Intraindividual Cognitive Variability and Magnetic Resonance Imaging in Aging American Indians: Data from the Strong Heart Study
Authors:
Journal: Journal of Alzheimer's disease : JAD
Publication Type: Journal Article
Date: 2023
DOI: NIHMS1872362
ID: 36641671
Abstract
American Indians have high prevalence of risk factors for Alzheimer's disease and related dementias (ADRD) compared to the general population, yet dementia onset and frequency in this population are understudied. Intraindividual cognitive variability (IICV), a measure of variability in neuropsychological test performance within a person at a single timepoint, may be a novel, noninvasive biomarker of neurodegeneration and early dementia.
Reference List
- Prince M, Wimo A, Guerchet M, Ali G-C, Wu Y-T, Prina M (2015) World Alzheimer Report 2015. The Global Impact of Dementia. An Analysis of Prevalence, Incidence, Cost and Trends.|||Bottino CM (2012) Lessons from the epidemiology of neuropsychiatric disorders in older people. Arq Neuropsiquiatr 70, 165–166.|||Deb A, Sambamoorthi U, Thornton JD, Schreurs B, Innes K (2018) Direct medical expenditures associated with Alzheimer’s and related dementias (ADRD) in a nationally representative sample of older adults - an excess cost approach. Aging Ment Health 22, 619–624.|||Vardarajan BN, Faber KM, Bird TD, Bennett DA, Rosenberg R, Boeve BF, Graff-Radford NR, Goate AM, Farlow M, Sweet RA, Lantigua R, Medrano MZ, Ottman R, Schaid DJ, Foroud TM, Mayeux R, Group N-LNFS (2014) Age-specific incidence rates for dementia and Alzheimer disease in NIA-LOAD/NCRAD and EFIGA families: National Institute on Aging Genetics Initiative for Late-Onset Alzheimer Disease/National Cell Repository for Alzheimer Disease (NIA-LOAD/NCRAD) and Estudio Familiar de Influencia Genetica en Alzheimer (EFIGA). JAMA Neurol 71, 315–323.|||Rabin JS, Schultz AP, Hedden T, Viswanathan A, Marshall GA, Kilpatrick E, Klein H, Buckley RF, Yang HS, Properzi M, Rao V, Kirn DR, Papp KV, Rentz DM, Johnson KA, Sperling RA, Chhatwal JP (2018) Interactive Associations of Vascular Risk and β-Amyloid Burden With Cognitive Decline in Clinically Normal Elderly Individuals: Findings From the Harvard Aging Brain Study. JAMA Neurol 75, 1124–1131.|||Knopman DS, Gottesman RF, Sharrett AR, Tapia AL, DavisThomas S, Windham BG, Coker L, Schneider ALC, Alonso A, Coresh J, Albert MS, Mosley TH Jr. (2018) Midlife vascular risk factors and midlife cognitive status in relation to prevalence of mild cognitive impairment and dementia in later life: The Atherosclerosis Risk in Communities Study. Alzheimers Dement 14, 1406–1415.|||Liesz A (2019) The vascular side of Alzheimer’s disease. Science 365, 223–224.|||Jellinger KA (2013) Pathology and pathogenesis of vascular cognitive impairment-a critical update. Front Aging Neurosci 5, 17.|||Gorelick PB, Scuteri A, Black SE, Decarli C, Greenberg SM, Iadecola C, Launer LJ, Laurent S, Lopez OL, Nyenhuis D, Petersen RC, Schneider JA, Tzourio C, Arnett DK, Bennett DA, Chui HC, Higashida RT, Lindquist R, Nilsson PM, Roman GC, Sellke FW, Seshadri S, American Heart Association Stroke Council CoEaP, Council on Cardiovascular Nursing, C.uncil on Cardiovascular Radiology and Intervention, and Council on Cardiovascular Surgery and Anesthesia (2011) Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association. Stroke 42, 2672–2713.|||(CDC) CfDCaP (2003) Diabetes prevalence among American Indians and Alaska Natives and the overall population--United States, 1994–2002. MMWR Morb Mortal Wkly Rep 52, 702–704.