Quick Links

Higher sodium in older individuals or after stroke/reperfusion, but not in migraine or Alzheimer's disease - a study in differen

Authors: Chenchen Xia|||Wangde Dai|||Juan Carreno|||Andrea Rogando|||Xiaomeng Wu|||Darren Simmons|||Natalie Astraea|||Nathan F Dalleska|||Alfred N Fonteh|||Anju Vasudevan|||Xianghong Arakaki|||Robert A Kloner

Journal: Scientific reports

Publication Type: Journal Article

Date: 2024

DOI: PMC11405707

ID: 39284837

Affiliations:

Affiliations

    Cognition and Brain Integration Laboratory, Neurosciences Department, Huntington Medical Research Institutes, Pasadena, CA, USA.|||Cardiovascular Department, Huntington Medical Research Institutes, Pasadena, CA, USA.|||Cardiovascular Department, Huntington Medical Research Institutes, Pasadena, CA, USA.|||Cognition and Brain Integration Laboratory, Neurosciences Department, Huntington Medical Research Institutes, Pasadena, CA, USA.|||Analytical Biochemistry Core, Huntington Medical Research Institutes, Pasadena, CA, USA.|||Analytical Biochemistry Core, Huntington Medical Research Institutes, Pasadena, CA, USA.|||Analytical Biochemistry Core, Huntington Medical Research Institutes, Pasadena, CA, USA.|||Water and Environment Laboratory, California Institute of Technology, Pasadena, CA, USA.|||Biomarker and Neuro-Disease Mechanism Laboratory, Neurosciences Department, Huntington Medical Research Institutes, Pasadena, CA, USA.|||Angiogenesis and Brain Development Laboratory, Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, USA.|||Cognition and Brain Integration Laboratory, Neurosciences Department, Huntington Medical Research Institutes, Pasadena, CA, USA. xianghong.arakaki@hmri.org.|||Cardiovascular Department, Huntington Medical Research Institutes, Pasadena, CA, USA.

Abstract

Sodium serves as one of the primary cations in the central nervous system, playing a crucial role in maintaining normal brain function. In this study, we investigated alterations in sodium concentrations in the brain and/or cerebrospinal fluid across multiple models, including an aging model, a stroke model, a nitroglycerin (NTG)-induced rat migraine model, a familial hemiplegic migraine type 2 (FHM2) mouse model, and a transgenic mouse model of Alzheimer's disease (AD). Our results reveal that older rats exhibited higher sodium concentrations in cerebrospinal fluid (CSF), plasma, and various brain regions compared to their younger counterparts. Additionally, findings from the stroke model demonstrated a significant increase in sodium in the ischemic/reperfused region, accompanied by a decrease in potassium and an elevated sodium/potassium ratio. However, we did not detect significant changes in sodium in the NTG-induced rat migraine model or the FHM2 mouse model. Furthermore, AD transgenic mice showed no significant differences in sodium levels compared to wild-type mice in CSF, plasma, or the hippocampus. These results underscore the nuanced regulation of sodium homeostasis in various neurological conditions and aging, providing valuable insights into potential mechanisms underlying these alterations.


