Lipid Metabolism in Late-Onset Alzheimer's Disease Differs from Patients Presenting with Other Dementia Phenotypes.
Authors:
Journal: International journal of environmental research and public health
Publication Type: Journal Article
Date: 2019
DOI: PMC6603882
ID: 31195602
Abstract
Abnormal cerebrospinal fluid (CSF) levels of β-amyloid peptides (Aβ) and Tau and cognitive decline are typical characteristics of Alzheimer's disease (AD). Since dysregulation in lipid metabolism accompanies abnormal amyloid formation, we quantified glycerophospholipids (GP) and sphingolipids (SP) in CSF fractions from participants with late-onset AD (LOAD, = 29) or with Other Dementia (OD, = 10) to determine if alterations in lipid metabolism account for pathological differences. Aβ and total Tau levels were determined using a sandwich ELISA. Liposomal-based fluorescent assays were used to measure phospholipase A (PLA) and acid or neutral sphingomyelinase (aSMase, nSMase) activities. Supernatant fluid (SF) and nanoparticle (NP) lipids were quantified using LC-MS/MS. Although CSF Aβ and Tau levels are similar, phosphatidylserine (PS) in SF and ceramide (CM) levels in NP are significantly higher in OD compared with LOAD. The aSMase but not the nSMase activity is higher in OD. PLA activity in CSF from OD subjects positively correlates with several GP classes in SF and NP fractions but not in LOAD fractions. Our data indicate differences in CSF lipid metabolism between dementia variants. Higher levels of inflammatory and apoptotic lipids may induce faster neuronal death, resulting in the earlier cognitive decline in patients with OD phenotypes.
Chemical List
- Sphingomyelin Phosphodiesterase
Reference List
- Holtzman D.M., Morris J.C., Goate A.M. Alzheimer’s disease: The challenge of the second century. Sci. Transl. Med. 2011;3:77sr1. doi: 10.1126/scitranslmed.3002369.|||Ballard C., Gauthier S., Corbett A., Brayne C., Aarsland D., Jones E. Alzheimer’s disease. Lancet. 2011;377:1019–1031. doi: 10.1016/S0140-6736(10)61349-9.|||Hirtz D., Thurman D.J., Gwinn-Hardy K., Mohamed M., Chaudhuri A.R., Zalutsky R. How common are the “common” neurologic disorders? Neurology. 2007;68:326–337. doi: 10.1212/01.wnl.0000252807.38124.a3.|||Irie F., Fitzpatrick A.L., Lopez O.L., Kuller L.H., Peila R., Newman A.B., Launer L.J. Enhanced risk for Alzheimer disease in persons with type 2 diabetes and APOE ε4: The cardiovascular health study cognition study. Arch. Neurol. 2008;65:89–93. doi: 10.1001/archneurol.2007.29.|||Verghese P.B., Castellano J.M., Garai K., Wang Y., Jiang H., Shah A., Bu G., Frieden C., Holtzman D.M. ApoE influences amyloid-beta (Aβ) clearance despite minimal apoE/Aβ association in physiological conditions. Proc. Natl. Acad. Sci. USA. 2013;110:E1807–E1816. doi: 10.1073/pnas.1220484110.|||Mattsson N., Andreasson U., Persson S., Arai H., Batish S.D., Bernardini S., Bocchio-Chiavetto L., Blankenstein M.A., Carrillo M.C., Chalbot S., et al. The Alzheimer’s association external quality control program for cerebrospinal fluid biomarkers. Alzheimers Dement. 2011;7:386–395.e6. doi: 10.1016/j.jalz.2011.05.2243.