|||Suchy-Dicey AM, Shibata DK, Madhyastha TM, Grabowski TJ, Longstreth WT, Buchwald DS (2017) Findings of Vascular Brain Injury and Structural Loss from Cranial Magnetic Resonance Imaging in Elderly American Indians: The Strong Heart Study. Neuroepidemiology 48, 39–47.|||Hutchinson RN, Shin S (2014) Systematic review of health disparities for cardiovascular diseases and associated factors among American Indian and Alaska Native populations. PLoS One 9, e80973.|||Harris R, Nelson LA, Muller C, Buchwald D (2015) Stroke in American Indians and Alaska Natives: A Systematic Review. Am J Public Health 105, e16–26.|||Cholerton B, Omidpanah A, Verney SP, Nelson LA, Baker LD, Suchy-Dicey A, Longstreth WT, Howard BV, Henderson JA, Montine TJ, Buchwald D (2019) Type 2 diabetes and later cognitive function in older American Indians: The Strong Heart Study. Int J Geriatr Psychiatry 34, 1050–1057.|||Henson RN, Suri S, Knights E, Rowe JB, Kievit RA, Lyall DM, Chan D, Eising E, Fisher SE (2020) Effect of apolipoprotein E polymorphism on cognition and brain in the Cambridge Centre for Ageing and Neuroscience cohort. Brain Neurosci Adv 4, 2398212820961704.|||Suchy-Dicey A, Howard B, Longstreth WT, Reiman EM, Buchwald D (2022) APOE genotype, hippocampus, and cognitive markers of Alzheimer’s disease in American Indians: Data from the Strong Heart Study. Alzheimers Dement.|||Administration for Community Living USDoHaHS, 2020 Profile of American Indians and Alaska Natives Age 65 and older, https://acl.gov/sites/default/files/ProfileofOA/AIANProfileReport2021.pdf,|||de Souza-Talarico JN, de Carvalho AP, Brucki SM, Nitrini R, Ferretti-Rebustini RE (2016) Dementia and Cognitive Impairment Prevalence and Associated Factors in Indigenous Populations: A Systematic Review. Alzheimer Dis Assoc Disord 30, 281–287.|||Manson SM, Buchwald DS (2021) Aging and Health of American Indians and Alaska Natives: Contributions from the Native Investigator Development Program. J Aging Health 33, 3S–9S.|||Ten Kate M, Dicks E, Visser PJ, van der Flier WM, Teunissen CE, Barkhof F, Scheltens P, Tijms BM, Initiative AsDN (2018) Atrophy subtypes in prodromal Alzheimer’s disease are associated with cognitive decline. Brain 141, 3443–3456.|||Marchant NL, Reed BR, Sanossian N, Madison CM, Kriger S, Dhada R, Mack WJ, DeCarli C, Weiner MW, Mungas DM, Chui HC, Jagust WJ (2013) The aging brain and cognition: contribution of vascular injury and aβ to mild cognitive dysfunction. JAMA Neurol 70, 488–495.|||Cholerton B, Omidpanah A, Madhyastha TM, Grabowski TJ, Suchy-Dicey AM, Shibata DK, Nelson LA, Verney SP, Howard BV, Longstreth WT, Montine TJ, Buchwald D (2017) Total Brain and Hippocampal Volumes and Cognition in Older American Indians: The Strong Heart Study. Alzheimer Dis Assoc Disord 31, 94–100.|||Suchy-Dicey A, Shibata D, Cholerton B, Nelson L, Calhoun D, Ali T, Montine TJ, Longstreth WT, Buchwald D, Verney SP (2020) Cognitive Correlates of MRI-defined Cerebral Vascular Injury and Atrophy in Elderly American Indians: The Strong Heart Study. J Int Neuropsychol Soc 26, 263–275.|||Bangen KJ, Weigand AJ, Thomas KR, Delano-Wood L, Clark LR, Eppig J, Werhane ML, Edmonds EC, Bondi MW (2019) Cognitive dispersion is a sensitive marker for early neurodegenerative changes and functional decline in nondemented older adults. Neuropsychology 33, 599–608.