Disrupted brain functional connectivity as early signature in cognitively healthy individuals with pathological CSF amyloid/tau.
Authors:
Journal: Communications biology
Publication Type: Journal Article
Date: 2024
DOI: PMC11344156
ID: 39179782
Abstract
Alterations in functional connectivity (FC) have been observed in individuals with Alzheimer's disease (AD) with elevated amyloid (Aβ) and tau. However, it is not yet known whether directed FC is already influenced by Aβ and tau load in cognitively healthy (CH) individuals. A 21-channel electroencephalogram (EEG) was used from 46 CHs classified based on cerebrospinal fluid (CSF) Aβ tau ratio: pathological (CH-PAT) or normal (CH-NAT). Directed FC was estimated with Partial Directed Coherence in frontal, temporal, parietal, central, and occipital regions. We also examined the correlations between directed FC and various functional metrics, including neuropsychology, cognitive reserve, MRI volumetrics, and heart rate variability between both groups. Compared to CH-NATs, the CH-PATs showed decreased FC from the temporal regions, indicating a loss of relative functional importance of the temporal regions. In addition, frontal regions showed enhanced FC in the CH-PATs compared to CH-NATs, suggesting neural compensation for the damage caused by the pathology. Moreover, CH-PATs showed greater FC in the frontal and occipital regions than CH-NATs. Our findings provide a useful and non-invasive method for EEG-based analysis to identify alterations in brain connectivity in CHs with a pathological versus normal CSF Aβ/tau.
Chemical List
- tau Proteins|||Amyloid beta-Peptides
Reference List
- Nicaise, S. et al. Alzheimer and the Mediterranean report 2016: overview–challenges–perspectives (Monegasque Association for Research on Alzheimer’s disease (AMPA), 2016).|||Prince, M. et al. World Alzheimer Report 2015. The Global Impact of Dementia: An analysis of prevalence, incidence, cost and trends. Ph.D. thesis, Alzheimer’s Disease International (2015).|||Chehrehnegar, N. et al. Early detection of cognitive disturbances in mild cognitive impairment: a systematic review of observational studies. Psychogeriatrics20, 212–228 (2020). 10.1111/psyg.12484|||Sharma, L. et al. Promising protein biomarkers in the early diagnosis of Alzheimer’s disease. Metab. Brain Dis.37, 1727–1744 (2022). 10.1007/s11011-021-00847-9|||Leyhe, T., Müller, S., Milian, M., Eschweiler, G. W. & Saur, R. Impairment of episodic and semantic autobiographical memory in patients with mild cognitive impairment and early Alzheimer’s disease. Neuropsychologia47, 2464–2469 (2009). 10.1016/j.neuropsychologia.2009.04.018|||Harrington, M. G. et al. Executive function changes before memory in preclinical Alzheimer’s pathology: a prospective, cross-sectional, case control study. PloS One8, e79378 (2013). 10.1371/journal.pone.0079378|||Allain, P., Etcharry-Bouyx, F. & Verny, C. Executive functions in clinical and preclinical Alzheimer’s disease. Rev. Neurol.169, 695–708 (2013). 10.1016/j.neurol.2013.07.020|||Aluise, C. D. et al. Redox proteomics analysis of brains from subjects with amnestic mild cognitive impairment compared to brains from subjects with preclinical Alzheimer’s disease: insights into memory loss in mci. J. Alzheimer’s. Dis.23, 257–269 (2011). 10.3233/JAD-2010-101083|||Guan, Z.-Z., Zhang, X., Ravid, R. & Nordberg, A. Decreased protein levels of nicotinic receptor subunits in the hippocampus and temporal cortex of patients with Alzheimer’s disease. J. Neurochem.74, 237–243 (2000). 10.1046/j.1471-4159.2000.0740237.x|||Kashani, A. et al. Loss of vglut1 and vglut2 in the prefrontal cortex is correlated with cognitive decline in Alzheimer disease. Neurobiol. Aging29, 1619–1630 (2008). 10.1016/j.neurobiolaging.2007.04.010|||Amieva, H. et al. Evidencing inhibitory deficits in Alzheimer’s disease through interference effects and shifting disabilities in the Stroop test. Arch. Clin. Neuropsychol.19, 791–803 (2004). 