Chemical List

    Sodium|||Nitroglycerin

Reference List

    Cooper, E. C. & Jan, L. Y. Ion channel genes and human neurological disease: Recent progress, prospects, and challenges. Proc. Natl. Acad. Sci. U. S. A.96, 4759–4766 (1999).|||Kullmann, D. M. & Waxman, S. G. Neurological channelopathies: New insights into disease mechanisms and ion channel function. J. Physiol.588, 1823–1827 (2010).|||Turrigiano, G. G. The self-tuning neuron: Synaptic scaling of excitatory synapses. Cell135, 422–435 (2008).|||Iliff, J. J. et al. Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. J. Neurosci.33, 18190–18199 (2013).|||Strazzullo, P. & Leclercq, C. Sodium. Adv. Nutr.5, 188–190 (2014).|||Zacchia, M., Abategiovanni, M. L., Stratigis, S. & Capasso, G. Potassium: From physiology to clinical implications. Kidney Dis.2, 72–79 (2016).|||Bezanilla, F., Rojas, E. & Taylor, R. E. Sodium and potassium conductance changes during a membrane action potential. J. Physiol.211, 729–751 (1970).|||Amatniek, E., Freygang, W., Grundfest, H., Kiebel, G. & Shanes, A. The effect of temperature, potassium, and sodium on the conductance change accompanying the action potential in the squid giant axon. J. Gen. Physiol.41, 333–342 (1957).|||Hodgkin, A. L. & Huxley, A. F. The components of membrane conductance in the giant axon of Loligo. J. Physiol.116, 473–496 (1952).|||Ahern, C. A., Payandeh, J., Bosmans, F. & Chanda, B. The hitchhiker’s guide to the voltage-gated sodium channel galaxy. J. Gen. Physiol.147, 1–24 (2016).|||Bean, B. P. The action potential in mammalian central neurons. Nat. Rev. Neurosci.8, 451–465 (2007).|||Luo, L. et al. Ion channels and transporters in microglial function in physiology and brain diseases. Neurochem. Int.142, 104925 (2021).|||Min, R. & van der Knaap, M. S. Genetic defects disrupting glial ion and water homeostasis in the brain. Brain Pathol.28, 372–387 (2018).|||Schwartzkroin, P. A., Baraban, S. C. & Hochman, D. W. Osmolarity, ionic flux, and changes in brain excitability. Epilepsy Res.32, 275–285 (1998).|||Rust, P. & Ekmekcioglu, C. Impact of salt intake on the pathogenesis and treatment of hypertension. Adv. Exp. Med. Biol.956, 61–84 (2017).|||Francis, C. K. Hypertension and cardiac disease in minorities. Am. J. Med.88, 3s–8s (1990).|||Pistoia, F. et al. Hypertension and stroke: Epidemiological aspects and clinical evaluation. High Blood Press. Cardiovasc. Prev.23, 9–18 (2016).|||Hussain, M. S. et al. Sodium imaging intensity increases with time after human ischemic stroke. Ann. Neurol.66, 55–62 (2009).|||Baier, S. et al. Chlorine and sodium chemical shift imaging during acute stroke in a rat model at 9.4 Tesla. Magn. Reson. Mater. Phys. Biol. Med.27, 71–79 (2014).|||Leftin, A. et al. Multiparametric classification of sub-acute ischemic stroke recovery with ultrafast diffusion, 23Na, and MPIO-labeled stem cell MRI at 21.1 T. NMR Biomed.33, e4186 (2020).|||Feigin, V. L., Lawes, C. M., Bennett, D. A. & Anderson, C. S. Stroke epidemiology: A review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurol.2, 43–53 (2003).|||Simmons, C. A., Poupore, N. & Nathaniel, T. I. Age stratification and stroke severity in the telestroke network. J. Clin. Med.12, 1519 (2023).|||Oliveros, E. et al. Hypertension in older adults: Assessment, management, and challenges. Clin. Cardiol.43, 99–107 (2020).|||Faraco, G. et al. Dietary salt promotes neurovascular and cognitive dysfunction through a gut-initiated TH17 response. Nat. Neurosci.21, 240–249 (2018).|||Cheng, X. J., Gao, Y., Zhao, Y. W. & Cheng, X. D. Sodium chloride increases Aβ levels by suppressing aβ clearance in cultured cells. PLoS One10, e0130432 (2015).