|||Lu K, Nicholas JM, James SN, Lane CA, Parker TD, Keshavan A, Keuss SE, Buchanan SM, Murray-Smith H, Cash DM, Sudre CH, Malone IB, Coath W, Wong A, Henley SMD, Fox NC, Richards M, Schott JM, Crutch SJ (2020) Increased variability in reaction time is associated with amyloid beta pathology at age 70. Alzheimers Dement (Amst) 12, e12076.|||Gleason CE, Norton D, Anderson ED, Wahoske M, Washington DT, Umucu E, Koscik RL, Dowling NM, Johnson SC, Carlsson CM, Asthana S, Initiative AsDN (2018) Cognitive Variability Predicts Incident Alzheimer’s Disease and Mild Cognitive Impairment Comparable to a Cerebrospinal Fluid Biomarker. J Alzheimers Dis 61, 79–89.|||Costa AS, Dogan I, Schulz JB, Reetz K (2019) Going beyond the mean: Intraindividual variability of cognitive performance in prodromal and early neurodegenerative disorders. Clin Neuropsychol 33, 369–389.|||Palop JJ, Chin J, Mucke L (2006) A network dysfunction perspective on neurodegenerative diseases. Nature 443, 768–773.|||Hultsch DF, MacDonald SW, Hunter MA, Levy-Bencheton J, Strauss E (2000) Intraindividual variability in cognitive performance in older adults: comparison of adults with mild dementia, adults with arthritis, and healthy adults. Neuropsychology 14, 588–598.|||Schretlen DJ, Munro CA, Anthony JC, Pearlson GD (2003) Examining the range of normal intraindividual variability in neuropsychological test performance. J Int Neuropsychol Soc 9, 864–870.|||Holtzer R, Verghese J, Wang C, Hall CB, Lipton RB (2008) Within-person across-neuropsychological test variability and incident dementia. JAMA 300, 823–830.|||Anderson ED, Wahoske M, Huber M, Norton D, Li Z, Koscik RL, Umucu E, Johnson SC, Jones J, Asthana S, Gleason CE, Initiative AsDN (2016) Cognitive variability-A marker for incident MCI and AD: An analysis for the Alzheimer’s Disease Neuroimaging Initiative. Alzheimers Dement (Amst) 4, 47–55.|||Vaughan L, Leng I, Dagenbach D, Resnick SM, Rapp SR, Jennings JM, Brunner RL, Simpson SL, Beavers DP, Coker LH, Gaussoin SA, Sink KM, Espeland MA (2013) Intraindividual variability in domain-specific cognition and risk of mild cognitive impairment and dementia. Curr Gerontol Geriatr Res 2013, 495793.|||Kliegel M, Sliwinski M (2004) MMSE cross-domain variability predicts cognitive decline in centenarians. Gerontology 50, 39–43.|||Koscik RL, Berman SE, Clark LR, Mueller KD, Okonkwo OC, Gleason CE, Hermann BP, Sager MA, Johnson SC (2016) Intraindividual Cognitive Variability in Middle Age Predicts Cognitive Impairment 8–10 Years Later: Results from the Wisconsin Registry for Alzheimer’s Prevention. J Int Neuropsychol Soc 22, 1016–1025.|||MacDonald SW, Nyberg L, Bäckman L (2006) Intra-individual variability in behavior: links to brain structure, neurotransmission and neuronal activity. Trends Neurosci 29, 474–480.|||Nilsson J, Thomas AJ, O’Brien JT, Gallagher P (2014) White matter and cognitive decline in aging: a focus on processing speed and variability. J Int Neuropsychol Soc 20, 262–267.|||Stuss DT, Murphy KJ, Binns MA, Alexander MP (2003) Staying on the job: the frontal lobes control individual performance variability. Brain 126, 2363–2380.|||Ferreira D, Machado A, Molina Y, Nieto A, Correia R, Westman E, Barroso J (2017) Cognitive Variability during Middle-Age: Possible Association with Neurodegeneration and Cognitive Reserve. Front Aging Neurosci 9, 188.|||Kälin AM, Pflüger M, Gietl AF, Riese F, Jäncke L, Nitsch RM, Hock C (2014) Intraindividual variability across cognitive tasks as a potential marker for prodromal Alzheimer’s disease. Front Aging Neurosci 6, 147.