Quick Links

Publications:

Assessment of Myocardial Injury Size Metrics Using Carotid Pressure Waveform: Proof-of-Concept in Coronary Occlusion/Reperfusion

Authors: Jiajun Li|||Rashid Alavi|||Wangde Dai|||Ray V Matthews|||Robert A Kloner|||Niema M Pahlevan

Journal: FASEB journal : official publication of the Federation of American Societies for Experimental Biology

Publication Type: Journal Article

Date: 2025

DOI: PMC12413657

ID: 40913426

Affiliations:

Affiliations

    Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California, USA.|||Department of Medical Engineering, California Institute of Technology, Pasadena, California, USA.|||Cardiovascular Research Institute, Huntington Medical Research Institutes, Pasadena, California, USA.|||Division of Cardiovascular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.|||Cardiovascular Research Institute, Huntington Medical Research Institutes, Pasadena, California, USA.|||Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California, USA.

Abstract

Myocardial infarction (MI) is a leading cause of death worldwide and the most common precursor to heart failure, even after initial treatment. Precise evaluation of myocardial injury is crucial for assessing interventions and improving outcomes. Extensive evidence from both preclinical models and clinical studies demonstrates that the extent and severity of myocardial injury (i.e., myocardial infarct size, ischemic risk zone, and no-reflow area) are critical determinants of long-term outcomes post-MI. This study aims to assess whether carotid pressure waveforms, analyzed using an intrinsic frequency (IF)-machine learning (ML) approach, can accurately quantify myocardial injury sizes: myocardial infarct size, ischemic risk zone, and no-reflow area. Acute MI was induced in N = 88 Sprague-Dawley rats using a standard coronary occlusion/reperfusion model. MI-injury sizes were obtained via histopathology. IF metrics were extracted from carotid pressure waveforms post-MI. ML classifiers were developed using 66 rats and externally tested on 22 additional rats. Our best developed model for infarct size achieved an accuracy of 0.95 (specificity = 0.95, sensitivity = 0.96). For the ischemic risk zone, the best model showed an accuracy of 0.85 (specificity = 0.90, sensitivity = 0.80), and for the no-reflow area, we reached an accuracy of 0.88 (specificity = 0.89, sensitivity = 0.86). To conclude, a hybrid physics-based ML approach applied to carotid pressure waveforms successfully classified MI-injury severity. As carotid pressure waveforms can be measured non-invasively and remotely (e.g., via smartphones), this proof-of-concept preclinical study suggests a translational potential for post-MI management, enabling timely interventions, improved patient monitoring, and mitigating adverse outcomes.