10.1016/j.acn.2003.09.006|||Belleville, S., Chertkow, H. & Gauthier, S. Working memory and control of attention in persons with Alzheimer’s disease and mild cognitive impairment. Neuropsychology21, 458 (2007). 10.1037/0894-4105.21.4.458|||Wang, Q. et al. Risk assessment and stratification of mild cognitive impairment among the Chinese elderly: attention to modifiable risk factors. J. Epidemiol. Community Health (2023).|||Lee, D., Park, J. Y. & Kim, W. J. Altered functional connectivity of the default mode and dorsal attention network in subjective cognitive decline. J. Psychiatr. Res.159, 165–171 (2023). 10.1016/j.jpsychires.2023.01.040|||Villemagne, V. L. et al. Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol.12, 357–367 (2013). 10.1016/S1474-4422(13)70044-9|||Park, J.-C. et al. Plasma tau/amyloid-β1–42 ratio predicts brain tau deposition and neurodegeneration in Alzheimer’s disease. Brain142, 771–786 (2019). 10.1093/brain/awy347|||Kwak, S. S. et al. Amyloid-β42/40 ratio drives tau pathology in 3d human neural cell culture models of Alzheimer’s disease. Nat. Commun.11, 1377 (2020). 10.1038/s41467-020-15120-3|||Wang, L. et al. Cerebrospinal fluid proteins predict longitudinal hippocampal degeneration in early-stage dementia of the Alzheimer type. Alzheimer Dis. Assoc. Disord.26, 314–321 (2012). 10.1097/WAD.0b013e31823c0cf4|||Fagan, A. M. et al. Comparison of analytical platforms for cerebrospinal fluid measures of β-amyloid 1-42, total tau, and p-tau181 for identifying Alzheimer disease amyloid plaque pathology. Arch. Neurol.68, 1137–1144 (2011). 10.1001/archneurol.2011.105|||Pichet Binette, A. et al. Amyloid-associated increases in soluble tau relate to tau aggregation rates and cognitive decline in early Alzheimer’s disease. Nat. Commun.13, 6635 (2022). 10.1038/s41467-022-34129-4|||Rodriguez-Vieitez, E. et al. Association of cortical microstructure with amyloid-β and tau: impact on cognitive decline, neurodegeneration, and clinical progression in older adults. Mol. Psychiatry26, 7813–7822 (2021). 10.1038/s41380-021-01290-z|||Hoops, S. et al. Validity of the MoCA and MMSE in the detection of MCI and dementia in Parkinson disease. Neurology73, 1738–1745 (2009). 10.1212/WNL.0b013e3181c34b47|||Matsuoka, T., Imai, A. & Narumoto, J. Neuroimaging of mild behavioral impairment: a systematic review. Psychiatry Clin. Neurosci. Rep.2, e81 (2023).|||Nicolini, P. et al. Autonomic function predicts cognitive decline in mild cognitive impairment: Evidence from power spectral analysis of heart rate variability in a longitudinal study. Front. Aging Neurosci.14, 886023 (2022). 10.3389/fnagi.2022.886023|||Ebinger, J. E. et al. Blood pressure variability supersedes heart rate variability as a real-world measure of dementia risk. Sci. Rep.14, 1838 (2024). 10.1038/s41598-024-52406-8|||Molloy, C. et al. Resting heart rate (variability) and cognition relationships reveal cognitively healthy individuals with pathological amyloid/tau ratio. Front. Epidemiol.3, 1168847 (2023). 10.3389/fepid.2023.1168847|||Palmqvist, S. et al. Earliest accumulation of β-amyloid occurs within the default-mode network and concurrently affects brain connectivity. Nat. Commun.8, 1214 (2017). 10.1038/s41467-017-01150-x|||Yu, M., Sporns, O. & Saykin, A. J. The human connectome in Alzheimer disease—relationship to biomarkers and genetics. Nat. Rev. Neurol.17, 545–563 (2021). 10.1038/s41582-021-00529-1|||Moretti, D. V. Understanding early dementia: Eeg, MRI, spect and memory evaluation. Transl. Neurosci.6, 32–46 (2015). 10.1515/tnsci-2015-0005|||Kim, N. H. et al. Pet-validated eeg-machine learning algorithm predicts brain amyloid pathology in pre-dementia Alzheimer’s disease. Alzheimer’s. Dement.19, e064436 (2023).10.1002/alz.064436|||Canuet, L. et al. Network disruption and cerebrospinal fluid amyloid-beta and phospho-tau levels in mild cognitive impairment. J. Neurosci.35, 10325–10330 (2015). 10.1523/JNEUROSCI.0704-15.2015|||Arechavala, R. J. et al. Task switching reveals abnormal brain-heart electrophysiological signatures in cognitively healthy individuals with abnormal csf amyloid/tau, a pilot study. Int. J. Psychophysiol.170, 102–111 (2021). 