Quick Links

Accumulation of Cerebrospinal Fluid Glycerophospholipids and Sphingolipids in Cognitively Healthy Participants With Alzheimer's

Authors: Alfred N Fonteh|||Abby J Chiang|||Xianghong Arakaki|||Sarah P Edminster|||Michael G Harrington

Journal: Frontiers in neuroscience

Publication Type: Journal Article

Date: 2020

DOI: PMC7772205

ID: 33390893

Affiliations:

Affiliations

    Huntington Medical Research Institutes, Pasadena, CA, United States.|||Huntington Medical Research Institutes, Pasadena, CA, United States.|||Huntington Medical Research Institutes, Pasadena, CA, United States.|||Huntington Medical Research Institutes, Pasadena, CA, United States.|||Huntington Medical Research Institutes, Pasadena, CA, United States.

Abstract

Insight into lipids' roles in Alzheimer's disease (AD) pathophysiology is limited because brain membrane lipids have not been characterized in cognitively healthy (CH) individuals. Since age is a significant risk factor of AD, we hypothesize that aging renders the amyloid precursor protein (APP) more susceptible to abnormal processing because of deteriorating membrane lipids. To reflect brain membranes, we studied their lipid components in cerebrospinal fluid (CSF) and brain-derived CSF nanoparticle membranes. Based on CSF Aβ/Tau levels established biomarkers of AD, we define a subset of CH participants with normal Aβ/Tau (CH-NAT) and another group with abnormal or pathological Aβ/Tau (CH-PAT). We report that glycerophospholipids are differentially metabolized in the CSF supernatant fluid and nanoparticle membrane fractions from CH-NAT, CH-PAT, and AD participants. Phosphatidylcholine molecular species from the supernatant fraction of CH-PAT were higher than in the CH-NAT and AD participants. Sphingomyelin levels in the supernatant fraction were lower in the CH-PAT and AD than in the CH-NAT group. The decrease in sphingomyelin corresponded with an increase in ceramide and dihydroceramide and an increase in the ceramide to sphingomyelin ratio in AD. In contrast to the supernatant fraction, sphingomyelin is higher in the nanoparticle fraction from the CH-PAT group, accompanied by lower ceramide and dihydroceramide and a decrease in the ratio of ceramide to sphingomyelin in CH-PAT compared with CH-NAT. On investigating the mechanism for the lipid changes in AD, we observed that phospholipase A (PLA) activity was higher in the AD group than the CH groups. Paradoxically, acid and neutral sphingomyelinase (SMase) activities were lower in AD compared to the CH groups. Considering external influences on lipids, the clinical groups did not differ in their fasting blood lipids or dietary lipids, consistent with the CSF lipid changes originating from brain pathophysiology. The lipid accumulation in a prodromal AD biomarker positive stage identifies perturbation of lipid metabolism and disturbances in APP/Amyloid beta (Aβ) as early events in AD pathophysiology. Our results identify increased lipid turnover in CH participants with AD biomarkers, switching to a predominantly lipolytic state in dementia. This knowledge may be useful for targeting and testing new AD treatments.


