disorders and GABA neurotransmission: a disturbance of modulation. Neuropsychiatr. Dis. Treat. 2015;11:165–175. doi: 10.2147/NDT.S58841.|||Fogaca MV, Duman RS. Cortical GABAergic dysfunction in stress and depression: new insights for therapeutic interventions. Front. Cell Neurosci. 2019;13:87. doi: 10.3389/fncel.2019.00087.|||Luscher B, Shen Q, Sahir N. The GABAergic deficit hypothesis of major depressive disorder. Mol. Psychiatry. 2011;16:383–406. doi: 10.1038/mp.2010.120.|||Nakazawa K, et al. GABAergic interneuron origin of schizophrenia pathophysiology. Neuropharmacology. 2012;62:1574–1583. doi: 10.1016/j.neuropharm.2011.01.022.|||Lewis DA, Curley AA, Glausier JR, Volk DW. Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends Neurosci. 2012;35:57–67. doi: 10.1016/j.tins.2011.10.004.|||Konradi C, et al. Hippocampal interneurons are abnormal in schizophrenia. Schizophr Res. 2011;131:165–173. doi: 10.1016/j.schres.2011.06.007.|||Lewis DA, Hashimoto T, Volk DW. Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci. 2005;6:312–324. doi: 10.1038/nrn1648.|||de Jonge JC, Vinkers CH, Hulshoff Pol HE, Marsman A. GABAergic mechanisms in schizophrenia: Linking postmortem and in vivo studies. Front. Psychiatry. 2017;8:118. doi: 10.3389/fpsyt.2017.00118.|||Coyle JT. The GABA-glutamate connection in schizophrenia: which is the proximate cause? Biochem. Pharmacol. 2004;68:1507–1514. doi: 10.1016/j.bcp.2004.07.034.|||Grace AA. Dopamine system dysregulation by the hippocampus: implications for the pathophysiology and treatment of schizophrenia. Neuropharmacology. 2012;62:1342–1348. doi: 10.1016/j.neuropharm.2011.05.011.|||Marques TR, et al. GABA-A receptor differences in schizophrenia: A positron emission tomography study using [(11)C]Ro154513. Mol. Psychiatry. 2020 doi: 10.1038/s41380-020-0711-y.|||Papadimitriou G, et al. Association between GABA-A receptor alpha 5 subunit gene locus and schizophrenia of a later age of onset. Neuropsychobiology. 2001;43:141–144. doi: 10.1159/000054882.|||Chen J, et al. GABRB2 in schizophrenia and bipolar disorder: Disease association, gene expression and clinical correlations. Biochem. Soc. Trans. 2009;37:1415–1418. doi: 10.1042/BST0371415.|||Liu Y, et al. The GABRB3 Polymorphism and its Association with Schizophrenia. J. Mol. Neurosci. 2018;64:75–79. doi: 10.1007/s12031-017-1003-0.|||Fatemi SH, Folsom TD, Thuras PD. GABAA and GABAB receptor dysregulation in superior frontal cortex of subjects with schizophrenia and bipolar disorder. Synapse. 2017;71:21973. doi: 10.1002/syn.21973.|||Frajman A, et al. Gene expression meta-analysis reveals the down-regulation of three GABA receptor subunits in the superior temporal gyrus of patients with schizophrenia. Schizophr Res. 2020;220:29–37. doi: 10.1016/j.schres.2020.04.027.|||Wang DD, Kriegstein AR. Defining the role of GABA in cortical development. J. Physiol. 2009;587:1873–1879. doi: 10.1113/jphysiol.2008.167635.|||Varju P, Katarova Z, Madarasz E, Szabo G. GABA signalling during development: New data and old questions. Cell Tissue Res. 2001;305:239–246. doi: 10.1007/s004410100356.|||Egawa K, Fukuda A. Pathophysiological power of improper tonic GABA(A) conductances in mature and immature models. Front. Neural Circuits. 