|||Fagan A.M., Holtzman D.M. Cerebrospinal fluid biomarkers of Alzheimer’s disease. Biomark. Med. 2010;4:51–63. doi: 10.2217/bmm.09.83.|||Blennow K., Vanmechelen E., Hampel H. Csf total tau, Aβ42 and phosphorylated tau protein as biomarkers for Alzheimer’s disease. Mol. Neurobiol. 2001;24:87–97. doi: 10.1385/MN:24:1-3:087.|||Rademakers R., Neumann M., Mackenzie I.R. Advances in understanding the molecular basis of frontotemporal dementia. Nat. Rev. Neurol. 2012;8:423–434. doi: 10.1038/nrneurol.2012.117.|||Wu C.K. Parkinson’s disease with dementia, lewy-body disorders and alpha-synuclein: Recent advances and a case report. Acta Neurol. Taiwan. 2011;20:4–14.|||Lebedev A.V., Beyer M.K., Fritze F., Westman E., Ballard C., Aarsland D. Cortical changes associated with depression and antidepressant use in Alzheimer and lewy body dementia: An mri surface-based morphometric study. Am. J. Geriatr. Psychiatry. 2014;22:4–13. doi: 10.1016/j.jagp.2013.02.004.|||Gomperts S.N., Locascio J.J., Marquie M., Santarlasci A.L., Rentz D.M., Maye J., Johnson K.A., Growdon J.H. Brain amyloid and cognition in lewy body diseases. Mov. Disord. 2012;27:965–973. doi: 10.1002/mds.25048.|||Hampel H., Broich K., Hoessler Y., Pantel J. Biological markers for early detection and pharmacological treatment of Alzheimer’s disease. Dialogues Clin. Neurosci. 2009;11:141–157.|||Piomelli D., Astarita G., Rapaka R. A neuroscientist’s guide to lipidomics. Nat. Rev. Neurosci. 2007;8:743–754. doi: 10.1038/nrn2233.|||Emamzadeh F.N., Allsop D. Alpha-synuclein interacts with lipoproteins in plasma. J. Mol. Neurosci. 2017;63:165–172. doi: 10.1007/s12031-017-0967-0.|||Farooqui A.A., Liss L., Horrocks L.A. Neurochemical aspects of Alzheimer’s disease: Involvement of membrane phospholipids. Metab. Brain Dis. 1988;3:19–35. doi: 10.1007/BF01001351.|||Florent-Bechard S., Desbene C., Garcia P., Allouche A., Youssef I., Escanye M.C., Koziel V., Hanse M., Malaplate-Armand C., Stenger C., et al. The essential role of lipids in Alzheimer’s disease. Biochimie. 2009;91:804–809. doi: 10.1016/j.biochi.2009.03.004.|||Han X. Potential mechanisms contributing to sulfatide depletion at the earliest clinically recognizable stage of Alzheimer’s disease: A tale of shotgun lipidomics. J. Neurochem. 2007;103:171–179. doi: 10.1111/j.1471-4159.2007.04708.x.|||Kosicek M., Hecimovic S. Phospholipids and Alzheimer’s disease: Alterations, mechanisms and potential biomarkers. Int. J. Mol. Sci. 2013;14:1310–1322. doi: 10.3390/ijms14011310.|||van Echten-Deckert G., Walter J. Sphingolipids: Critical players in Alzheimer’s disease. Prog. Lipid Res. 2012;51:378–393. doi: 10.1016/j.plipres.2012.07.001.|||Penke B., Paragi G., Gera J., Berkecz R., Kovacs Z., Crul T., László V. The role of lipids and membranes in the pathogenesis of Alzheimer’s disease: A comprehensive view. Curr. Alzheimer Res. 2018;15:1191–1212. doi: 10.2174/1567205015666180911151716.|||Lemkul J.A., Bevan D.R. Lipid composition influences the release of Alzheimer’s amyloid beta-peptide from membranes. Protein Sci. 2011;20:1530–1545. doi: 10.1002/pro.678.