Reference List

    Abdullah L., Evans J. E., Ferguson S., Mouzon B., Montague H., Reed J., et al. (2014). Lipidomic analyses identify injury-specific phospholipid changes 3 mo after traumatic brain injury. FASEB J. 28 5311–5321.|||Adibhatla R. M., Hatcher J. F. (2008). Altered lipid metabolism in brain injury and disorders. Subcell. Biochem. 49 241–268. 10.1007/978-1-4020-8831-5_9|||Alberghina M., Infarinato S., Anfuso C. D., Lupo G. (1994). 1-Acyl-2-lysophosphatidylcholine transport across the blood-retina and blood-brain barrier. FEBS Lett. 351 181–185. 10.1016/0014-5793(94)00811-6|||Arai Y., Iwasaki Y., Suzuki T., Ide S., Kaga M. (2019). Elimination of amyloid precursor protein in senile plaques in the brain of a patient with Alzheimer-type dementia and Down syndrome. Brain Dev. 41 106–110. 10.1016/j.braindev.2018.07.017|||Aufschnaiter A., Kohler V., Diessl J., Peselj C., Carmona-Gutierrez D., Keller W., et al. (2017). Mitochondrial lipids in neurodegeneration. Cell Tissue Res. 367 125–140. 10.1007/s00441-016-2463-1|||Bernoud N., Fenart L., Moliere P., Dehouck M. P., Lagarde M., Cecchelli R., et al. (1999). Preferential transfer of 2-docosahexaenoyl-1-lysophosphatidylcholine through an in vitro blood-brain barrier over unesterified docosahexaenoic acid. J. Neurochem. 72 338–345. 10.1046/j.1471-4159.1999.0720338.x|||Bligh E. G., Dyer W. J. (1959). A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37 911–917.|||Casadei V. M., Ferri C., Veglia F., Gavazzi A., Salani G., Cattaneo M., et al. (1999). APOE-491 promoter polymorphism is a risk factor for late-onset Alzheimer’s disease. Neurology 53 1888–1889. 10.1212/wnl.53.8.1888|||Castellano J. M., Kim J., Stewart F. R., Jiang H., DeMattos R. B., Patterson B. W., et al. (2011). Human apoE isoforms differentially regulate brain amyloid-beta peptide clearance. Sci. Transl. Med. 3:89ra57. 10.1126/scitranslmed.3002156|||Chakrabarti S., Munshi S., Banerjee K., Thakurta I. G., Sinha M., Bagh M. B. (2011). Mitochondrial dysfunction during brain aging: role of oxidative stress and modulation by antioxidant supplementation. Aging Dis. 2 242–256.|||Chen S. D., Yin J. H., Hwang C. S., Tang C. M., Yang D. I. (2012). Anti-apoptotic and anti-oxidative mechanisms of minocycline against sphingomyelinase/ceramide neurotoxicity: implication in Alzheimer’s disease and cerebral ischemia. Free Radic. Res. 46 940–950.|||Chew H., Solomon V. A., Fonteh A. N. (2020). Involvement of lipids in Alzheimer’s disease pathology and potential therapies. Front. Physiol. 11:598. 10.3389/fphys.2020.00598|||Chilton F. H., Fonteh A. N., Surette M. E., Triggiani M., Winkler J. D. (1996). Control of arachidonate levels within inflammatory cells. Biochim. Biophys. Acta 1299 1–15. 10.1016/0005-2760(95)00169-7|||Chong J., Xia J. (2020). Using metaboanalyst 4.0 for metabolomics data analysis, interpretation, and integration with other omics data. Methods Mol. Biol. 2104 337–360. 10.1007/978-1-0716-0239-3_17|||Devanand D., Lee J., Luchsinger J., Manly J., Marder K., Mayeux R., et al. (2013). Lessons from epidemiologic research about risk factors, modifiers, and progression of late onset Alzheimer’s disease in New York City at Columbia University medical Center. J. Alzheimers Dis. 33 (Suppl. 1) S447–S455.|||Dinkins M. B., Enasko J., Hernandez C., Wang G., Kong J., Helwa I., et al. (2016). Neutral sphingomyelinase-2 deficiency ameliorates alzheimer’s disease pathology and improves cognition in the 5XFAD mouse. J. Neurosci. 