Quick Links

Publications:

COVID-19 and Cognitive Change in a Community-Based Cohort.

Authors: Ryan T Demmer|||Talea Cornelius|||Zarina Kraal|||James R Pike|||Yifei Sun|||Pallavi Balte|||Chaoqi Wu|||Norrina B Allen|||Mary Cushman|||Astrid M Suchy-Dicey|||Mitchell S V Elkind|||Virginia Howard|||Anna Kucharska-Newton|||Deb Levine|||Pamela L Lutsey|||Jennifer Manly|||Thomas H Mosley|||Priya Palta|||Melinda C Power|||Sudha Seshadri|||Russell P Tracy|||Keenan Walker|||Josef Coresh|||Elizabeth C Oelsner

Journal: JAMA network open

Publication Type: Journal Article

Date: 2025

DOI: PMC12210084

ID: 40587126

Affiliations:

Affiliations

    Division of Epidemiology, Department of Quantitative Health Sciences, College of Medicine and Science, Mayo Clinic, Rochester, Minnesota.|||Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York.|||Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York.|||Department of Medicine, New York University Grossman School of Medicine, New York, New York.|||Department of Biostatistics, Columbia University Mailman School of Public Health, New York, New York.|||Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York.|||Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York.|||Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois.|||Department of Medicine, Larner College of Medicine at the University of Vermont, Burlington.|||Huntington Medical Research Institutes, Pasadena, California.|||Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York.|||Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham.|||Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill.|||Department of Medicine, University of Michigan, Ann Arbor.|||Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis.|||Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York.|||The Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson.|||Department of Neurology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill.|||Department of Epidemiology, Milken Institute School of Public Health, George Washington University, Washington, DC.|||Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, Graduate School of Biomedical Sciences, University of Texas Health San Antonio, San Antonio.|||Department of Pathology and Laboratory Medicine, Larner College of Medicine at the University of Vermont, Burlington.|||Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland.|||Division of Epidemiology, Department of Population Health, New York University Grossman School of Medicine, New York.|||Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York.

Abstract

SARS-CoV-2 infection has been linked to neurotoxic effects and cognitive deficits.