Reference List

    Krumholz H. M., Normand S. L. T., and Wang Y., “Twenty‐Year Trends in Outcomes for Older Adults With Acute Myocardial Infarction in the United States,” JAMA Network Open 2, no. 3 (2019): e191938, 10.1001/jamanetworkopen.2019.1938.|||Johansson S., Rosengren A., Young K., and Jennings E., “Mortality and Morbidity Trends After the First Year in Survivors of Acute Myocardial Infarction: A Systematic Review,” BMC Cardiovascular Disorders 17 (2017): 1753, 10.1186/s12872-017-0482-9.|||Bahit M. C., Kochar A., and Granger C. B., “Post‐Myocardial Infarction Heart Failure,” JACC: Heart Failure 6, no. 3 (2018): 179–186.|||Minicucci M. F., Azevedo P. S., Polegato B. F., Paiva S. A., and Zornoff L. A., “Heart Failure After Myocardial Infarction: Clinical Implications and Treatment,” Clinical Cardiology 34, no. 7 (2011): 410–414.|||Miller T. D., Piegas L. S., Gibbons R. J., Yi C., and Yusuf S., “Role of Infarct Size in Explaining the Higher Mortality in Older Patients With Acute Myocardial Infarction,” American Journal of Cardiology 90, no. 12 (2002): 1370–1374.|||Feiring A. J., Johnson M. R., Kioschos J. M., Kirchner P. T., Marcus M. L., and White C. W., “The Importance of the Determination of the Myocardial Area at Risk in the Evaluation of the Outcome of Acute Myocardial‐Infarction in Patients,” Circulation 75, no. 5 (1987): 980–987, 10.1161/01.cir.75.5.980.|||Kloner R. A., Dai W., and Hale S. L., “No‐Reflow Phenomenon. A New Target for Therapy of Acute Myocardial Infarction Independent of Myocardial Infarct Size,” Journal of Cardiovascular Pharmacology and Therapeutics 23, no. 3 (2018): 273–276, 10.1177/1074248418764467.|||Ito H., Maruyama A., Iwakura K., et al., “Clinical Implications of the ‘No Reflow’ Phenomenon,” Circulation 93, no. 2 (1996): 223–228, 10.1161/01.Cir.93.2.223.|||Pfeffer M. A., Pfeffer J. M., Fishbein M. C., et al., “Myocardial Infarct Size and Ventricular Function in Rats,” Circulation Research 44, no. 4 (1979): 503–512.|||Lønborg J., Vejlstrup N., Kelbæk H., et al., “Final Infarct Size Measured by Cardiovascular Magnetic Resonance in Patients With ST Elevation Myocardial Infarction Predicts Long‐Term Clinical Outcome: An Observational Study,” European Heart Journal 14, no. 4 (2013): 387–395.|||Minicucci M. F., Azevedo P. S., Martinez P. F., et al., “Critical Infarct Size to Induce Ventricular Remodeling, Cardiac Dysfunction and Heart Failure in Rats,” International Journal of Cardiology 151, no. 2 (2011): 242–243.|||Cleland J., Torabi A., and Khan N., “Epidemiology and Management of Heart Failure and Left Ventricular Systolic Dysfunction in the Aftermath of a Myocardial Infarction,” Heart 91, no. Suppl 2 (2005): ii7–ii13.|||Degerli A., Zabihi M., Kiranyaz S., et al., “Early Detection of Myocardial Infarction in Low‐Quality Echocardiography,” IEEE Access 9 (2021): 34442–34453, 10.1109/ACCESS.2021.3059595.|||Perazzolo Marra M., Lima J. A. C., and Iliceto S., “MRI in Acute Myocardial Infarction,” European Heart Journal 32, no. 3 (2011): 284–293.|||Gosalia A., Haramati L. B., Sheth M. P., and Spindola‐Franco H., “CT Detection of Acute Myocardial Infarction,” American Journal of Roentgenology 182, no. 6 (2004): 1563–1566.|||Gibbons R. J., Valeti U. S., Araoz P. A., and Jaffe A. S., “The Quantification of Infarct Size,” Journal of the American College of Cardiology 44, no. 8 (2004): 1533–1542.|||Yoshida K. and Gould K. L., “Quantitative Relation of Myocardial Infarct Size and Myocardial Viability by Positron Emission Tomography to Left‐Ventricular Ejection Fraction and 3‐Year Mortality With and Without Revascularization,” Journal of the American College of Cardiology 22 (1993): 984–997, 10.1016/0735-1097(93)90407-r.|||Hamosh P. and Cohn J. N., “Left Ventricular Function in Acute Myocardial Infarction,” Journal of Clinical Investigation 50, no. 3 (1971): 523–533.