|||Henning-Smith C, Powell MA, Lahr M (2022) Approaches to Serving Rural Older Adults in State Plans on Aging: A Policy Content Evaluation. J Appl Gerontol, 7334648221104085.|||Eichenbaum H (2004) Hippocampus: cognitive processes and neural representations that underlie declarative memory. Neuron 44, 109–120.|||Opitz B (2014) Memory function and the hippocampus. Front Neurol Neurosci 34, 51–59.|||Camerino I, Sierpowska J, Reid A, Meyer NH, Tuladhar AM, Kessels RPC, de Leeuw FE, Piai V (2021) White matter hyperintensities at critical crossroads for executive function and verbal abilities in small vessel disease. Hum Brain Mapp 42, 993–1002.|||Aggarwal NT, Wilson RS, Bienias JL, De Jager PL, Bennett DA, Evans DA, DeCarli C (2010) The association of magnetic resonance imaging measures with cognitive function in a biracial population sample. Arch Neurol 67, 475–482.|||Vibha D, Tiemeier H, Mirza SS, Adams HHH, Niessen WJ, Hofman A, Prasad K, van der Lugt A, Vernooij MW, Ikram MA (2018) Brain Volumes and Longitudinal Cognitive Change: A Population-based Study. Alzheimer Dis Assoc Disord 32, 43–49.|||Suchy-Dicey AM, Shibata D, Best LG, Verney SP, Longstreth WT Jr., Lee ET, Okin PM, Devereux R, O’Leary M, Ali T, Jensen PN, Muller C, Nelson LA, Rhoades E, Madhyastha T, Grabowski TJ, Beauchamp N, Umans JG, Buchwald D (2016) Cranial Magnetic Resonance Imaging in Elderly American Indians: Design, Methods, and Implementation of the Cerebrovascular Disease and Its Consequences in American Indians Study.Neuroepidemiology 47, 67–75.|||Lee ET, Welty TK, Fabsitz R, Cowan LD, Le NA, Oopik AJ, Cucchiara AJ, Savage PJ, Howard BV (1990) The Strong Heart Study. A study of cardiovascular disease in American Indians: design and methods. Am J Epidemiol 132, 1141–1155.|||Teng EL, Chui HC (1987) The Modified Mini-Mental State (3MS) examination. J Clin Psychiatry 48, 314–318.|||Grace J, Nadler JD, White DA, Guilmette TJ, Giuliano AJ, Monsch AU, Snow MG (1995) Folstein vs modified Mini-Mental State Examination in geriatric stroke. Stability, validity, and screening utility. Arch Neurol 52, 477–484.|||(1994) Canadian study of health and aging: study methods and prevalence of dementia. CMAJ 150, 899–913.|||Bland RC, Newman SC (2001) Mild dementia or cognitive impairment: the Modified Mini-Mental State examination (3MS) as a screen for dementia. Can J Psychiatry 46, 506–510.|||Ryan J, Woods RL, Murray AM, Shah RC, Britt CJ, Reid CM, Wolfe R, Nelson MR, Lockery JE, Orchard SG, Trevaks RE, Chong TJ, McNeil JJ, Storey E, Group AI (2020) Normative performance of older individuals on the Hopkins Verbal Learning Test-Revised (HVLT-R) according to ethno-racial group, gender, age and education level. Clin Neuropsychol, 1–17.|||Gibson E, Gao F, Black SE, Lobaugh NJ (2010) Automatic segmentation of white matter hyperintensities in the elderly using FLAIR images at 3T. J Magn Reson Imaging 31, 1311–1322.|||Stein JL, Medland SE, Vasquez AA, Hibar DP, Senstad RE, Winkler AM, Toro R, Appel K, Bartecek R, Bergmann Ø, Bernard M, Brown AA, Cannon DM, Chakravarty MM, Christoforou A, Domin M, Grimm O, Hollinshead M, Holmes AJ, Homuth G, Hottenga JJ, Langan C, Lopez LM, Hansell NK, Hwang KS, Kim S, Laje G, Lee PH, Liu X, Loth E, Lourdusamy A, Mattingsdal M, Mohnke S, Maniega SM, Nho K, Nugent AC, O’Brien C, Papmeyer M, Pütz B, Ramasamy A, Rasmussen J, Rijpkema M, Risacher SL, Roddey JC, Rose EJ, Ryten M, Shen L, Sprooten E, Strengman E, Teumer A, Trabzuni D, Turner J, van Eijk K, van Erp TG, van Tol MJ, Wittfeld K, Wolf