Reference List

    Jaywant A, Vanderlind WM, Alexopoulos GS, Fridman CB, Perlis RH, Gunning FM. Frequency and profile of objective cognitive deficits in hospitalized patients recovering from COVID-19. Neuropsychopharmacology. 2021;46(13):2235-2240. doi: 10.1038/s41386-021-00978-8|||Wanga V, Chevinsky JR, Dimitrov LV, et al. Long-term symptoms among adults tested for SARS-CoV-2 - United States, January 2020-April 2021. MMWR Morb Mortal Wkly Rep. 2021;70(36):1235-1241. doi: 10.15585/mmwr.mm7036a1|||Hirschtick JL, Titus AR, Slocum E, et al. Population-based estimates of post-acute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (PASC) prevalence and characteristics. Clin Infect Dis. 2021;73(11):2055-2064. doi: 10.1093/cid/ciab408|||Perlis RH, Santillana M, Ognyanova K, et al. Prevalence and correlates of long COVID symptoms among US adults. JAMA Netw Open. 2022;5(10):e2238804. doi: 10.1001/jamanetworkopen.2022.38804|||Groff D, Sun A, Ssentongo AE, et al. Short-term and long-term rates of postacute sequelae of SARS-CoV-2 infection: a systematic review. JAMA Netw Open. 2021;4(10):e2128568. doi: 10.1001/jamanetworkopen.2021.28568|||Hampshire A, Azor A, Atchison C, et al. Cognition and memory after COVID-19 in a large community sample. N Engl J Med. 2024;390(9):806-818. doi: 10.1056/NEJMoa2311330|||Cheetham NJ, Penfold R, Giunchiglia V, et al. The effects of COVID-19 on cognitive performance in a community-based cohort: a COVID symptom study biobank prospective cohort study. EClinicalMedicine. 2023;62:102086. doi: 10.1016/j.eclinm.2023.102086|||Wood GK, Sargent BF, Ahmad ZU, et al. Post-hospitalisation COVID-19 cognitive deficits at one year are global and associated with elevated brain injury markers and grey matter volume reduction. Nat Med. 2024;31(1):245-257. doi: 10.1038/s41591-024-03309-8|||Douaud G, Lee S, Alfaro-Almagro F, et al. SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature. 2022;604(7907):697-707. doi: 10.1038/s41586-022-04569-5|||Ostendorf BN, Patel MA, Bilanovic J, et al. Common human genetic variants of APOE impact murine COVID-19 mortality. Nature. 2022;611(7935):346-351. doi: 10.1038/s41586-022-05344-2|||Bohn B, Lutsey PL, Misialek JR, et al. Incidence of dementia following hospitalization with infection among adults in the atherosclerosis risk in communities (ARIC) study cohort. JAMA Netw Open. 2023;6(1):e2250126. doi: 10.1001/jamanetworkopen.2022.50126|||Hellmuth J, Barnett TA, Asken BM, et al. Persistent COVID-19-associated neurocognitive symptoms in non-hospitalized patients. J Neurovirol. 2021;27(1):191-195. doi: 10.1007/s13365-021-00954-4|||Whiteside DM, Oleynick V, Holker E, Waldron EJ, Porter J, Kasprzak M. Neurocognitive deficits in severe COVID-19 infection: case series and proposed model. Clin Neuropsychol. 2021;35(4):799-818. doi: 10.1080/13854046.2021.1874056|||Hellgren L, Birberg Thornberg U, Samuelsson K, Levi R, Divanoglou A, Blystad I. Brain MRI and neuropsychological findings at long-term follow-up after COVID-19 hospitalisation: an observational cohort study. BMJ Open. 2021;11(10):e055164. doi: 10.1136/bmjopen-2021-055164|||Vannorsdall TD, Brigham E, Fawzy A, et al. Cognitive dysfunction, psychiatric distress, and functional decline after COVID-19. J Acad Consult Liaison Psychiatry. 2022;63(2):133-143. doi: 10.1016/j.jaclp.2021.10.006|||Becker JH, Lin JJ, Doernberg M, et al. Assessment of cognitive function in patients after COVID-19 infection. JAMA Netw Open. 2021;4(10):e2130645. doi: 10.1001/jamanetworkopen.2021.30645|||The ARIC investigators . The Atherosclerosis Risk in Communities (ARIC) study: design and objectives. The ARIC investigators. Am J Epidemiol. 1989;129(4):687-702. doi: 10.1093/oxfordjournals.aje.a115184|||Thaweethai T, Jolley SE, Karlson EW, et al. ; RECOVER Consortium . Development of a definition of postacute sequelae of SARS-CoV-2 infection. JAMA. 2023;329(22):1934-1946. doi: 10.1001/jama.2023.8823|||Wright JD, Folsom AR, Coresh J, et al. The ARIC (Atherosclerosis Risk In Communities) study: JACC focus seminar 3/8. J Am Coll Cardiol. 2021;77(23):2939-2959. doi: 10.1016/j.jacc.2021.04.035|||Knopman DS, Pike JR, Gottesman RF, et al. Patterns of cognitive domain abnormalities enhance discrimination of dementia risk prediction: the ARIC study. Alzheimers Dement. 2024;20(7):4559-4571. doi: 10.1002/alz.13876|||Gross AL, Power MC, Albert MS, et al. Application of latent variable methods to the study of cognitive decline when tests change over time. Epidemiology. 2015;26(6):878-887. doi: 10.1097/EDE.0000000000000379|||Crane PK, Narasimhalu K, Gibbons LE, et al. Item response theory facilitated cocalibrating cognitive tests and reduced bias in estimated rates of decline. J Clin Epidemiol. 2008;61(10):1018-27.e9. doi: 10.1016/j.jclinepi.2007.11.011|||Lu Y, Pike JR, Chen J, et al. Changes in Alzheimer disease blood biomarkers and associations with incident all-cause dementia. JAMA. 2024;332(15):1258-1269. doi: 10.1001/jama.2024.6619|||Crivelli L, Palmer K, Calandri I, et al. Changes in cognitive functioning after COVID-19: a systematic review and meta-analysis. Alzheimers Dement. 