36 8653–8667. 10.1523/jneurosci.1429-16.2016|||Dorninger F., Forss-Petter S., Wimmer I., Berger J. (2020). Plasmalogens, platelet-activating factor and beyond - Ether lipids in signaling and neurodegeneration. Neurobiol. Dis. 145:105061 10.1016/j.nbd.2020.105061|||Du W., Tan J., Xu W., Chen J., Wang L. (2016). Association between clusterin gene polymorphism rs11136000 and late-onset Alzheimer’s disease susceptibility: a review and meta-analysis of case-control studies. Exp. Ther. Med. 12 2915–2927. 10.3892/etm.2016.3734|||Dursun E., Gezen-Ak D., Eker E., Ertan T., Engin F., Hanagasi H., et al. (2008). Presenilin-1 gene intronic polymorphism and late-onset Alzheimer’s disease. J. Geriatr. Psychiatry Neurol. 21 268–273. 10.1177/0891988708324941|||Fagan A. M., Roe C. M., Xiong C., Mintun M. A., Morris J. C., Holtzman D. M. (2007). Cerebrospinal fluid tau/beta-amyloid(42) ratio as a prediction of cognitive decline in nondemented older adults. Arch. Neurol. 64 343–349. 10.1001/archneur.64.3.noc60123|||Fahy E., Subramaniam S., Murphy R. C., Nishijima M., Raetz C. R., Shimizu T., et al. (2009). Update of the LIPID MAPS comprehensive classification system for lipids. J. Lipid Res. 50 (Suppl.) S9–S14.|||Farooqui A. A., Horrocks L. A. (1998). Plasmalogen-selective phospholipase A2 and its involvement in Alzheimer’s disease. Biochem. Soc. Trans. 26 243–246. 10.1042/bst0260243|||Farooqui A. A., Ong W. Y., Horrocks L. A. (2006). Inhibitors of brain phospholipase A2 activity: their neuropharmacological effects and therapeutic importance for the treatment of neurologic disorders. Pharmacol. Rev. 58 591–620. 10.1124/pr.58.3.7|||Fonteh A. N., Chiang J., Cipolla M., Hale J., Diallo F., Chirino A., et al. (2013). Alterations in cerebrospinal fluid glycerophospholipids and phospholipase A2 activity in Alzheimer’s disease. J. Lipid Res. 54 2884–2897. 10.1194/jlr.m037622|||Fonteh A. N., Cipolla M., Chiang A. J., Edminster S. P., Arakaki X., Harrington M. G. (2020). Polyunsaturated fatty acid composition of cerebrospinal fluid fractions shows their contribution to cognitive resilience of a pre-symptomatic Alzheimer’s disease cohort. Front. Physiol. 11:83 10.3389/fphys.2020.00083|||Fonteh A. N., LaPorte T., Swan D., McAlexander M. A. (2001). A decrease in remodeling accounts for the accumulation of arachidonic acid in murine mast cells undergoing apoptosis. J. Biol. Chem. 276 1439–1449. 10.1074/jbc.m006551200|||Fonteh A. N., Ormseth C., Chiang J., Cipolla M., Arakaki X., Harrington M. G. (2015). Sphingolipid metabolism correlates with cerebrospinal fluid Beta amyloid levels in Alzheimer’s disease. PLoS One 10:e0125597. 10.1371/journal.pone.0125597|||Frederikse P. H., Garland D., Zigler J. S., Jr., Piatigorsky J. (1996). Oxidative stress increases production of beta-amyloid precursor protein and beta-amyloid (Abeta) in mammalian lenses, and Abeta has toxic effects on lens epithelial cells. J. Biol. Chem. 271 10169–10174. 10.1074/jbc.271.17.10169|||Garner B. (2010). Lipids and Alzheimer’s disease. Biochim. Biophys. Acta 1801 747–749.|||Guimas Almeida C., Sadat Mirfakhar F., Perdigao C., Burrinha T. (2018). Impact of late-onset Alzheimer’s genetic risk factors on beta-amyloid endocytic production. Cell Mol. Life Sci. 75 2577–2589. 