2013;7:170. doi: 10.3389/fncir.2013.00170.|||Represa A, Ben-Ari Y. Trophic actions of GABA on neuronal development. Trends Neurosci. 2005;28:278–283. doi: 10.1016/j.tins.2005.03.010.|||Li S, et al. Endothelial cell-derived GABA signaling modulates neuronal migration and postnatal behavior. Cell Res. 2018;28:221–248. doi: 10.1038/cr.2017.135.|||Baruah J, Vasudevan A. The vessels shaping mental health or illness. Open Neurol. J. 2019;13:1–9. doi: 10.2174/1874205X01913010001.|||Won C, et al. Autonomous vascular networks synchronize GABA neuron migration in the embryonic forebrain. Nat. Commun. 2013;4:2149. doi: 10.1038/ncomms3149.|||Mathew RJ. Cerebral blood flow and metabolism in anxiety and anxiety disorders. Indian J. Psychiatry. 1994;36:103–120.|||Wang Y, et al. Assessing regional cerebral blood flow in depression using 320-slice computed tomography. PLoS ONE. 2014;9:e107735. doi: 10.1371/journal.pone.0107735.|||Owega A, et al. Cerebral blood flow velocity in acute schizophrenic patients. A transcranial Doppler ultrasonography study. Stroke. 1998;29:1149–1154. doi: 10.1161/01.str.29.6.1149.|||Hanson DR, Gottesman II. Theories of schizophrenia: a genetic-inflammatory-vascular synthesis. BMC Med. Genet. 2005;6:7. doi: 10.1186/1471-2350-6-7.|||Jain RK, Munn LL, Fukumura D. Dissecting tumour pathophysiology using intravital microscopy. Nat. Rev. Cancer. 2002;2:266–276. doi: 10.1038/nrc778.|||Jain RK, Munn LL, Fukumura D. Measuring angiogenesis and hemodynamics in mice. Cold Spring Harb. Protoc. 2013;354–358:2013. doi: 10.1101/pdb.prot073916.|||Brown EB, et al. In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat. Med. 2001;7:864–868. doi: 10.1038/89997.|||Everington EA, Gibbard AG, Swinny JD, Seifi M. Molecular characterization of GABA-A receptor subunit diversity within major peripheral organs and their plasticity in response to early life psychosocial stress. Front. Mol. Neurosci. 2018;11:18. doi: 10.3389/fnmol.2018.00018.|||Tyagi N, et al. Differential expression of gamma-aminobutyric acid receptor A (GABA(A)) and effects of homocysteine. Clin. Chem. Lab. Med. 2007;45:1777–1784. doi: 10.1515/CCLM.2007.342.|||Sen S, et al. gamma-Aminobutyric Acid Is Synthesized and Released by the Endothelium: Potential Implications. Circ. Res. 2016;119:621–634. doi: 10.1161/CIRCRESAHA.116.308645.|||Eichbaum FW. 'Wavy' myocardial fibers in spontaneous and experimental adrenergic cardiopathies. Cardiology. 1975;60:358–365. doi: 10.1159/000169735.|||Daugherty A, Rateri D, Hong L, Balakrishnan A. Measuring blood pressure in mice using volume pressure recording, a tail-cuff method. J. Vis. Exp. 2009 doi: 10.3791/1291.|||Donev R, et al. Comorbidity of schizophrenia and adult attention-deficit hyperactivity disorder. World J. Biol. Psychiatry. 2011;12(Suppl 1):52–56. doi: 10.3109/15622975.2011.599212.|||Yeung RK, et al. Gabrb2-knockout mice displayed schizophrenia-like and comorbid phenotypes with interneuron-astrocyte-microglia dysregulation. Transl. Psychiatry. 2018;8:128. doi: 10.1038/s41398-018-0176-9.|||Elvevag B, Goldberg TE. Cognitive impairment in schizophrenia is the core of the disorder. Crit. Rev. Neurobiol. 2000;14:1–21. doi: 10.1615/CritRevNeurobiol.v14.i1.10.