Adverse Cardiovascular Effects of Nicotine Delivered by Chronic Electronic Cigarettes or Standard Cigarettes Captured by Cardiov
Authors:
Journal: Journal of the American Heart Association
Publication Type: Journal Article
Date: 2024
DOI: PMC11935601
ID: 39258553
Abstract
Electronic cigarettes have gained popularity as a nicotine delivery system, which has been recommended by some as an aid to help people quit traditional smoking. The potential long-term effects of vaping on the cardiovascular system, as well as how their effects compare with those from standard cigarettes, are not well understood. The intrinsic frequency (IF) method is a systems approach for analysis of left ventricle and arterial function. Recent clinical studies have demonstrated the diagnostic and prognostic value of IF. Here, we aim to determine whether the novel IF metrics derived from carotid pressure waveforms can detect effects of nicotine (delivered by chronic exposure to electronic cigarette vapor or traditional cigarette smoke) on the cardiovascular system.
Chemical List
- Nicotine|||E-Cigarette Vapor|||Nicotinic Agonists
Reference List
- Miech R, Johnston L, O'Malley PM, Bachman JG, Patrick ME. Adolescent vaping and nicotine use in 2017–2018—US national estimates. N Engl J Med. 2019;380:192–193. doi: 10.1056/NEJMc1814130|||Neczypor EW, Saldaña TA, Mears MJ, Aslaner DM, Escobar YNH, Gorr MW, Wold LE. e‐Cigarette aerosol reduces left ventricular function in adolescent mice. Circulation. 2022;145:868–870. doi: 10.1161/CIRCULATIONAHA.121.057613|||Neczypor EW, Mears MJ, Ghosh A, Sassano MF, Gumina RJ, Wold LE, Tarran R. e‐Cigarettes and cardiopulmonary health: review for clinicians. Circulation. 2022;145:219–232. doi: 10.1161/CIRCULATIONAHA.121.056777|||Franzen KF, Willig J, Cayo Talavera S, Meusel M, Sayk F, Reppel M, Dalhoff K, Mortensen K, Droemann D. E‐cigarettes and cigarettes worsen peripheral and central hemodynamics as well as arterial stiffness: a randomized, double‐blinded pilot study. Vasc Med. 2018;23:419–425. doi: 10.1177/1358863X18779694|||Chaumont M, De Becker B, Zaher W, Culié A, Deprez G, Mélot C, Reyé F, Van Antwerpen P, Delporte C, Debbas N. Differential effects of e‐cigarette on microvascular endothelial function, arterial stiffness and oxidative stress: a randomized crossover trial. Sci Rep. 2018;8:1–9. doi: 10.1038/s41598-018-28723-0|||Biondi‐Zoccai G, Sciarretta S, Bullen C, Nocella C, Violi F, Loffredo L, Pignatelli P, Perri L, Peruzzi M, Marullo AG. Acute effects of heat‐not‐burn, electronic vaping, and traditional tobacco combustion cigarettes: the Sapienza University of Rome‐Vascular assessment of proatherosclerotic effects of smoking (SUR‐VAPES) 2 randomized trial. J Am Heart Assoc. 2019;8:e010455. doi: 10.1161/JAHA.118.010455|||Yan XS, D'Ruiz C. Effects of using electronic cigarettes on nicotine delivery and cardiovascular function in comparison with regular cigarettes. Regul Toxicol Pharmacol. 2015;71:24–34. doi: 10.1016/j.yrtph.2014.11.004|||Chaumont M, Tagliatti V, Channan EM, Colet JM, Bernard A, Morra S, Deprez G, Van Muylem A, Debbas N, Schaefer T. Short halt in vaping modifies cardiorespiratory parameters and urine metabolome: a randomized trial. Am J Phys Lung Cell Mol Phys. 2020;318:L331–L344. doi: 10.1152/ajplung.00268.2019|||Kerr DM, Brooksbank KJ, Taylor RG, Pinel K, Rios FJ, Touyz RM, Delles C. Acute effects of electronic and tobacco cigarettes on vascular and respiratory function in healthy volunteers: a cross‐over study. J Hypertens. 