10.1016/j.ijpsycho.2021.10.007|||Huang, S.-Y. et al. Characteristic patterns of inter-and intra-hemispheric metabolic connectivity in patients with stable and progressive mild cognitive impairment and Alzheimer’s disease. Sci. Rep.8, 13807 (2018). 10.1038/s41598-018-31794-8|||Vecchio, F. et al. Sustainable method for Alzheimer dementia prediction in mild cognitive impairment: Electroencephalographic connectivity and graph theory combined with apolipoprotein e. Ann. Neurol.84, 302–314 (2018). 10.1002/ana.25289|||Moretti, D. et al. Specific eeg changes associated with atrophy of hippocampus in subjects with mild cognitive impairment and Alzheimer’s disease. Int. J. Alzheimer’s Dis.2012, 253153 (2012).|||McBride, J. C. et al. Spectral and complexity analysis of scalp EEG characteristics for mild cognitive impairment and early Alzheimer’s disease. Comput. Methods Prog. Biomed.114, 153–163 (2014).10.1016/j.cmpb.2014.01.019|||Trinh, T.-T. et al. Identifying individuals with mild cognitive impairment using working memory-induced intra-subject variability of resting-state eegs. Front. Comput. Neurosci.15, 700467 (2021). 10.3389/fncom.2021.700467|||Gabard-Durnam, L. J., Mendez Leal, A. S., Wilkinson, C. L. & Levin, A. R. The Harvard automated processing pipeline for electroencephalography (happe): standardized processing software for developmental and high-artifact data. Front. Neurosci.12, 97 (2018). 10.3389/fnins.2018.00097|||Arakaki, X. et al. Alpha desynchronization/synchronization during working memory testing is compromised in acute mild traumatic brain injury (mtbi). PloS One13, e0188101 (2018). 10.1371/journal.pone.0188101|||Arakaki, X. et al. A study of alpha desynchronization, heart rate, and mri during Stroop testing unmasks pre-symptomatic Alzheimer’s disease: Eeg biomarkers of Alzheimer’s disease in pre-symptomatic and symptomatic patients: Multimodal validation from international projects. Alzheimer Dement.16, e042793 (2020).10.1002/alz.042793|||Philiastides, M. G., Ratcliff, R. & Sajda, P. Neural representation of task difficulty and decision making during perceptual categorization: a timing diagram. J. Neurosci.26, 8965–8975 (2006). 10.1523/JNEUROSCI.1655-06.2006|||Wang, R. et al. Power spectral density and coherence analysis of Alzheimer’s eeg. Cogn. Neurodyn.9, 291–304 (2015). 10.1007/s11571-014-9325-x|||Gaubert, S. et al. Eeg evidence of compensatory mechanisms in preclinical Alzheimer’s disease. Brain142, 2096–2112 (2019). 10.1093/brain/awz150|||Perez, V. et al. Eeg markers and subjective memory complaints in young and older people. Int. J. Psychophysiol.182, 23–31 (2022). 10.1016/j.ijpsycho.2022.09.006|||Jiao, B. et al. Neural biomarker diagnosis and prediction to mild cognitive impairment and Alzheimer’s disease using eeg technology. Alzheimer’s. Res. Ther.15, 1–14 (2023).|||Fahnestock, M. & Shekari, A. Prongf and neurodegeneration in Alzheimer’s disease. Front. Neurosci.13, 440994 (2019).10.3389/fnins.2019.00129|||Hearne, L. J. et al. Increased cognitive complexity reveals abnormal brain network activity in individuals with corpus callosum dysgenesis. NeuroImage: Clin.21, 101595 (2019). 10.1016/j.nicl.2018.11.005|||Jeong, H. T., Youn, Y. C., Sung, H.-H. & Kim, S. Y. Power spectral changes of quantitative eeg in the subjective cognitive decline: comparison of community normal control groups. Neuropsychiatr. Dis. Treat.21, 2783–2790 (2021).|||Briels, C. T. et al. Reproducibility of EEG functional connectivity in Alzheimer’s disease. Alzheimer’s. Res. Ther.12, 1–14 (2020).|||Vlassenko, A. G., Benzinger, T. L. & Morris, J. C. Pet amyloid-beta imaging in preclinical Alzheimer’s disease. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis.1822, 370–379 (2012).10.1016/j.bbadis.2011.11.005|||Grandjean, J. et al. Early alterations in functional connectivity and white matter structure in a transgenic mouse model of cerebral amyloidosis. J. Neurosci.34, 13780–13789 (2014). 