|||Fonteh A.N., Chiang J., Cipolla M., Hale J., Diallo F., Chirino A., Arakaki X., Harrington M.G. Alterations in cerebrospinal fluid glycerophospholipids and phospholipase A2 activity in Alzheimer’s disease. J. Lipid Res. 2013;54:2884–2897. doi: 10.1194/jlr.M037622.|||Yu R.K., Tsai Y.T., Ariga T. Functional roles of gangliosides in neurodevelopment: An overview of recent advances. Neurochem. Res. 2012;37:1230–1244. doi: 10.1007/s11064-012-0744-y.|||Diaz M., Fabelo N., Ferrer I., Marin R. “Lipid raft aging” in the human frontal cortex during nonpathological aging: Gender influences and potential implications in Alzheimer’s disease. Neurobiol. Aging. 2018;67:42–52. doi: 10.1016/j.neurobiolaging.2018.02.022.|||Bartke N., Hannun Y.A. Bioactive sphingolipids: Metabolism and function. J. Lipid Res. 2009;50:S91–S96. doi: 10.1194/jlr.R800080-JLR200.|||Haughey N.J., Bandaru V.V., Bae M., Mattson M.P. Roles for dysfunctional sphingolipid metabolism in Alzheimer’s disease neuropathogenesis. Biochim. Biophys. Acta. 2010;1801:878–886. doi: 10.1016/j.bbalip.2010.05.003.|||Chi E.Y., Ege C., Winans A., Majewski J., Wu G., Kjaer K., Lee K.Y. Lipid membrane templates the ordering and induces the fibrillogenesis of Alzheimer’s disease amyloid-beta peptide. Proteins. 2008;72:1–24. doi: 10.1002/prot.21887.|||Davis C.H., Berkowitz M.L. Interaction between amyloid-beta (1–42) peptide and phospholipid bilayers: A molecular dynamics study. Biophys. J. 2009;96:785–797. doi: 10.1016/j.bpj.2008.09.053.|||Fan J., Donkin J., Wellington C. Greasing the wheels of abeta clearance in Alzheimer’s disease: The role of lipids and apolipoprotein e. Biofactors. 2009;35:239–248. doi: 10.1002/biof.37.|||He X., Huang Y., Li B., Gong C.X., Schuchman E.H. Deregulation of sphingolipid metabolism in Alzheimer’s disease. Neurobiol. Aging. 2010;31:398–408. doi: 10.1016/j.neurobiolaging.2008.05.010.|||Sheikh A.M., Michikawa M., Kim S.U., Nagai A. Lysophosphatidylcholine increases the neurotoxicity of Alzheimer’s amyloid beta1-42 peptide: Role of oligomer formation. Neuroscience. 2015;292:159–169. doi: 10.1016/j.neuroscience.2015.02.034.|||Alessenko A.V., Bugrova A.E., Dudnik L.B. Connection of lipid peroxide oxidation with the sphingomyelin pathway in the development of Alzheimer’s disease. Biochem. Soc. Trans. 2004;32:144–146. doi: 10.1042/bst0320144.|||Malaplate-Armand C., Florent-Bechard S., Youssef I., Koziel V., Sponne I., Kriem B., Leininger-Muller B., Olivier J.L., Oster T., Pillot T. Soluble oligomers of amyloid-beta peptide induce neuronal apoptosis by activating a cPLA2-dependent sphingomyelinase-ceramide pathway. Neurobiol. Dis. 2006;23:178–189. doi: 10.1016/j.nbd.2006.02.010.|||Vetrivel K.S., Cheng H., Lin W., Sakurai T., Li T., Nukina N., Wong P.C., Xu H., Thinakaran G. Association of gamma-secretase with lipid rafts in post-golgi and endosome membranes. J. Biol. Chem. 2004;279:44945–44954. doi: 10.1074/jbc.M407986200.|||Hagen-Euteneuer N., Lutjohann D., Park H., Merrill A.H., Jr., van Echten-Deckert G. Sphingosine 1-phosphate (S1P) lyase deficiency increases sphingolipid formation via recycling at the expense of de novo biosynthesis in neurons. J. Biol. Chem. 2012;287:9128–9136. doi: 10.1074/jbc.M111.302380.