2019;37:154–166. doi: 10.1097/HJH.0000000000001890|||Ikonomidis I, Vlastos D, Kourea K, Kostelli G, Varoudi M, Pavlidis G, Efentakis P, Triantafyllidi H, Parissis J, Andreadou I. Electronic cigarette smoking increases arterial stiffness and oxidative stress to a lesser extent than a single conventional cigarette: an acute and chronic study. Circulation. 2018;137:303–306. doi: 10.1161/CIRCULATIONAHA.117.029153|||Fetterman JL, Keith RJ, Palmisano JN, McGlasson KL, Weisbrod RM, Majidm S, Bastin R, Stathos MM, Stokes AC, Robertson RM. Alterations in vascular function associated with the use of combustible and electronic cigarettes. J Am Heart Assoc. 2020;9:e014570. doi: 10.1161/JAHA.119.014570|||Carnevale R, Sciarretta S, Violi F, Nocella C, Loffredo L, Perri L, Peruzzi M, Marullo AG, De Falco E, Chimenti I. Acute impact of tobacco vs electronic cigarette smoking on oxidative stress and vascular function. Chest. 2016;150:606–612. doi: 10.1016/j.chest.2016.04.012|||Han DD, Qiu H, Wang X, Rao P, Navabzadeh M, Goyal N, Mohammadi L, Springer ML. Vascular impairment from acute exposure to e‐cigarette aerosol is rescued by inhibition of the receptor for advanced glycation end products (RAGE). Arterioscler Thromb Vasc Biol. 2022;42:A136–A136. doi: 10.1161/atvb.42.suppl_1.136|||Caporale A, Langham MC, Guo W, Johncola A, Chatterjee S, Wehrli FW. Acute effects of electronic cigarette aerosol inhalation on vascular function detected at quantitative MRI. Radiology. 2019;293:97–106. doi: 10.1148/radiol.2019190562|||Andreas S. The association of cardiovascular autonomic dysfunction and the prediction of COPD can be explained by neurohumoral activation. Eur Respir J. 2018;51:1800737. doi: 10.1183/13993003.00737-2018|||Zhang DY, Anderson AS. The sympathetic nervous system and heart failure. Cardiol Clin. 2014;32:33–45. doi: 10.1016/j.ccl.2013.09.010|||Alzahrani T, Pena I, Temesgen N, Glantz SA. Association between electronic cigarette use and myocardial infarction. Am J Prev Med. 2018;55:455–461. doi: 10.1016/j.amepre.2018.05.004|||Dai W, Shi J, Siddarth P, Zhao L, Carreno J, Kleinman MT, Herman DA, Arechavala RJ, Renusch S, Hasen I. Effects of electronic cigarette exposure on myocardial infarction and no‐reflow, and cardiac function in a rat model. J Cardiovasc Pharmacol Ther. 2023;28:10742484231155992. doi: 10.1177/10742484231155992|||Cooper LL, Rong J, Pahlevan NM, Rinderknecht DG, Benjamin EJ, Hamburg NM, Vasan RS, Larson MG, Gharib M, Mitchell GF. Intrinsic frequencies of carotid pressure waveforms predict heart failure events: the Framingham Heart Study. Hypertension. 2021;77:338–346. doi: 10.1161/HYPERTENSIONAHA.120.15632|||Pahlevan NM, Rinderknecht DG, Tavallali P, Razavi M, Tran TT, Fong MW, Kloner RA, Csete M, Gharib M. Noninvasive iphone measurement of left ventricular ejection fraction using intrinsic frequency methodology. Crit Care Med. 2017;45:1115–1120. doi: 10.1097/CCM.0000000000002459|||Alavi R, Dai W, Matthews RV, Kloner RA, Pahlevan NM. Instantaneous detection of acute myocardial infarction and ischaemia from a single carotid pressure waveform in rats. Eur Heart J Open. 2023;3:1–9. oead099. doi: 10.1093/ehjopen/oead099|||Niroumandi S, Alavi R, Wolfson AM, Vaidya AS, Pahlevan NM. Assessment of aortic characteristic impedance and arterial compliance from non‐invasive carotid pressure waveform in the Framingham Heart Study. Am J Cardiol. 