10.1523/JNEUROSCI.4762-13.2014|||Canuet, L. et al. Resting-state network disruption and APOE genotype in Alzheimer’s disease: a lagged functional connectivity study PLoS ONE, 7, e46289. 10.1371/journal.pone.0046289 (2012).|||Palop, J. J. & Mucke, L. Amyloid-β–induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks. Nat. Neurosci.13, 812–818 (2010). 10.1038/nn.2583|||Mohanta, S. et al. Receptors, circuits and neural dynamics for prediction. Available at SSRN 3659396 (2021).|||Greicius, M. D., Krasnow, B., Reiss, A. L. & Menon, V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. USA100, 253–258 (2003). 10.1073/pnas.0135058100|||Farràs-Permanyer, L., Guàrdia-Olmos, J. & Peró-Cebollero, M. Mild cognitive impairment and f MRI studies of brain functional connectivity: the state of the art. Front. Psychol.6, 1095 (2015). 10.3389/fpsyg.2015.01095|||Babiloni, F. et al. Hypermethods for eeg hyperscanning. In 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, 3666–3669 (IEEE, 2006).|||Gilbert, C. D. & Li, W. Top-down influences on visual processing. Nat. Rev. Neurosci.14, 350–363 (2013). 10.1038/nrn3476|||Fernández, P. J., Vivas, A. B., Chechlacz, M. & Fuentes, L. J. The role of the parietal cortex in inhibitory processing in the vertical meridian: Evidence from elderly brain damaged patients. Aging Brain2, 100043 (2022). 10.1016/j.nbas.2022.100043|||Burgess, A. P. On the interpretation of synchronization in eeg hyperscanning studies: a cautionary note. Front. Hum. Neurosci.7, 881 (2013). 10.3389/fnhum.2013.00881|||Trammell, J. P., MacRae, P. G., Davis, G., Bergstedt, D. & Anderson, A. E. The relationship of cognitive performance and the theta-alpha power ratio is age-dependent: an EEG study of short term memory and reasoning during task and resting-state in healthy young and old adults. Front. Aging Neurosci.9, 364 (2017). 10.3389/fnagi.2017.00364|||Rogala, J., Kublik, E., Krauz, R. & Wróbel, A. Resting-state eeg activity predicts frontoparietal network reconfiguration and improved attentional performance. Sci. Rep.10, 5064 (2020). 10.1038/s41598-020-61866-7|||Vecchio, F. et al. Cortical connectivity and memory performance in cognitive decline: a study via graph theory from EEG data. Neuroscience316, 143–150 (2016). 10.1016/j.neuroscience.2015.12.036|||Bouazzaoui, B. et al. Aging and self-reported internal and external memory strategy uses: the role of executive functioning. Acta Psychol.135, 59–66 (2010).10.1016/j.actpsy.2010.05.007|||Stern, Y. Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol.11, 1006–1012 (2012). 10.1016/S1474-4422(12)70191-6|||Frankenmolen, N. L., Fasotti, L., Kessels, R. P. & Oosterman, J. M. The influence of cognitive reserve and age on the use of memory strategies. Exp. Aging Res.44, 117–134 (2018). 10.1080/0361073X.2017.1422472|||Scahill, R. I., Schott, J. M., Stevens, J. M., Rossor, M. N. & Fox, N. C. Mapping the evolution of regional atrophy in Alzheimer’s disease: unbiased analysis of fluid-registered serial mri. Proc. Natl. Acad. Sci. USA99, 4703–4707 (2002). 10.1073/pnas.052587399|||Barnes, J. et al. A meta-analysis of hippocampal atrophy rates in Alzheimer’s disease. Neurobiol. Aging30, 1711–1723 (2009). 10.1016/j.neurobiolaging.2008.01.010|||Vemuri, P. & Jack, C. R. Role of structural MRI in Alzheimer’s disease. Alzheimer’ Res. Ther.2, 1–10 (2010).|||Duara, R. et al. Medial temporal lobe atrophy on MRI scans and the diagnosis of Alzheimer disease. Neurology71, 1986–1992 (2008). 10.1212/01.wnl.0000336925.79704.9f|||Contador, J. et al. Longitudinal brain atrophy and CSF biomarkers in early-onset Alzheimer’s disease. NeuroImage Clin.32, 102804 (2021). 10.1016/j.nicl.2021.102804|||Aoki, Y. et al. Eeg resting-state networks in Alzheimer’s disease associated with clinical symptoms. Sci. Rep.13, 3964 (2023). 10.1038/s41598-023-30075-3|||Cai, S. et al. Altered functional connectivity of fusiform gyrus in subjects with amnestic mild cognitive impairment: a resting-state fMRI study. Front. Hum. Neurosci.9, 471 (2015). 