|||Millan MJ, et al. Cognitive dysfunction in psychiatric disorders: characteristics, causes and the quest for improved therapy. Nat. Rev. Drug Discov. 2012;11:141–168. doi: 10.1038/nrd3628.|||Goldman-Rakic PS, Selemon LD. Functional and anatomical aspects of prefrontal pathology in schizophrenia. Schizophr Bull. 1997;23:437–458. doi: 10.1093/schbul/23.3.437.|||Moghaddam B, Adams BW. Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science. 1998;281:1349–1352. doi: 10.1126/science.281.5381.1349.|||Jones CA, Watson DJ, Fone KC. Animal models of schizophrenia. Br. J. Pharmacol. 2011;164:1162–1194. doi: 10.1111/j.1476-5381.2011.01386.x.|||Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR. Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology. 2001;156:117–154. doi: 10.1007/s002130100811.|||Mena A, et al. Reduced prepulse inhibition as a biomarker of schizophrenia. Front. Behav. Neurosci. 2016;10:202. doi: 10.3389/fnbeh.2016.00202.|||DeLorey TM, et al. Mice lacking the beta3 subunit of the GABAA receptor have the epilepsy phenotype and many of the behavioral characteristics of Angelman syndrome. J. Neurosci. 1998;18:8505–8514. doi: 10.1523/JNEUROSCI.18-20-08505.1998.|||Hentschke H, et al. Altered GABAA, slow inhibition and network oscillations in mice lacking the GABAA receptor beta3 subunit. J. Neurophysiol. 2009;102:3643–3655. doi: 10.1152/jn.00651.2009.|||Ferguson C, et al. New insight into the role of the beta3 subunit of the GABAA-R in development, behavior, body weight regulation, and anesthesia revealed by conditional gene knockout. BMC Neurosci. 2007;8:85. doi: 10.1186/1471-2202-8-85.|||Kay SR, Fiszbein A, Opler LA. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull. 1987;13:261–276. doi: 10.1093/schbul/13.2.261.|||Hoffman HS, Searle JL. Acoustic and temporal factors in the evocation of startle. J. Acoust. Soc. Am. 1968;43:269–282. doi: 10.1121/1.1910776.|||Graham FK, Murray GM. Discordant effects of weak prestimulation on magnitude and latency of the reflex blink. Physiol. Psychol. 1977;5:108–114. doi: 10.3758/BF03335308.|||De Hert M, Detraux J, Vancampfort D. The intriguing relationship between coronary heart disease and mental disorders. Dialogues Clin. Neurosci. 2018;20:31–40. doi: 10.31887/DCNS.2018.20.1/mdehert.|||Alcantara C, Davidson KW. Mental disorders and coronary heart disease risk: could the evidence elude us while we sleep? Circulation. 2014;129:139–141. doi: 10.1161/CIRCULATIONAHA.113.006515.|||Sato TN, Qin Y, Kozak CA, Audus KL. Tie-1 and tie-2 define another class of putative receptor tyrosine kinase genes expressed in early embryonic vascular system. Proc. Natl. Acad. Sci. U. S. A. 1993;90:9355–9358. doi: 10.1073/pnas.90.20.9355.|||Schnurch H, Risau W. Expression of tie-2, a member of a novel family of receptor tyrosine kinases, in the endothelial cell lineage. Development. 1993;119:957–968. doi: 10.1242/dev.119.3.957.|||Wong AL, et al. Tie2 expression and phosphorylation in angiogenic and quiescent adult tissues. Circ Res. 1997;81:567–574. doi: 10.1161/01.res.81.4.567.|||Mina AI, et al. CalR: A web-based analysis tool for indirect calorimetry experiments. Cell Metab. 2018;28:656–666e651. doi: 10.1016/j.cmet.2018.06.019.