|||Cooper L. L., Rong J., Pahlevan N. M., et al., “Intrinsic Frequencies of Carotid Pressure Waveforms Predict Heart Failure Events: The Framingham Heart Study,” Hypertension 77, no. 2 (2021): 338–346.|||Pahlevan N. M., Rinderknecht D. G., Tavallali P., et al., “Noninvasive Iphone Measurement of Left Ventricular Ejection Fraction Using Intrinsic Frequency Methodology,” Critical Care Medicine 45, no. 7 (2017): 1115–1120.|||Alavi R., Dai W., Matthews R. V., Kloner R. A., and Pahlevan N. M., “Instantaneous Detection of Acute Myocardial Infarction and Ischaemia From a Single Carotid Pressure Waveform in Rats,” European Heart Journal Open 3, no. 5 (2023): oead099.|||Alavi R., Dai W., Amlani F., Rinderknecht D. G., Kloner R. A., and Pahlevan N. M., “Scalability of Cardiovascular Intrinsic Frequencies: Validations in Preclinical Models and Non‐Invasive Clinical Studies,” Life Sciences 284 (2021): 119880, 10.1016/j.lfs.2021.119880.|||Pahlevan N. M., Alavi R., Liu J., Ramos M., Hindoyan A., and Matthews R. V., “Detecting Elevated Left Ventricular End Diastolic Pressure From Simultaneously Measured Femoral Pressure Waveform and Electrocardiogram,” Physiological Measurement 45, no. 8 (2024): 085005.|||Pahlevan N. M., Tavallali P., Rinderknecht D. G., et al., “Intrinsic Frequency for a Systems Approach to Haemodynamic Waveform Analysis With Clinical Applications,” Journal of the Royal Society, Interface 11, no. 98 (2014): 20140617, 10.1098/rsif.2014.0617.|||Niroumandi S., Alavi R., Wolfson A. M., Vaidya A. S., and Pahlevan N. M., “Assessment of Aortic Characteristic Impedance and Arterial Compliance From Non‐Invasive Carotid Pressure Waveform in the Framingham Heart Study,” American Journal of Cardiology 204 (2023): 195–199, 10.1016/j.amjcard.2023.07.076.|||Mogadam E., Shavelle D. M., Giesler G. M., et al., “Intrinsic Frequency Method for Instantaneous Assessment of Left Ventricular‐Arterial Coupling After Transcatheter Aortic Valve Replacement,” Physiological Measurement 41, no. 8 (2020): 085002.|||Dai W., Cheung E., Alleman R. J., et al., “Cardioprotective Effects of Mitochondria‐Targeted Peptide SBT‐20 in Two Different Models of Rat Ischemia/Reperfusion,” Cardiovascular Drugs and Therapy 30 (2016): 559–566.|||Dai W., Shi J., Siddarth P., et al., “Effects of Electronic Cigarette Exposure on Myocardial Infarction and No‐Reflow, and Cardiac Function in a Rat Model,” Journal of Cardiovascular Pharmacology and Therapeutics 28 (2023): 10742484231155992.|||Lindsey M. L., Bolli R., Canty J. M., et al., “Guidelines for Experimental Models of Myocardial Ischemia and Infarction,” American Journal of Physiology. Heart and Circulatory Physiology 314, no. 4 (2018): H812–H838, 10.1152/ajpheart.00335.2017.|||Dai W., Alavi R., Li J., Carreno J., Pahlevan N. M., and Kloner R. A., “Empagliflozin Demonstrates Neuroprotective and Cardioprotective Effects by Reducing Ischemia/Reperfusion Damage in Rat Models of Ischemic Stroke and Myocardial Infarction,” Scientific Reports 15, no. 1 (2025): 8986.|||Alavi R., Li J., Dai W., et al., “Abstract WP382: New Insights From Time‐Frequency Analysis of Electroencephalogram Throughout Ischemic Stroke in Rats,” Stroke 56, no. Suppl_1 (2025): AWP382.|||Li J., Alavi R., Dai W., et al., “Abstract TP371: Effects of Empagliflozin on Ischemic Stroke in a Rat Model: Time‐Frequency Electroencephalogram Features and Cerebral Infarction Size,” Stroke 56, no. Suppl_1 (2025): ATP371.|||Stone G. W., Selker H. P., Thiele H., et al., “Relationship Between Infarct Size and Outcomes Following Primary PCI: Patient‐Level Analysis From 10 Randomized Trials,” Journal of the American College of Cardiology 67, no. 14 (2016): 1674–1683.|||Kloner R. A. and Braunwald E., “Observations on Experimental Myocardial Ischaemia,” Cardiovascular Research 14, no. 7 (1980): 371–395.