2022;18(5):1047-1066. doi: 10.1002/alz.12644|||Jaywant A, Gunning FM, Oberlin LE, et al. Cognitive symptoms of post-COVID-19 condition and daily functioning. JAMA Netw Open. 2024;7(2):e2356098. doi: 10.1001/jamanetworkopen.2023.56098|||Chen F, Ke Q, Wei W, Cui L, Wang Y. Apolipoprotein E and viral infection: risks and mechanisms. Mol Ther Nucleic Acids. 2023;33:529-542. doi: 10.1016/j.omtn.2023.07.031|||Fortea J, Pegueroles J, Alcolea D, et al. APOE4 homozygozity represents a distinct genetic form of Alzheimer’s disease. Nat Med. 2024;30(5):1284-1291. doi: 10.1038/s41591-024-02931-w|||Wilson RS, Hebert LE, Scherr PA, Dong X, Leurgens SE, Evans DA. Cognitive decline after hospitalization in a community population of older persons. Neurology. 2012;78(13):950-956. doi: 10.1212/WNL.0b013e31824d5894|||James BD, Wilson RS, Capuano AW, et al. Cognitive decline after elective and nonelective hospitalizations in older adults. Neurology. 2019;92(7):e690-e699. doi: 10.1212/WNL.0000000000006918|||Gracner T, Agarwal M, Murali KP, et al. Association of infection-related hospitalization with cognitive impairment among nursing home residents. JAMA Netw Open. 2021;4(4):e217528. doi: 10.1001/jamanetworkopen.2021.7528|||Crunfli F, Carregari VC, Veras FP, et al. Morphological, cellular, and molecular basis of brain infection in COVID-19 patients. Proc Natl Acad Sci U S A. 2022;119(35):e2200960119. doi: 10.1073/pnas.2200960119|||Gomes I, Karmirian K, Oliveira JT, et al. SARS-CoV-2 infection of the central nervous system in a 14-month-old child: a case report of a complete autopsy. Lancet Reg Health Am. 2021;2:100046. doi: 10.1016/j.lana.2021.100046|||Matschke J, Lütgehetmann M, Hagel C, et al. Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol. 2020;19(11):919-929. doi: 10.1016/S1474-4422(20)30308-2|||Meinhardt J, Radke J, Dittmayer C, et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat Neurosci. 2021;24(2):168-175. doi: 10.1038/s41593-020-00758-5|||Monje M, Iwasaki A. The neurobiology of long COVID. Neuron. 2022;110(21):3484-3496. doi: 10.1016/j.neuron.2022.10.006|||Zuo W, He D, Liang C, et al. The persistence of SARS-CoV-2 in tissues and its association with long COVID symptoms: a cross-sectional cohort study in China. Lancet Infect Dis. 2024;24(8):845-855. doi: 10.1016/S1473-3099(24)00171-3|||Choutka J, Jansari V, Hornig M, Iwasaki A. Unexplained post-acute infection syndromes. Nat Med. 2022;28(5):911-923. doi: 10.1038/s41591-022-01810-6|||Demmer RT, Norby FL, Lakshminarayan K, et al. Periodontal disease and incident dementia: the Atherosclerosis Risk in Communities Study (ARIC). Neurology. 2020;95(12):e1660-e1671. doi: 10.1212/WNL.0000000000010312|||Brown CH IV, Sharrett AR, Coresh J, et al. Association of hospitalization with long-term cognitive and brain MRI changes in the ARIC cohort. Neurology. 2015;84(14):1443-1453. doi: 10.1212/WNL.0000000000001439|||Warren-Gash C, Forbes HJ, Williamson E, et al. Human herpesvirus infections and dementia or mild cognitive impairment: a systematic review and meta-analysis. Sci Rep. 2019;9(1):4743. doi: 10.1038/s41598-019-41218-w|||Soldan SS, Lieberman PM. Epstein-Barr virus and multiple sclerosis. Nat Rev Microbiol. 2023;21(1):51-64. doi: 10.1038/s41579-022-00770-5|||Schreiner TG, Romanescu C, Schreiner OD, Nhambasora F. New insights on the link between Epstein-Barr virus infection and cognitive decline in neurodegenerative diseases (review). Exp Ther Med. 2024;28(5):413. doi: 10.3892/etm.2024.12702|||Carod-Artal FJ. Infectious diseases causing autonomic dysfunction. Clin Auton Res. 2018;28(1):67-81. doi: 10.1007/s10286-017-0452-4|||Davis SE, Cirincione AB, Jimenez-Torres AC, Zhu J. The impact of neurotransmitters on the neurobiology of neurodegenerative diseases. Int J Mol Sci. 2023;24(20):15340. doi: 10.3390/ijms242015340|||Bjornevik K, Cortese M, Healy BC, et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science. 2022;375(6578):296-301. doi: 10.1126/science.abj8222|||Lathe R, Schultek NM, Balin BJ, et al. ; Intracell Research Group Consortium Collaborators . Establishment of a consensus protocol to explore the brain pathobiome in patients with mild cognitive impairment and Alzheimer’s disease: research outline and call for collaboration. Alzheimers Dement. 2023;19(11):5209-5231. doi: 10.1002/alz.13076|||Eimer WA, Vijaya Kumar DK, Navalpur Shanmugam NK, et al. Alzheimer’s disease-associated β-amyloid is rapidly seeded by herpesviridae to protect against brain infection. Neuron. 2018;99(1):56-63.e3. doi: 10.1016/j.neuron.2018.06.030|||Jorfi M, Maaser-Hecker A, Tanzi RE. The neuroimmune axis of Alzheimer’s disease. Genome Med. 2023;15(1):6. doi: 10.1186/s13073-023-01155-w|||Prosswimmer T, Heng A, Daggett V. Mechanistic insights into the role of amyloid-β in innate immunity. Sci Rep. 2024;14(1):5376. doi: 10.1038/s41598-024-55423-9|||Barnes LL, Yumoto F, Capuano A, Wilson RS, Bennett DA, Tractenberg RE. Examination of the factor structure of a global cognitive function battery across race and time. J Int Neuropsychol Soc. 2016;22(1):66-75. doi: 10.1017/S1355617715001113