10.1007/s00018-018-2825-9|||Guo T., Korman D., Baker S. L., Landau S. M., Jagust W. J. Alzheimer’s Disease Neuroimaging Initiative (2020). Longitudinal cognitive and biomarker measurements support a unidirectional pathway in alzheimer’s disease pathophysiology. Biol. Psychiatry [Epub ahead of print].|||Harrington M. G., Chiang J., Pogoda J. M., Gomez M., Thomas K., Marion S. D., et al. (2013). Executive function changes before memory in preclinical Alzheimer’s pathology: a prospective, cross-sectional, case control study. PLoS One 8:e79378. 10.1371/journal.pone.0079378|||Harrington M. G., Edminster S. P., Buennagel D. P., Chiang J. P., Sweeney M. D., Chui H. C., et al. (2019). Four-year longitudinal study of cognitively healthy individuals: csf amyloid/tau levels and nanoparticle membranes identify high risk for Alzheimer’s disease. Alzheimers Dement. J. Alzheimers Assoc. 15:299.|||Harrington M. G., Fonteh A. N., Oborina E., Liao P., Cowan R. P., McComb G., et al. (2009). The morphology and biochemistry of nanostructures provide evidence for synthesis and signaling functions in human cerebrospinal fluid. Cerebrospinal Fluid Res. 6:10.|||Hernandez-Diaz S., Soukup S. F. (2020). The role of lipids in autophagy and its implication in neurodegeneration. Cell Stress 4 167–186. 10.15698/cst2020.07.225|||Hulbert A. J. (2010). Metabolism and longevity: is there a role for membrane fatty acids? Integr. Comp. Biol. 50 808–817. 10.1093/icb/icq007|||Idkowiak-Baldys J., Apraiz A., Li L., Rahmaniyan M., Clarke C. J., Kraveka J. M., et al. (2010). Dihydroceramide desaturase activity is modulated by oxidative stress. Biochem. J. 427 265–274. 10.1042/bj20091589|||Jana A., Pahan K. (2004). Fibrillar amyloid-beta peptides kill human primary neurons via NADPH oxidase-mediated activation of neutral sphingomyelinase. Implications for Alzheimer’s disease. J. Biol. Chem. 279 51451–51459. 10.1074/jbc.m404635200|||Jana A., Pahan K. (2010). Fibrillar amyloid-beta-activated human astroglia kill primary human neurons via neutral sphingomyelinase: implications for Alzheimer’s disease. J. Neurosci. 30 12676–12689. 10.1523/jneurosci.1243-10.2010|||Kao Y. C., Ho P. C., Tu Y. K., Jou I. M., Tsai K. J. (2020). Lipids, and Alzheimer’s disease. Int. J. Mol. Sci. 21:1505.|||Kling M. A., Goodenowe D. B., Senanayake V., MahmoudianDehkordi S., Arnold M., Massaro T. J., et al. (2020). Circulating ethanolamine plasmalogen indices in Alzheimer’s disease: relation to diagnosis, cognition, and CSF tau. Alzheimers Dement. 16 1234–1247. 10.1002/alz.12110|||Koch M., DeKosky S. T., Fitzpatrick A. L., Furtado J. D., Lopez O. L., Kuller L. H., et al. (2018). Apolipoproteins and Alzheimer’s pathophysiology. Alzheimers Dement. 10 545–553.|||Kumar A., Singh A., Ekavali A. (2015). A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol. Rep. 67 195–203. 10.1016/j.pharep.2014.09.004|||Lacour M., Quenez O., Rovelet-Lecrux A., Salomon B., Rousseau S., Richard A. C., et al. (2019). Causative mutations and genetic risk factors in sporadic early onset Alzheimer’s disease before 51 years. J. Alzheimers Dis. 71 227–243.|||Laske C., Stellos K. (2014). Vascular pathophysiology of Alzheimer’s disease. Curr. Alzheimer Res. 11 1–3. 10.2174/1567205010666131120101608|||Lee J. K., Jin H. K., Park M. H., Kim B. R., Lee P. H., Nakauchi H., et al. (2014). Acid sphingomyelinase modulates the autophagic process by controlling lysosomal biogenesis in Alzheimer’s disease. J. Exp. Med. 211 1551–1570. 