|||Alavi R., Dai W., Mazandarani S. P., et al., “Adverse Cardiovascular Effects of Nicotine Delivered by Chronic Electronic Cigarettes or Standard Cigarettes Captured by Cardiovascular Intrinsic Frequencies,” Journal of the American Heart Association 13 (2024): e035462.|||Li J., Alavi R., Dai W., Matthews R., Kloner R., and Pahlevan N., “Instantaneous Classification of Myocardial no‐Reflow Size From a Carotid Pressure Waveform: A Physics‐Based Machine Learning Approach,” Circulation 150, no. Suppl_1 (2024): A4140634‐A4140634.|||Pahlevan N. M., Dehkordi R. A., Wang Q., and Gorji H., “Sequentially‐Reduced Artificial Intelligence Methodology for Instantaneous Determination of Waveform Intrinsic Frequencies,” Google Patents, 2023.|||Tavallali P., Razavi M., and Pahlevan N. M., “Artificial Intelligence Estimation of Carotid‐Femoral Pulse Wave Velocity Using Carotid Waveform,” Scientific Reports 8 (2018): 81014, 10.1038/s41598-018-19457-0.|||Alavi R., Dai W., Kloner R. A., and Pahlevan N., “Noninvasive and Instantaneous Detection of Myocardial Ischemia From A Single Carotid Waveform Using A Physics‐Based Machine Learning Methodology,” Journal of the American College of Cardiology 81, no. 8_Suppl (2023): 4012.|||Alavi R., Wang Q., Gorji H., and Pahlevan N. M., “A Machine Learning Approach for Computation of Cardiovascular Intrinsic Frequencies,” PLoS One 18, no. 10 (2023): e0285228.|||Alavi R., Dai W., Kloner R. A., and Pahlevan N. M., “A Physics‐Based Machine Learning Approach for Instantaneous Classification of Myocardial Infarct Size,” Circulation 144, no. Suppl_1 (2021): A12098.|||Alavi R., Dai W., Kloner R. A., and Pahlevan N. M., “A Hybrid Artificial Intelligence‐Intrinsic Frequency Method for Instantaneous Detection of Acute Myocardial Infarction,” Circulation 140, no. Suppl_1 (2019): A12573.|||Alavi R., Dai W., Kloner R. A., and Pahlevan N. M., “A Hybrid Artificial Intelligence‐Intrinsic Frequency Method for Instantaneous Determination of Myocardial Infarct Size,” Circulation 142, no. Suppl_3 (2020): A15899.|||Pahlevan N. M. and Dehkordi R. A., “Noninvasive Infarct Size Determination,” Google Patents, 2023.|||Wu K. C., Zerhouni E. A., Judd R. M., et al., “Prognostic Significance of Microvascular Obstruction by Magnetic Resonance Imaging in Patients With Acute Myocardial Infarction,” Circulation 97, no. 8 (1998): 765–772.|||Gjesdal O., Helle‐Valle T., Hopp E., et al., “Noninvasive Separation of Large, Medium, and Small Myocardial Infarcts in Survivors of Reperfused ST‐Elevation Myocardial Infarction: A Comprehensive Tissue Doppler and Speckle‐Tracking Echocardiography Study,” Circulation: Cardiovascular Imaging 1, no. 3 (2008): 189–196.|||Pfeffer M., Pfeffer J., Steinberg C., and Finn P., “Survival After an Experimental Myocardial Infarction: Beneficial Effects of Long‐Term Therapy With Captopril,” Circulation 72, no. 2 (1985): 406–412.|||Ahmad T., Lund L. H., Rao P., et al., “Machine Learning Methods Improve Prognostication, Identify Clinically Distinct Phenotypes, and Detect Heterogeneity in Response to Therapy in a Large Cohort of Heart Failure Patients,” Journal of the American Heart Association 7, no. 8 (2018): e008081, 10.1161/jaha.117.008081.|||Hatib F., Jian Z. P., Buddi S., et al., “Machine‐Learning Algorithm to Predict Hypotension Based on High‐Fidelity Arterial Pressure Waveform Analysis,” Anesthesiology 129, no. 4 (2018): 663–674, 10.1097/aln.0000000000002300.|||Rafiei D., Alavi R., Matthews R., and Pahlevan N. M., “Instantaneous Detection of Left Ventricular Diastolic Dysfunction From A Single Aortic Pressure Waveform Using A Physics‐Based Machine Learning Approach,” Journal of the American College of Cardiology 85, no. 12_Suppl (2025): 1579.