2023;204:195–199. doi: 10.1016/j.amjcard.2023.07.076|||Pahlevan NM, Tavallali P, Rinderknecht DG, Petrasek D, Matthews RV, Hou TY, Gharib M. Intrinsic frequency for a systems approach to haemodynamic waveform analysis with clinical applications. J R Soc Interface. 2014;11:20140617. doi: 10.1098/rsif.2014.0617|||Alavi R, Dai W, Amlani F, Rinderknecht DG, Kloner RA, Pahlevan NM. Scalability of cardiovascular intrinsic frequencies: validations in preclinical models and non‐invasive clinical studies. Life Sci. 2021;284:119880. doi: 10.1016/j.lfs.2021.119880|||Mogadam E, Shavelle DM, Giesler GM, Economides C, Duquette S, Matthews RV, Pahlevan NM. Intrinsic frequency method for instantaneous assessment of left ventricular‐arterial coupling after transcatheter aortic valve replacement. Physiol Meas. 2020;41:085002. doi: 10.1088/1361-6579/aba67f|||Petrasek D, Pahlevan NM, Tavallali P, Rinderknecht DG, Gharib M. Intrinsic frequency and the single wave biopsy: implications for insulin resistance. J Diabetes Sci Technol. 2015;9:1246–1252. doi: 10.1177/1932296815588108|||Alavi R, Dai W, Kloner RA, Pahlevan NM. A hybrid artificial intelligence‐intrinsic frequency method for instantaneous determination of myocardial infarct size. Circulation. 2020;142:A15899. doi: 10.1161/circ.142.suppl_3.15899|||Pahlevan NM, Alavi R, Ramos M, Hindoyan A, Matthews RV. An artificial intelligence derived method for instantaneous detection of elevated left ventricular end diastolic pressure. Circulation. 2020;142:A16334. doi: 10.1161/circ.142.suppl_3.16334|||Alavi R, Dai W, Kloner RA, Pahlevan NM. A physics‐based machine learning approach for instantaneous classification of myocardial infarct size. Circulation. 2021;144:A12098. doi: 10.1161/circ.144.suppl_1.12098|||Alavi R, Liu J, Ramos M, Hindoyan A, Matthews RV, Pahlevan NM. A hybrid machine learning method for instantaneous classification of left ventricular filling pressure using femoral waveforms. Circulation. 2021;144:A14086. doi: 10.1161/circ.144.suppl_1.14086|||Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, Browne WJ, Clark A, Cuthill IC, Dirnagl U. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. J Cereb Blood Flow Metab. 2020;40:1769–1777. doi: 10.1177/0271678X20943823|||Levene H. Robust tests for equality of variances. Contributions to probability and statistics. 1960:278–292.|||Shapiro SS, Wilk MB. An analysis of variance test for normality (complete samples). Biometrika. 1965;52:591–611. doi: 10.1093/biomet/52.3-4.591|||Boneau CA. The effects of violations of assumptions underlying the t test. Psychol Bull. 1960;57:49–64. doi: 10.1037/h0041412|||Toothaker LE. Multiple Comparison Procedures. Sage; 1993.|||Kruskal WH, Wallis WA. Errata: use of ranks in one‐criterion variance analysis. J Am Stat Assoc. 1953;48:907–911. doi: 10.2307/2281082|||Dunn OJ. Multiple comparisons using rank sums. Technometrics. 1964;6:241–252. doi: 10.1080/00401706.1964.10490181|||Alavi R, Dai W, Kloner RA, Pahlevan N. Noninvasive and instantaneous detection of myocardial ischemia from a single carotid waveform using a physics‐based machine learning methodology. J Am Coll Cardiol. 2023;81:4012–4012. doi: 10.1016/S0735-1097(23)04456-X|||Alavi R, Dai W, Kloner RA, Pahlevan NM. A hybrid artificial intelligence‐intrinsic frequency method for instantaneous detection of acute myocardial infarction. Circulation. 2019;140:A12573.