|||Darios F., Wasser C., Shakirzyanova A., Giniatullin A., Goodman K., Munoz-Bravo J.L., Raingo J., Jorgacevski J., Kreft M., Zorec R., et al. Sphingosine facilitates snare complex assembly and activates synaptic vesicle exocytosis. Neuron. 2009;62:683–694. doi: 10.1016/j.neuron.2009.04.024.|||Popp J., Lewczuk P., Kolsch H., Meichsner S., Maier W., Kornhuber J., Jessen F., Lutjohann D. Cholesterol metabolism is associated with soluble amyloid precursor protein production in Alzheimer’s disease. J. Neurochem. 2012;123:310–316. doi: 10.1111/j.1471-4159.2012.07893.x.|||Vetrivel K.S., Thinakaran G. Membrane rafts in Alzheimer’s disease beta-amyloid production. Biochim. Biophys. Acta. 2010;1801:860–867. doi: 10.1016/j.bbalip.2010.03.007.|||Wood W.G., Schroeder F., Igbavboa U., Avdulov N.A., Chochina S.V. Brain membrane cholesterol domains, aging and amyloid beta-peptides. Neurobiol. Aging. 2002;23:685–694. doi: 10.1016/S0197-4580(02)00018-0.|||Sperling R.A., Aisen P.S., Beckett L.A., Bennett D.A., Craft S., Fagan A.M., Iwatsubo T., Jack C.R., Jr., Kaye J., Montine T.J., et al. Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the national institute on aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:280–292. doi: 10.1016/j.jalz.2011.03.003.|||Weintraub S., Salmon D., Mercaldo N., Ferris S., Graff-Radford N.R., Chui H., Cummings J., DeCarli C., Foster N.L., Galasko D., et al. The Alzheimer’s disease centers’ uniform data set (UDS): The neuropsychologic test battery. Alzheimer Dis. Assoc. Disord. 2009;23:91–101. doi: 10.1097/WAD.0b013e318191c7dd.|||Beekly D.L., Ramos E.M., Lee W.W., Deitrich W.D., Jacka M.E., Wu J., Hubbard J.L., Koepsell T.D., Morris J.C., Kukull W.A., et al. The national Alzheimer’s coordinating center (NACC) database: The uniform data set. Alzheimer Dis. Assoc. Disord. 2007;21:249–258. doi: 10.1097/WAD.0b013e318142774e.|||Crum R.M., Anthony J.C., Bassett S.S., Folstein M.F. Population-based norms for the mini-mental state examination by age and educational level. JAMA. 1993;269:2386–2391. doi: 10.1001/jama.1993.03500180078038.|||Freitas S., Simoes M.R., Alves L., Santana I. Montreal cognitive assessment: Validation study for mild cognitive impairment and Alzheimer disease. Alzheimer Dis. Assoc. Disord. 2013;27:37–43. doi: 10.1097/WAD.0b013e3182420bfe.|||Morris J.C. Clinical dementia rating: A reliable and valid diagnostic and staging measure for dementia of the alzheimer type. Int. Psychogeriatr. 1997;9:173–176; discussion 177–178. doi: 10.1017/S1041610297004870.|||McKhann G.M., Knopman D.S., Chertkow H., Hyman B.T., Jack C.R., Jr., Kawas C.H., Klunk W.E., Koroshetz W.J., Manly J.J., Mayeux R., et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the national institute on aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:263–269. doi: 10.1016/j.jalz.2011.03.005.|||McKeith I.G., Dickson D.W., Lowe J., Emre M., O’Brien J.T., Feldman H., Cummings J., Duda J.E., Lippa C., Perry E.K., et al. Diagnosis and management of dementia with lewy bodies: Third report of the dlb consortium. Neurology. 