|||Harrington, M. G. et al. Cerebrospinal fluid sodium increases in migraine. Headache46, 1128–1135 (2006).|||Reetz, K. et al. Increased brain tissue sodium concentration in Huntington’s Disease—a sodium imaging study at 4 T. Neuroimage63, 517–524 (2012).|||Pogwizd, S. M., Sipido, K. R., Verdonck, F. & Bers, D. M. Intracellular Na in animal models of hypertrophy and heart failure: Contractile function and arrhythmogenesis. Cardiovasc. Res.57, 887–896 (2003).|||Murphy, E. & Eisner, D. A. Regulation of intracellular and mitochondrial sodium in health and disease. Circ. Res.104, 292–303 (2009).|||Leo, L. et al. Increased susceptibility to cortical spreading depression in the mouse model of familial hemiplegic migraine type 2. PLoS Genet.7, e1002129 (2011).|||Shavlakadze, T. et al. Age-related gene expression signature in rats demonstrate early, late, and linear transcriptional changes from multiple tissues. Cell Rep.28, 3263–73.e3 (2019).|||Andreollo, N. A., Santos, E. F., Araújo, M. R. & Lopes, L. R. Rat’s age versus human’s age: What is the relationship?. Arq. Bras. Circ Dig.25, 49–51 (2012).|||Jackson, S. J. et al. Does age matter? The impact of rodent age on study outcomes. Lab. Anim.51, 160–169 (2017).|||Uluc, K., Miranpuri, A., Kujoth, G. C., Akture, E. & Baskaya, M. K. Focal cerebral ischemia model by endovascular suture occlusion of the middle cerebral artery in the rat. J. Vis. Exp.10.3791/1978-v (2011). 10.3791/1978-v|||Strickland, M., Yacoubi-Loueslati, B., Bouhaouala-Zahar, B., Pender, S. L. F. & Larbi, A. Relationships between ion channels, mitochondrial functions and inflammation in human aging. Front. Physiol.10, 158 (2019).|||Franceschi, C. et al. The continuum of aging and age-related diseases: Common mechanisms but different rates. Front. Med.5, 61 (2018).|||Hartmann, A. et al. Ranking biomarkers of aging by citation profiling and effort scoring. Front. Genet.12, 686320 (2021).|||He, F. J., Markandu, N. D., Sagnella, G. A., de Wardener, H. E. & MacGregor, G. A. Plasma sodium: Ignored and underestimated. Hypertension45, 98–102 (2005).|||Stocker, S. D., Monahan, K. D. & Browning, K. N. Neurogenic and sympathoexcitatory actions of NaCl in hypertension. Curr. Hypertens. Rep.15, 538–546 (2013).|||Kawano, Y. et al. Sodium and noradrenaline in cerebrospinal fluid and blood in salt-sensitive and non-salt-sensitive essential hypertension. Clin. Exp. Pharmacol. Physiol.19, 235–241 (1992).|||Nakamura, K. & Cowley, A. Jr. Sequential changes of cerebrospinal fluid sodium during the development of hypertension in Dahl rats. Hypertension13, 243–249 (1989).|||Yamashita, Y. et al. Cerebrospinal fluid sodium and enhanced hypertension in salt-loaded spontaneously hypertensive rats. J. Hypertens.10, 7 (1992).|||Huang, B. S., Van Vliet, B. N. & Leenen, F. H. Increases in CSF [Na+] precede the increases in blood pressure in Dahl S rats and SHR on a high-salt diet. Am. J. Physiol. Heart Circ. Physiol.287, H1160–H1166 (2004).|||Ostchega, Y., Fryar, C. D., Nwankwo, T. & Nguyen, D. T. Hypertension prevalence among adults aged 18 and over: United States, 2017–2018. NCHS Data Brief (2020).|||Feigin, V. L. et al. World Stroke Organization (WSO): Global stroke fact sheet 2022. Int. J. Stroke17, 18–29 (2022).|||Medoff, H. S. & Bongiovanni, A. M. Age, sex and species variations on blood pressure in normal rats. Am. J. Physiol. Legacy Content143, 297–299 (1945).|||Cosic, A. et al. Attenuated flow-induced dilatation of middle cerebral arteries is related to increased vascular oxidative stress in rats on a short-term high salt diet. J. Physiol.594, 4917–4931 (2016).