C, Woudstra S, Aleman A, Alhusaini S, Almasy L, Binder EB, Brohawn DG, Cantor RM, Carless MA, Corvin A, Czisch M, Curran JE, Davies G, de Almeida MA, Delanty N, Depondt C, Duggirala R, Dyer TD, Erk S, Fagerness J, Fox PT, Freimer NB, Gill M, Göring HH, Hagler DJ, Hoehn D, Holsboer F, Hoogman M, Hosten N, Jahanshad N, Johnson MP, Kasperaviciute D, Kent JW, Kochunov P, Lancaster JL, Lawrie SM, Liewald DC, Mandl R, Matarin M, Mattheisen M, Meisenzahl E, Melle I, Moses EK, Mühleisen TW, Nauck M, Nöthen MM, Olvera RL, Pandolfo M, Pike GB, Puls R, Reinvang I, Rentería ME, Rietschel M, Roffman JL, Royle NA, Rujescu D, Savitz J, Schnack HG, Schnell K, Seiferth N, Smith C, Steen VM, Valdés Hernández MC, Van den Heuvel M, van der Wee NJ, Van Haren NE, Veltman JA, Völzke H, Walker R, Westlye LT, Whelan CD, Agartz I, Boomsma DI, Cavalleri GL, Dale AM, Djurovic S, Drevets WC, Hagoort P, Hall J, Heinz A, Jack CR, Foroud TM, Le Hellard S, Macciardi F, Montgomery GW, Poline JB, Porteous DJ, Sisodiya SM, Starr JM, Sussmann J, Toga AW, Veltman DJ, Walter H, Weiner MW, Bis JC, Ikram MA, Smith AV, Gudnason V, Tzourio C, Vernooij MW, Launer LJ, DeCarli C, Seshadri S, Andreassen OA, Apostolova LG, Bastin ME, Blangero J, Brunner HG, Buckner RL, Cichon S, Coppola G, de Zubicaray GI, Deary IJ, Donohoe G, de Geus EJ, Espeseth T, Fernández G, Glahn DC, Grabe HJ, Hardy J, Hulshoff Pol HE, Jenkinson M, Kahn RS, McDonald C, McIntosh AM, McMahon FJ, McMahon KL, Meyer-Lindenberg A, Morris DW, Müller-Myhsok B, Nichols TE, Ophoff RA, Paus T, Pausova Z, Penninx BW, Potkin SG, Sämann PG, Saykin AJ, Schumann G, Smoller JW, Wardlaw JM, Weale ME, Martin NG, Franke B, Wright MJ, Thompson PM, Initiative AsDN, Consortium E, Consortium I, Group SYS, Consortium CfHaARiGE, Consortium ENIGtM-A (2012) Identification of common variants associated with human hippocampal and intracranial volumes. Nat Genet 44, 552–561.|||Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20, 45–57.|||Patenaude B, Smith SM, Kennedy DN, Jenkinson M (2011) A Bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage 56, 907–922.|||Reuter M, Schmansky NJ, Rosas HD, Fischl B (2012) Within-subject template estimation for unbiased longitudinal image analysis. Neuroimage 61, 1402–1418.|||Wechsler D (2008) Wechsler Adult Intelligence Scale, Pearson, San Antonio, TX.|||Delis DC, Kramer JH, Kaplan E, Ober BACVLT (2000) Psychological Corporation, San Antonio, TX.|||Ruff RM, Light RH, Parker SB, Levin HS (1996) Benton Controlled Oral Word Association Test: reliability and updated norms. Arch Clin Neuropsychol 11, 329–338.|||Dunn OJ (1961) Multiple Comparisons among Means. Journal of the American Statistical Association 56, 52–64.|||Tsapanou A, Habeck C, Gazes Y, Razlighi Q, Sakhardande J, Stern Y, Salthouse TA (2019) Brain biomarkers and cognition across adulthood. Hum Brain Mapp 40, 3832–3842.|||Hedden T, Schultz AP, Rieckmann A, Mormino EC, Johnson KA, Sperling RA, Buckner RL (2016) Multiple Brain Markers are Linked to Age-Related Variation in Cognition. Cereb Cortex 26, 1388–1400.|||Jack CR Jr., Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, Petersen RC, Trojanowski JQ (2010) Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol 9, 119–128.|||MacDonald SW, Hultsch DF, Dixon RA (2003) Performance variability is related to change in cognition: evidence from the Victoria Longitudinal Study. Psychol Aging 18, 510–523.|||Lindenberger U, Baltes PB (1997) Intellectual functioning in old and very old age: cross-sectional results from the Berlin Aging Study. Psychol Aging 12, 410–432.