2005;65:1863–1872. doi: 10.1212/01.wnl.0000187889.17253.b1.|||Rascovsky K., Hodges J.R., Knopman D., Mendez M.F., Kramer J.H., Neuhaus J., van Swieten J.C., Seelaar H., Dopper E.G., Onyike C.U., et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011;134:2456–2477. doi: 10.1093/brain/awr179.|||Chui H.C., Victoroff J.I., Margolin D., Jagust W., Shankle R., Katzman R. Criteria for the diagnosis of ischemic vascular dementia proposed by the state of california alzheimer’s disease diagnostic and treatment centers. Neurology. 1992;42:473–480. doi: 10.1212/WNL.42.3.473.|||Harrington M.G., Chiang J., Pogoda J.M., Gomez M., Thomas K., Marion S.D., Miller K.J., Siddarth P., Yi X., Zhou F., et al. Executive function changes before memory in preclinical Alzheimer’s pathology: A prospective, cross-sectional, case control study. PLoS ONE. 2013;8:e79378. doi: 10.1371/journal.pone.0079378.|||Calero O., Hortiguela R., Bullido M.J., Calero M. Apolipoprotein e genotyping method by real time PCR, a fast and cost-effective alternative to the taqman and fret assays. J. Neurosci. Methods. 2009;183:238–240. doi: 10.1016/j.jneumeth.2009.06.033.|||Fonteh A.N., Ormseth C., Chiang J., Cipolla M., Arakaki X., Harrington M.G. Sphingolipid metabolism correlates with cerebrospinal fluid beta amyloid levels in Alzheimer’s disease. PLoS ONE. 2015;10:e0125597. doi: 10.1371/journal.pone.0125597.|||Harrington M.G., Fonteh A.N., Oborina E., Liao P., Cowan R.P., McComb G., Chavez J.N., Rush J., Biringer R.G., Huhmer A.F. The morphology and biochemistry of nanostructures provide evidence for synthesis and signaling functions in human cerebrospinal fluid. Cerebrospinal Fluid Res. 2009;6:10. doi: 10.1186/1743-8454-6-10.|||Bligh E.G., Dyer W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959;37:911–917. doi: 10.1139/y59-099.|||Weder N.D., Aziz R., Wilkins K., Tampi R.R. Frontotemporal dementias: A review. Ann. Gen. Psychiatry. 2007;6:15. doi: 10.1186/1744-859X-6-15.|||Vance J.E. Phosphatidylserine and phosphatidylethanolamine in mammalian cells: Two metabolically related aminophospholipids. J. Lipid Res. 2008;49:1377–1387. doi: 10.1194/jlr.R700020-JLR200.|||Kay J.G., Grinstein S. Sensing phosphatidylserine in cellular membranes. Sensors. 2011;11:1744–1755. doi: 10.3390/s110201744.|||Jenzer C., Simionato E., Largeau C., Scarcelli V., Lefebvre C., Legouis R. Autophagy mediates phosphatidylserine exposure and phagosome degradation during apoptosis through specific functions of GABARAP/LGG-1 and LC3/LGG-2. Autophagy. 2018:1–14. doi: 10.1080/15548627.2018.1512452.|||Fadok V.A., de Cathelineau A., Daleke D.L., Henson P.M., Bratton D.L. Loss of phospholipid asymmetry and surface exposure of phosphatidylserine is required for phagocytosis of apoptotic cells by macrophages and fibroblasts. J. Biol. Chem. 2001;276:1071–1077. doi: 10.1074/jbc.M003649200.|||Morgado I., Garvey M. Lipids in amyloid-beta processing, aggregation, and toxicity. Adv. Exp. Med. Biol. 2015;855:67–94.|||Lahdo R., Coillet-Matillon S., Chauvet J.P., de La Fourniere-Bessueille L. The amyloid precursor protein interacts with neutral lipids. Eur. J. Biochem. 