|||Schmidt-Pogoda, A. et al. Dietary salt promotes ischemic brain injury and is associated with parenchymal migrasome formation. PLoS One13, e0209871 (2018).|||Bailey, E. L. et al. Effects of dietary salt on gene and protein expression in brain tissue of a model of sporadic small vessel disease. Clin. Sci.132, 1315–1328 (2018).|||Shemin, D. & Dworkin, L. D. Sodium balance in renal failure. Curr. Opin. Nephrol. Hypertens.6, 128–132 (1997).|||Martin, K., Tan, S.-J. & Toussaint, N. D. Total body sodium balance in chronic kidney disease. Int. J. Nephrol.2021, 7562357 (2021).|||Koch, C. A. & Fulop, T. Clinical aspects of changes in water and sodium homeostasis in the elderly. Rev. Endocr. Metab. Disord.18, 49–66 (2017).|||Begg, D. P. Disturbances of thirst and fluid balance associated with aging. Physiol. Behav.178, 28–34 (2017).|||Molaschi, M. et al. Hypernatremic dehydration in the elderly on admission to hospital. J. Nutr. Health Aging1, 156–160 (1997).|||Yu, F. H. & Catterall, W. A. Overview of the voltage-gated sodium channel family. Genome Biol.4, 207 (2003).|||Felix, L., Delekate, A., Petzold, G. C. & Rose, C. R. Sodium fluctuations in astroglia and their potential impact on astrocyte function. Front. Physiol.11, 871 (2020).|||Jones, S. C. et al. Stroke onset time using sodium MRI in rat focal cerebral ischemia. Stroke37, 883–888 (2006).|||Bartha, R. et al. Sodium T2*-weighted MR imaging of acute focal cerebral ischemia in rabbits. Magn. Reson. Imaging22, 983–991 (2004).|||Puig, B., Brenna, S. & Magnus, T. Molecular communication of a dying neuron in stroke. Int. J. Mol. Sci.19, 2834 (2018).|||Shrivastava, A. N., Triller, A. & Melki, R. Cell biology and dynamics of Neuronal Na+/K+-ATPase in health and diseases. Neuropharmacology169, 107461 (2020).|||Rose, C. R. & Verkhratsky, A. Sodium homeostasis and signalling: The core and the hub of astrocyte function. Cell Calcium117, 102817 (2023).|||Staehr, C., Aalkjaer, C. & Matchkov, V. V. The vascular Na, K-ATPase: Clinical implications in stroke, migraine, and hypertension. Clin. Sci.137, 1595–1618 (2023).|||Warren, K. E. et al. Movement of cerebrospinal fluid tracer into brain parenchyma and outflow to nasal mucosa is reduced at 24 h but not 2 weeks post-stroke in mice. Fluids Barriers CNS20, 27 (2023).|||Kajiwara, S. et al. Persistent brain exposure to high sodium induces stroke onset by upregulation of cerebral microbleeds and oxidative stress in hypertensive rats. Hypertens. Res.47, 78–87 (2024).|||Iwai, T. et al. Sodium accumulation during ischemia induces mitochondrial damage in perfused rat hearts. Cardiovasc. Res.55, 141–149 (2002).|||Popa-Wagner, A. et al. Ageing as a risk factor for cerebral ischemia: Underlying mechanisms and therapy in animal models and in the clinic. Mech. Ageing Dev.190, 111312 (2020).|||Meyer, M. M. et al. Cerebral sodium (23Na) magnetic resonance imaging in patients with migraine—a case-control study. Eur. Radiol.29, 7055–7062 (2019).|||Abad, N., Rosenberg, J. T., Hike, D. C., Harrington, M. G. & Grant, S. C. Dynamic sodium imaging at ultra-high field reveals progression in a preclinical migraine model. Pain159, 2058–2065 (2018).|||Vitvitsky, V. M., Garg, S. K., Keep, R. F., Albin, R. L. & Banerjee, R. Na+ and K+ ion imbalances in Alzheimer’s disease. Biochim. Biophys. Acta1822, 1671–1681 (2012).|||Mohan, D. et al. Link between dietary sodium intake, cognitive function, and dementia risk in middle-aged and older adults: A systematic review. J. Alzheimers Dis.76, 1347–1373 (2020).|||Haeger, A. et al. What can 7T sodium MRI tell us about cellular energy depletion and neurotransmission in Alzheimer’s disease?. Alzheimers Dement.17, 1843–1854 (2021).