|||Savva GM, Wharton SB, Ince PG, Forster G, Matthews FE, Brayne C, Study MRCCFaA (2009) Age, neuropathology, and dementia. N Engl J Med 360, 2302–2309.|||Hof PR, Glannakopoulos P, Bouras C (1996) The neuropathological changes associated with normal brain aging. Histol Histopathol 11, 1075–1088.|||Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256, 184–185.|||Harrison JR, Owen MJ (2016) Alzheimer’s disease: the amyloid hypothesis on trial. Br J Psychiatry 208, 1–3.|||Malek-Ahmadi M, Lu S, Chan Y, Perez SE, Chen K, Mufson EJ (2017) Cognitive Domain Dispersion Association with Alzheimer’s Disease Pathology. J Alzheimers Dis 58, 575–583.|||Meeker KL, Ances BM, Gordon BA, Rudolph CW, Luckett P, Balota DA, Morris JC, Fagan AM, Benzinger TL, Waring JD (2021) Cerebrospinal fluid Aβ42 moderates the relationship between brain functional network dynamics and cognitive intraindividual variability. Neurobiol Aging 98, 116–123.|||Holmqvist SL, Thomas KR, Brenner EK, Edmonds EC, Calcetas A, Edwards L, Bordyug M, Bangen KJ (2022) Longitudinal Intraindividual Cognitive Variability Is Associated With Reduction in Regional Cerebral Blood Flow Among Alzheimer’s Disease Biomarker-Positive Older Adults. Front Aging Neurosci 14, 859873.|||Scott BM, Austin T, Royall DR, Hilsabeck RC (2022) Cognitive intraindividual variability as a potential biomarker for early detection of cognitive and functional decline. Neuropsychology.|||Roalf DR, Rupert P, Mechanic-Hamilton D, Brennan L, Duda JE, Weintraub D, Trojanowski JQ, Wolk D, Moberg PJ (2018) Quantitative assessment of finger tapping characteristics in mild cognitive impairment, Alzheimer’s disease, and Parkinson’s disease. J Neurol 265, 1365–1375.|||Manning KJ, Preciado-Pina J, Wang L, Fitzgibbon K, Chan G, Steffens DC (2021) Cognitive variability, brain aging, and cognitive decline in late-life major depression. Int J Geriatr Psychiatry 36, 665–676.|||Christ BU, Combrinck MI, Thomas KGF (2018) Both Reaction Time and Accuracy Measures of Intraindividual Variability Predict Cognitive Performance in Alzheimer’s Disease. Front Hum Neurosci 12, 124.|||Holmqvist SL, Thomas KR, Edmonds EC, Calcetas A, Edwards L, Bangen KJ, Initiative AsDN (2022) Cognitive dispersion is elevated in amyloid-positive older adults and associated with regional hypoperfusion. J Int Neuropsychol Soc, 1–11.|||Sorg SF, Merritt VC, Clark AL, Werhane ML, Holiday KA, Schiehser DM, Bondi M, Delano-Wood L (2020) Elevated Intraindividual Variability in Executive Functions and Associations with White Matter Microstructure in Veterans with Mild Traumatic Brain Injury. J Int Neuropsychol Soc, 1–10.|||(CDC) CfDCaP (2006) Diagnosed diabetes among American Indians and Alaska Natives aged <35 years--United States, 1994–2004. MMWR Morb Mortal Wkly Rep 55, 1201–1203.|||Fellows RP, Schmitter-Edgecombe M (2015) Between-domain cognitive dispersion and functional abilities in older adults. J Clin Exp Neuropsychol 37, 1013–1023.|||YATES AJ (1954) The validity of some psychological tests of brain damage. Psychol Bull 51, 359–379.|||Howieson DB, Dame A, Camicioli R, Sexton G, Payami H, Kaye JA (1997) Cognitive markers preceding Alzheimer’s dementia in the healthy oldest old. J Am Geriatr Soc 45, 584–589.|||Waller M, Buckley RF, Masters CL, Nona FR, Eades SJ, Dobson AJ (2021) Deaths with Dementia in Indigenous and Non-Indigenous Australians: A Nationwide Study. J Alzheimers Dis 81, 1589–1599.