2002;269:2238–2246. doi: 10.1046/j.1432-1033.2002.02882.x.|||Urmoneit B., Turner J., Dyrks T. Cationic lipids (lipofectamine) and disturbance of cellular cholesterol and sphingomyelin distribution modulates gamma-secretase activity within amyloid precursor protein in vitro. Prostaglandins Other Lipid Mediat. 1998;55:331–343. doi: 10.1016/S0090-6980(98)00032-X.|||Muramatsu R., Kuroda M., Matoba K., Lin H., Takahashi C., Koyama Y., Yamashita T. Prostacyclin prevents pericyte loss and demyelination induced by lysophosphatidylcholine in the central nervous system. J. Biol. Chem. 2015;290:11515–11525. doi: 10.1074/jbc.M114.587253.|||Stephenson D.T., Lemere C.A., Selkoe D.J., Clemens J.A. Cytosolic phospholipase A2 (cPLA2) immunoreactivity is elevated in alzheimer’s disease brain. Neurobiol. Dis. 1996;3:51–63. doi: 10.1006/nbdi.1996.0005.|||Farooqui A.A., Horrocks L.A. Plasmalogen-selective phospholipase A2 and its involvement in Alzheimer’s disease. Biochem. Soc. Trans. 1998;26:243–246. doi: 10.1042/bst0260243.|||Sanchez-Mejia R.O., Mucke L. Phospholipase A2 and arachidonic acid in Alzheimer’s disease. Biochim. Biophys. Acta. 2010;1801:784–790. doi: 10.1016/j.bbalip.2010.05.013.|||Kosicek M., Zetterberg H., Andreasen N., Peter-Katalinic J., Hecimovic S. Elevated cerebrospinal fluid sphingomyelin levels in prodromal Alzheimer’s disease. Neurosci. Lett. 2012;516:302–305. doi: 10.1016/j.neulet.2012.04.019.|||Farooqui A.A., Horrocks L.A., Farooqui T. Interactions between neural membrane glycerophospholipid and sphingolipid mediators: A recipe for neural cell survival or suicide. J. Neurosci. Res. 2007;85:1834–1850. doi: 10.1002/jnr.21268.|||Mielke M.M., Lyketsos C.G. Alterations of the sphingolipid pathway in Alzheimer’s disease: New biomarkers and treatment targets? Neuromol. Med. 2010;12:331–340. doi: 10.1007/s12017-010-8121-y.|||Ng C.Y., Kannan S., Chen Y.J., Tan F.C.K., Ong W.Y., Go M.L., Verma C.S., Low C.M., Lam Y. A new generation of arachidonic acid analogues as potential neurological agent targeting cytosolic phospholipase A2. Sci. Rep. 2017;7:13683. doi: 10.1038/s41598-017-13996-8.|||Rao J.S., Rapoport S.I., Kim H.W. Altered neuroinflammatory, arachidonic acid cascade and synaptic markers in postmortem Alzheimer’s disease brain. Transl. Psychiatry. 2017;7:e1127. doi: 10.1038/tp.2017.97.|||Adibhatla R.M., Hatcher J.F. Altered lipid metabolism in brain injury and disorders. Subcell. Biochem. 2008;49:241–268.|||Bazan N.G., Colangelo V., Lukiw W.J. Prostaglandins and other lipid mediators in Alzheimer’s disease. Prostaglandins Other Lipid Mediat. 2002;68–69:197–210. doi: 10.1016/S0090-6980(02)00031-X.|||Combs C.K., Karlo J.C., Kao S.C., Landreth G.E. Beta-amyloid stimulation of microglia and monocytes results in tnfalpha-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J. Neurosci. 2001;21:1179–1188. doi: 10.1523/JNEUROSCI.21-04-01179.2001.|||Lukiw W.J., Bazan N.G. Neuroinflammatory signaling upregulation in Alzheimer’s disease. Neurochem. Res. 2000;25:1173–1184. doi: 10.1023/A:1007627725251.