10.1084/jem.20132451|||Leishman E., Kunkler P. E., Hurley J. H., Miller S., Bradshaw H. B. (2019). Bioactive lipids in cancer, inflammation and related diseases : acute and chronic mild traumatic brain injury differentially changes levels of bioactive lipids in the CNS associated with headache. Adv. Exp. Med. Biol. 1161 193–217. 10.1007/978-3-030-21735-8_16|||Lim W. L., Martins I. J., Martins R. N. (2014). The involvement of lipids in Alzheimer’s disease. J. Genet. Genomics 41 261–274.|||Lorenzo A., Yuan M., Zhang Z., Paganetti P. A., Sturchler-Pierrat C., Staufenbiel M., et al. (2000). Amyloid beta interacts with the amyloid precursor protein: a potential toxic mechanism in Alzheimer’s disease. Nat. Neurosci. 3 460–464. 10.1038/74833|||Luo X., Yang Y., Shen T., Tang X., Xiao Y., Zou T., et al. (2012). Docosahexaenoic acid ameliorates palmitate-induced lipid accumulation and inflammation through repressing NLRC4 inflammasome activation in HepG2 cells. Nutr. Metab. 9:34. 10.1186/1743-7075-9-34|||Martinez Martinez P., Mielke M. M. (2017). Sphingolipids in Alzheimer’s disease and related disorders. J. Alzheimers Dis. 60 753–756.|||Mendes A., Tezenas du Montcel S., Levy M., Bertrand A., Habert M. O., et al. (2018). Multimorbidity is associated with preclinical Alzheimer’s disease neuroimaging biomarkers. Dement. Geriatr. Cogn. Disord. 45 272–281.|||Mirmiran P., Bahadoran Z., Azizi F. (2014). Lipid accumulation product is associated with insulin resistance, lipid peroxidation, and systemic inflammation in type 2 diabetic patients. Endocrinol. Metab. 29 443–449. 10.3803/enm.2014.29.4.443|||Morelli L., Leoni J., Castano E. M., Mangone C. A., Lambierto A. (1996). Apolipoprotein E polymorphism and late onset Alzheimer’s disease in Argentina. J. Neurol. Neurosurg. Psychiatry 61 426–427. 10.1136/jnnp.61.4.426|||Munoz-Guardiola P., Casas J., Megias-Roda E., Sole S., Perez-Montoyo H., Yeste-Velasco M., et al. (2020). The anti-cancer drug ABTL0812 induces ER stress-mediated cytotoxic autophagy by increasing dihydroceramide levels in cancer cells. Autophagy [Epub ahead of print].|||O’Brien J. S., Sampson E. L. (1965). Fatty acid and fatty aldehyde composition of the major brain lipids in normal human gray matter, white matter, and myelin. J. Lipid Res. 6 545–551.|||Pasvogel A. E., Miketova P., Moore I. M. (2008). Cerebrospinal fluid phospholipid changes following traumatic brain injury. Biol. Res. Nurs. 10 113–120. 10.1177/1099800408323218|||Patel N. V., Forman B. M. (2004). Linking lipids, Alzheimer’s and LXRs? Nucl. Recept. Signal. 2:e001.|||Perry G., Lipphardt S., Mulvihill P., Kancherla M., Mijares M., Gambetti P., et al. (1988). Amyloid precursor protein in senile plaques of Alzheimer disease. Lancet 2:746.|||Raszewski G., Chwedorowicz R., Chwedorowicz A., Gustaw Rothenberg K. (2016). Homocysteine, antioxidant vitamins and lipids as biomarkers of neurodegeneration in Alzheimer’s disease versus non-Alzheimer’s dementia. Ann. Agric. Environ. Med. 23 193–196. 10.5604/12321966.1196878|||Roig-Molina E., Sanchez-Angulo M., Seele J., Garcia-Asencio F., Nau R., Sanz J. M., et al. (2020). Searching for antipneumococcal targets: choline-binding modules as phagocytosis enhancers. ACS Infect. Dis. 6 954–974. 