|||Pahlevan N. M., Alavi R., Ramos M., Hindoyan A., and Matthews R. V., “An Artificial Intelligence Derived Method for Instantaneous Detection of Elevated Left Ventricular End Diastolic Pressure,” Circulation 142, no. Suppl_3 (2020): A16334.|||Rafiei D., Alavi R., Matthews R. V., and Pahlevan N., “Assessment of Left Ventricular Relaxation Time Constant Using Arterial Pressure Waveform,” Physiological Measurement (2020), 10.1088/1361-6579/adfb1f.|||Niroumandi S., Rinderknecht D., Bilgi C., et al., “A Noninvasive Smartphone Assessment of Aortic Arch Pulse Wave Velocity and Total Arterial Compliance,” Circulation 148, no. Suppl_1 (2023): A18846.|||Alavi R., Liu J., Ramos M., Hindoyan A., Matthews R. V., and Pahlevan N. M., “A Hybrid Machine Learning Method for Instantaneous Classification of Left Ventricular Filling Pressure Using Femoral Waveforms,” Circulation 144 (2021), 10.1161/circ.144.suppl_1.14086.|||Pahlevan N. M. and Dehkordi R. A., “Noninvasive Cardiovascular Event Detection,” Google Patents, 2023.|||Pahlevan N. M., Dehkordi R. A., and Matthews R. V., “Noninvasive Heart Failure Detection,” Google Patents, 2023.|||Zhou L., Rafiei D., Mogadam E., Alavi R., Pahlevan N. M., and Mehra A., “Indirect Ballistic Injury Resulting in Non–ST‐Segment Elevation Myocardial Infarction,” Case Reports 30, no. 1 (2025): 102752.|||Obokata M., Reddy Y. N., Melenovsky V., et al., “Myocardial Injury and Cardiac Reserve in Patients With Heart Failure and Preserved Ejection Fraction,” Journal of the American College of Cardiology 72, no. 1 (2018): 29–40.|||Shavadia J., Zheng Y., Dianati Maleki N., et al., “Infarct Size, Shock, and Heart Failure: Does Reperfusion Strategy Matter in Early Presenting Patients With ST‐Segment Elevation Myocardial Infarction?,” Journal of the American Heart Association 4, no. 8 (2015): e002049.|||Aghilinejad A., Alavi R., Rogers B., Amlani F., and Pahlevan N. M., “Effects of Vessel Wall Mechanics on Non‐Invasive Evaluation of Cardiovascular Intrinsic Frequencies,” Journal of Biomechanics 129 (2021): 110852, 10.1016/j.jbiomech.2021.110852.|||Rinderknecht D., De Balasy J. M., and Pahlevan N. M., “A Wireless Optical Handheld Device for Carotid Waveform Measurement and Its Validation in a Clinical Study,” Physiological Measurement 41, no. 5 (2020): 055008.|||Kelly R., “Non‐Invasive Registration of the Arterial Pulse Waveform Using High Fidelity Applanation Tonometry,” Journal of Vascular Medicine and Biology 1 (1989): 142–149.|||Salvi P., Lio G., Labat C., Ricci E., Pannier B., and Benetos A., “Validation of a New Non‐Invasive Portable Tonometer for Determining Arterial Pressure Wave and Pulse Wave Velocity: The PulsePen Device,” Journal of Hypertension 22, no. 12 (2004): 2285–2293.|||Alavi R., Aghilinejad A., Wei H., Niroumandi S., Wieman S., and Pahlevan N. M., “A Coupled Atrioventricular‐Aortic Setup for In‐Vitro Hemodynamic Study of the Systemic Circulation: Design, Fabrication, and Physiological Relevancy,” PLoS One 17, no. 11 (2022): e0267765, 10.1371/journal.pone.0267765.|||Li Y. and Kloner R. A., “Is There a Gender Difference in Infarct Size and Arrhythmias Following Experimental Coronary Occlusion and Reperfusion?,” Journal of Thrombosis and Thrombolysis 2 (1995): 221–225.|||Dow J. S., Bhandari A., Hale S. L., and Kloner R. A., “Does Sex Influence the Incidence or Severity of Reperfusion‐Induced Cardiac Arrhythmias?,” Springerplus 4 (2015): 1–6.|||Pahlevan N. M., Dehkordi R. A., Amlani F., Gorji H., Niroumandijahromi S., and Heng W., “Sequentially‐Reduced Artificial Intelligence Based Systems and Methods for Cardiovascular Transfer Functions,” Google Patents, 2024.|||Niroumandi S., Wei H., Amlani F., et al., “Time‐Frequency Machine Learning Transfer Function for Central Pressure Waveforms,” European Heart Journal Open 5, no. 4 (2025): oeaf082.