|||Silva I.T., Mello A.P., Damasceno N.R. Antioxidant and inflammatory aspects of lipoprotein-associated phospholipase A(2) (LP-PLA(2)): A review. Lipids Health Dis. 2011;10:170. doi: 10.1186/1476-511X-10-170.|||Huang Y.H., Schafer-Elinder L., Wu R., Claesson H.E., Frostegard J. Lysophosphatidylcholine (LPC) induces proinflammatory cytokines by a platelet-activating factor (PAF) receptor-dependent mechanism. Clin. Exp. Immunol. 1999;116:326–331. doi: 10.1046/j.1365-2249.1999.00871.x.|||Grin’kina N.M., Abdel-Baki S.G., Bergold P.J. Reversible behavioral deficits in rats during a cycle of demyelination-remyelination of the fimbria. PLoS ONE. 2013;8:e53775. doi: 10.1371/journal.pone.0053775.|||Kilaru A., Isaac G., Tamura P., Baxter D., Duncan S.R., Venables B.J., Welti R., Koulen P., Chapman K.D. Lipid profiling reveals tissue-specific differences for ethanolamide lipids in mice lacking fatty acid amide hydrolase. Lipids. 2010;45:863–875. doi: 10.1007/s11745-010-3457-5.|||Wellner N., Diep T.A., Janfelt C., Hansen H.S. N-acylation of phosphatidylethanolamine and its biological functions in mammals. Biochim. Biophys. Acta. 2013;1831:652–662. doi: 10.1016/j.bbalip.2012.08.019.|||Kornhuber J., Muehlbacher M., Trapp S., Pechmann S., Friedl A., Reichel M., Muhle C., Terfloth L., Groemer T.W., Spitzer G.M., et al. Identification of novel functional inhibitors of acid sphingomyelinase. PLoS ONE. 2011;6:e23852. doi: 10.1371/journal.pone.0023852.|||Zhang P., Liu B., Jenkins G.M., Hannun Y.A., Obeid L.M. Expression of neutral sphingomyelinase identifies a distinct pool of sphingomyelin involved in apoptosis. J. Biol. Chem. 1997;272:9609–9612. doi: 10.1074/jbc.272.15.9609.|||Wang G., Dinkins M., He Q., Zhu G., Poirier C., Campbell A., Mayer-Proschel M., Bieberich E. Astrocytes secrete exosomes enriched with proapoptotic ceramide and prostate apoptosis response 4 (PAR-4): Potential mechanism of apoptosis induction in Alzheimer disease (AD) J. Biol. Chem. 2012;287:21384–21395. doi: 10.1074/jbc.M112.340513.|||Apraiz A., Idkowiak-Baldys J., Nieto-Rementeria N., Boyano M.D., Hannun Y.A., Asumendi A. Dihydroceramide accumulation and reactive oxygen species are distinct and nonessential events in 4-HPR-mediated leukemia cell death. Biochem. Cell Biol. 2012;90:209–223. doi: 10.1139/o2012-001.|||Lam S.M., Wang Y., Duan X., Wenk M.R., Kalaria R.N., Chen C.P., Lai M.K., Shui G. Brain lipidomes of subcortical ischemic vascular dementia and mixed dementia. Neurobiol. Aging. 2014;35:2369–2381. doi: 10.1016/j.neurobiolaging.2014.02.025.|||Canals D., Perry D.M., Jenkins R.W., Hannun Y.A. Drug targeting of sphingolipid metabolism: Sphingomyelinases and ceramidases. Br. J. Pharmacol. 2011;163:694–712. doi: 10.1111/j.1476-5381.2011.01279.x.|||Mohaibes R.J., Fiol-deRoque M.A., Torres M., Ordinas M., Lopez D.J., Castro J.A., Escriba P.V., Busquets X. The hydroxylated form of docosahexaenoic acid (DHA-H) modifies the brain lipid composition in a model of Alzheimer’s disease, improving behavioral motor function and survival. Biochim. Biophys. Acta Biomembr. 2017;1859:1596–1603. doi: 10.1016/j.bbamem.2017.02.020.