|||Tavallali P, Razavi M, Pahlevan NM. Artificial intelligence estimation of carotid‐femoral pulse wave velocity using carotid waveform. Sci Rep. 2018;8:1–12. doi: 10.1038/s41598-018-19457-0|||Rinderknecht D, De Balasy JM, Pahlevan NM. A wireless optical handheld device for carotid waveform measurement and its validation in a clinical study. Physiol Meas. 2020;4:055008. doi: 10.1088/1361-6579/ab7b3f|||Pahlevan NM, Dehkordi RA, Wang Q, Gorji H. Sequentially‐reduced artificial intelligence methodology for instantaneous determination of waveform intrinsic frequencies. Google Patents2023.|||Alavi R, Wang Q, Gorji H, Pahlevan NM. A machine learning approach for computation of cardiovascular intrinsic frequencies. PLoS One. 2023;18:e0285228. doi: 10.1371/journal.pone.0285228|||Pahlevan NM, Dehkordi RA, Amlani F, Gorji H, Niroumandijahromi S, Heng W. Sequentially‐reduced artificial intelligence based systems and methods for cardiovascular transfer functions. Google Patents2024.|||Aghilinejad A, Alavi R, Rogers B, Amlani F, Pahlevan NM. Effects of vessel wall mechanics on non‐invasive evaluation of cardiovascular intrinsic frequencies. J Biomech. 2021;129:110852. doi: 10.1016/j.jbiomech.2021.110852|||Pahlevan NM, Dehkordi RA. Noninvasive cardiovascular event detection. Google Patents2023.|||Pahlevan NM, Dehkordi RA, Matthews RV. Noninvasive heart failure detection. Google Patents2023.|||Pahlevan NM, Dehkordi RA. Noninvasive infarct size determination. Google Patents2023.|||Liu J, Niroumandi S, Petrasek D, Pahlevan NM. Non‐invasive insulin resistance evaluation using carotid pressure waveforms in Framingham Heart Study. Circulation. 2023;148:A16533. doi: 10.1161/circ.148.suppl_1.16533|||Chen CH, Ting CT, Nussbacher A, Nevo E, Kass DA, Pak P, Wang SP, Chang MS, Yin FC. Validation of carotid artery tonometry as a means of estimating augmentation index of ascending aortic pressure. Hypertension. 1996;27:168–175. doi: 10.1161/01.HYP.27.2.168|||Kelly R. Non‐invasive registration of the arterial pulse waveform using high fidelity applanation tonometry. J Vasc Med Biol. 1989;1:142–149.|||Salvi P, Lio G, Labat C, Ricci E, Pannier B, Benetos A. Validation of a new non‐invasive portable tonometer for determining arterial pressure wave and pulse wave velocity: the PulsePen device. J Hypertens. 2004;22:2285–2293. doi: 10.1097/00004872-200412000-00010|||Alavi R, Aghilinejad A, Wei H, Niroumandi S, Wieman S, Pahlevan NM. A coupled atrioventricular‐aortic setup for in‐vitro hemodynamic study of the systemic circulation: design, fabrication, and physiological relevancy. PLoS One. 2022;17:e0267765. doi: 10.1371/journal.pone.0267765|||El‐Seweidy MM, Mohamed HE, Asker ME, Atteia HH. Nicotine and vascular endothelial dysfunction in female ovariectomized rats: role of estrogen replacement therapy. J Pharm Pharmacol. 2012;64:108–119. doi: 10.1111/j.2042-7158.2011.01377.x|||Xiao D, Huang X, Yang S, Zhang L. Estrogen normalizes perinatal nicotine–induced hypertensive responses in adult female rat offspring. Hypertension. 2013;61:1246–1254. doi: 10.1161/HYPERTENSIONAHA.113.01152|||Tan X, Vrana K, Ding Z‐M. Cotinine: pharmacologically active metabolite of nicotine and neural mechanisms for its actions. Front Behav Neurosci. 2021;15:758252. doi: 10.3389/fnbeh.2021.758252|||Wiencek JR, Gehrie EA, Keiser AM, Szklarski PC, Johnson‐Davis KL, Booth GS. Detection of nicotine and nicotine metabolites in units of banked blood. Am J Clin Pathol. 2019;151:516–521. doi: 10.1093/ajcp/aqy176