10.1021/acsinfecdis.9b00344|||Russo R., Cristiano C., Avagliano C., De Caro C., La Rana G., Raso G. M., et al. (2018). Gut-brain axis: role of lipids in the regulation of inflammation, pain and CNS diseases. Curr. Med. Chem. 25 3930–3952. 10.2174/0929867324666170216113756|||Sala M., Hollinger K. R., Thomas A. G., Dash R. P., Tallon C., Veeravalli V., et al. (2020). Novel human neutral sphingomyelinase 2 inhibitors as potential therapeutics for Alzheimer’s disease. J. Med. Chem. 63 6028–6056.|||Senanayake V., Goodenowe D. B. (2019). Plasmalogen deficiency and neuropathology in Alzheimer’s disease: causation or coincidence? Alzheimers Dement. 5 524–532. 10.1016/j.trci.2019.08.003|||Shevchenko G. M., Wetterhall M., Bergquist J., Hoglund K., Andersson L. I., Kultima K. (2012). Longitudinal characterization of the brain proteomes for the Tg2576 amyloid mouse model using shotgun based mass spectrometry. J. Proteome Res. 11 6159–6174. 10.1021/pr300808h|||Stephenson D. T., Lemere C. A., Selkoe D. J., Clemens J. A. (1996). Cytosolic phospholipase A2 (cPLA2) immunoreactivity is elevated in Alzheimer’s disease brain. Neurobiol. Dis. 3 51–63. 10.1006/nbdi.1996.0005|||Subar A. F., Thompson F. E., Kipnis V., Midthune D., Hurwitz P., McNutt S., et al. (2001). Comparative validation of the block, willett, and National Cancer Institute food frequency questionnaires : the eating at America’s table study. Am. J. Epidemiol. 154 1089–1099. 10.1093/aje/154.12.1089|||Svennerholm L., Bostrom K., Helander C. G., Jungbjer B. (1991). Membrane lipids in the aging human brain. J. Neurochem. 56 2051–2059. 10.1111/j.1471-4159.1991.tb03466.x|||Takahashi M., Oda Y., Sato K., Shirayama Y. (2018). Vascular risk factors and the relationships between cognitive impairment and hypoperfusion in late-onset Alzheimer’s disease. Acta Neuropsychiatr. 30 350–358. 10.1017/neu.2018.17|||Tan M. S., Ji X., Li J. Q., Xu W., Wang H. F., Tan C. C., et al. (2020). Longitudinal trajectories of Alzheimer’s ATN biomarkers in elderly persons without dementia. Alzheimers Res. Ther. 12:55.|||van Dierendonck X., de la Rosa Rodriguez M. A., Georgiadi A., Mattijssen F., Dijk W., van Weeghel M., et al. (2020). HILPDA uncouples lipid droplet accumulation in adipose tissue macrophages from inflammation and metabolic dysregulation. Cell. Rep. 30 1811.e6–1822.e6.|||van Echten-Deckert G., Walter J. (2012). Sphingolipids: critical players in Alzheimer’s disease. Prog. Lipid Res. 51 378–393. 10.1016/j.plipres.2012.07.001|||Vanmechelen E., Vanderstichele H., Hulstaert F., Andreasen N., Minthon L., Winblad B., et al. (2001). Cerebrospinal fluid tau and beta-amyloid(1-42) in dementia disorders. Mech. Ageing Dev. 122 2005–2011.|||Verghese P. B., Castellano J. M., Garai K., Wang Y., Jiang H., Shah A., et al. (2013). ApoE influences amyloid-beta (Abeta) clearance despite minimal apoE/Abeta association in physiological conditions. Proc. Natl. Acad. Sci. U.S.A. 110 E1807–E1816.|||Wong T. H., Seelaar H., Melhem S., Rozemuller A. J. M., van Swieten J. C. (2020). Genetic screening in early-onset Alzheimer’s disease identified three novel presenilin mutations. Neurobiol. Aging 86 201.e9–201.e14.|||Zuin M., Cervellati C., Trentini A., Roncon L., Guasti P., Zuliani G. (2020). Methylenetetrahydrofolate reductase (MTHFR) C667T polymorphism and susceptibility to late-onset Alzheimer’s disease in the Italian population. A systematic review and meta-analysis. Minerva. Med. [Epub ahead of print].