10.3389/fnhum.2015.00471|||Ma, D. et al. The fusiform gyrus exhibits an epigenetic signature for Alzheimer’s disease. Clin. Epigenet.12, 1–16 (2020).10.1186/s13148-020-00916-3|||Aramadaka, S. et al. Neuroimaging in Alzheimer’s disease for early diagnosis: a comprehensive review. Cureus15, e38544 (2023).|||Alba, G., Vila, J., Rey, B., Montoya, P. & Muñoz, M. Á. The relationship between heart rate variability and electroencephalography functional connectivity variability is associated with cognitive flexibility. Front. Hum. Neurosci.13, 428262 (2019).10.3389/fnhum.2019.00064|||Imbimbo, C. et al. Heart rate variability and cognitive performance in adults with cardiovascular risk. Cereb. Circul. Cogn. Behav.3, 100136 (2022).|||Idiaquez, J. & Roman, G. C. Autonomic dysfunction in neurodegenerative dementias. J. Neurol. Sci.305, 22–27 (2011). 10.1016/j.jns.2011.02.033|||Kong, S. D. et al. Heart rate variability during slow wave sleep is linked to functional connectivity in the central autonomic network. Brain Commun.5, fcad129 (2023). 10.1093/braincomms/fcad129|||Wu, S. et al. The neural dynamic mechanisms of asymmetric switch costs in a combined Stroop-task-switching paradigm. Sci. Rep.5, 10240 (2015). 10.1038/srep10240|||Klug, M. & Gramann, K. Identifying key factors for improving ica-based decomposition of EEG data in mobile and stationary experiments. Eur. J. Neurosci.54, 8406–8420 (2021). 10.1111/ejn.14992|||Gabard-Durnam, L. J. et al. Longitudinal eeg power in the first postnatal year differentiates autism outcomes. Nat. Commun.10, 4188 (2019). 10.1038/s41467-019-12202-9|||Jia, H., Li, H. & Yu, D. The relationship between ERP components and eeg spatial complexity in a visual go/nogo task. J. Neurophysiol.117, 275–283 (2017). 10.1152/jn.00363.2016|||Akaike, H. Factor analysis and aic. Psychometrika52, 317–332 (1987).10.1007/BF02294359|||Schwarz, G. Estimating the dimension of a model. The annals of statistics6, 461–464 (1978).|||van den Heuvel, M. P. et al. Proportional thresholding in resting-state fMRI functional connectivity networks and consequences for patient-control connectome studies: Issues and recommendations. Neuroimage152, 437–449 (2017). 10.1016/j.neuroimage.2017.02.005|||Celka, P. Statistical analysis of the phase-locking value. IEEE Signal Process. Lett.14, 577–580 (2007).10.1109/LSP.2007.896142|||Cui, G., Li, X. & Touyama, H. Emotion recognition based on group phase locking value using convolutional neural network. Sci. Rep.13, 3769 (2023). 10.1038/s41598-023-30458-6|||Miles, S., Gnatt, I., Phillipou, A. & Nedeljkovic, M. Cognitive flexibility in acute anorexia nervosa and after recovery: a systematic review. Clin. Psychol. Rev.81, 101905 (2020). 10.1016/j.cpr.2020.101905|||Garba, A. E. et al. The influence of cognitive reserve on Alzheimer’s disease progression. Alzheimer Dement.17, e054537 (2021).10.1002/alz.054537|||Šneidere, K., Mondini, S. & Stepens, A. Role of eeg in measuring cognitive reserve: a rapid review. Front. Aging Neurosci.12, 249 (2020). 10.3389/fnagi.2020.00249|||Steffener, J. & Stern, Y. Exploring the neural basis of cognitive reserve in aging. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis.1822, 467–473 (2012).10.1016/j.bbadis.2011.09.012|||Wei, K. et al. White matter hypointensities and hyperintensities have equivalent correlations with age and csf β-amyloid in the nondemented elderly. Brain Behav.9, e01457 (2019). 10.1002/brb3.1457|||Plant, C. et al. Automated detection of brain atrophy patterns based on mri for the prediction of Alzheimer’s disease. Neuroimage50, 162–174 (2010). 10.1016/j.neuroimage.2009.11.046|||Rocca, M. A. et al. Brain mri atrophy quantification in ms: from methods to clinical application. Neurology88, 403–413 (2017). 10.1212/WNL.0000000000003542|||Chan, Y. L. et al. Automated thresholding method for fnirs-based functional connectivity analysis: validation with a case study on Alzheimer’s disease. IEEE Trans. Neural Syst. Rehabilit. Eng.28, 1691–1701 (2020).10.1109/TNSRE.2020.3007589