The connection between heart rate variability (HRV), neurological health, and cognition: A literature review.
Authors:
Journal: Frontiers in neuroscience
Publication Type: Journal Article
Date: 2023
DOI: PMC10014754
ID: 36937689
Abstract
The heart and brain have bi-directional influences on each other, including autonomic regulation and hemodynamic connections. Heart rate variability (HRV) measures variation in beat-to-beat intervals. New findings about disorganized sinus rhythm (erratic rhythm, quantified as heart rate fragmentation, HRF) are discussed and suggest overestimation of autonomic activities in HRV changes, especially during aging or cardiovascular events. When excluding HRF, HRV is regulated the central autonomic network (CAN). HRV acts as a proxy of autonomic activity and is associated with executive functions, decision-making, and emotional regulation in our health and wellbeing. Abnormal changes of HRV (e.g., decreased vagal functioning) are observed in various neurological conditions including mild cognitive impairments, dementia, mild traumatic brain injury, migraine, COVID-19, stroke, epilepsy, and psychological conditions (e.g., anxiety, stress, and schizophrenia). Efforts are needed to improve the dynamic and intriguing heart-brain interactions.
Reference List
- Ahmed M. W., Kadish A. H., Parker M. A., Goldberger J. J. (1994). Effect of physiologic and pharmacologic adrenergic stimulation on heart rate variability. J. Am. Coll. Cardiol. 24 1082–1090.|||Akter T., Ferdousi S. (2017). Autonomic dysfunction and migraine: assessed by time series analysis of heart rate variability. J. Bangladesh. Soc. Physiol. 12 57–60.|||Albott C. S., Wozniak J. R., Mcglinch B. P., Wall M. H., Gold B. S., Vinogradov S. (2020). Battle buddies: rapid deployment of a psychological resilience intervention for healthcare workers during the COVID-19 Pandemic. Anesth. Analg. 131 43–54. 10.1213/ANE.0000000000004912|||Allan L. M., Ballard C. G., Allen J., Murray A., Davidson A. W., Mckeith I. G., et al. (2007). Autonomic dysfunction in dementia. J. Neurol. Neurosurg. Psychiatry 78 671–677.|||Allen J. J., Chambers A. S., Towers D. N. (2007). The many metrics of cardiac chronotropy: a pragmatic primer and a brief comparison of metrics. Biol. Psychol. 74 243–262. 10.1016/j.biopsycho.2006.08.005|||Almeida-Santos M. A., Barreto-Filho J. A., Oliveira J. L., Reis F. P., Da Cunha Oliveira C. C., Sousa A. C. (2016). Aging, heart rate variability and patterns of autonomic regulation of the heart. Arch. Gerontol. Geriatr. 63 1–8.|||Angius L., Santarnecchi E., Pascual-Leone A., Marcora S. M. (2019). Transcranial direct current stimulation over the left dorsolateral prefrontal cortex improves inhibitory control and endurance performance in healthy individuals. Neuroscience 419 34–45. 10.1016/j.neuroscience.2019.08.052|||Arechavala R. J., Rochart R., Kloner R. A., Liu A., Wu D. A., Hung S. M., et al. (2021). Task switching reveals abnormal brain-heart electrophysiological signatures in cognitively healthy individuals with abnormal CSF amyloid/tau, a pilot study. Int. J. Psychophysiol. 170 102–111. 10.1016/j.ijpsycho.2021.10.007|||Balconi M., Fronda G., Irene V., Crivelli D. (2017). Conscious, pre-conscious and unconscious mechanisms in emotional behavioral. Some applications to the mindfulness approach with wearable devices. Appl. Sci. 7:1280.|||Billeci L., Marino D., Insana L., Vatti G., Varanini M. (2018). Patient-specific seizure prediction based on heart rate variability and recurrence quantification analysis. PLoS One 13:e0204339. 10.1371/journal.pone.0204339|||Billman G. E. (2013). The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Front. Physiol. 4:26. 10.3389/fphys.2013.00026|||Binici Z., Mouridsen M. R., Kober L., Sajadieh A. (2011). Decreased nighttime heart rate variability is associated with increased stroke risk. Stroke 42 3196–3201.|||Bodapati R. K., Kizer J. R., Kop W. J., Kamel H., Stein P. K. (2017). Addition of 24-hour heart rate variability parameters to the cardiovascular health study stroke risk score and prediction of incident stroke: the cardiovascular health study. J. Am. Heart Assoc. 6:e004305. 10.1161/JAHA.116.004305|||Challapalli S., Kadish A. H., Horvath G., Goldberger J. J. (1999). Differential effects of parasympathetic blockade and parasympathetic withdrawal on heart rate variability. J. Cardiovasc. Electrophysiol. 10 1192–1199. 10.1111/j.1540-8167.1999.tb00295.x|||Chalmers J. A., Quintana D. S., Abbott M. J., Kemp A. H. (2014). Anxiety disorders are associated with reduced heart rate variability: a meta-analysis. Front. Psychiatry 5:80. 10.3389/fpsyt.2014.00080|||Costa M. D., Davis R. B., Goldberger A. L. (2017). Heart rate fragmentation: a new approach to the analysis of cardiac interbeat interval dynamics. Front. Physiol. 8:255. 10.3389/fphys.2017.00255|||Costa M. D., Redline S., Davis R. B., Heckbert S. R., Soliman E. Z., Goldberger A. L. (2018). Heart rate fragmentation as a novel biomarker of adverse cardiovascular events: the multi-ethnic study of atherosclerosis. Front. Physiol. 9:1117. 10.3389/fphys.2018.01117|||Costa M. D., Redline S., Hughes T. M., Heckbert S. R., Goldberger A. L. (2021). Prediction of cognitive decline using heart rate fragmentation analysis: the multi-ethnic study of atherosclerosis. Front. Aging Neurosci. 13:708130. 10.3389/fnagi.2021.708130|||Dziembowska I., Izdebski P., Rasmus A., Brudny J., Grzelczak M., Cysewski P. (2016). Effects of heart rate variability biofeedback on EEG alpha asymmetry and anxiety symptoms in male athletes: a pilot study. Appl. Psychophysiol. Biofeedback 41 141–150. 10.1007/s10484-015-9319-4|||Forte G., Favieri F., Casagrande M. (2019). Heart rate variability and cognitive function: a systematic review. Front. Neurosci. 13:710. 10.3389/fnins.2019.00710|||Francesco B., Maria Grazia B., Emanuele G., Valentina F., Sara C., Chiara F., et al. (2012). Linear and nonlinear heart rate variability indexes in clinical practice. Comput. Math. Methods Med. 2012:219080.|||Fung B. J., Crone D. L., Bode S., Murawski C. (2017). Cardiac signals are independently associated with temporal discounting and time perception. Front. Behav. Neurosci. 11:1. 10.3389/fnbeh.2017.00001|||Gambassi B. B., Neves V. R., Brito E. Z. A., Da Silva Fernandes D. S., Sa C. A., Da Rocha, et al. (2020). A validation study of a smartphone application for heart rate variability assessment in asymptomatic adults. Am. J. Cardiovasc. Dis. 10 219–229.|||Gasior J. S., Sacha J., Jelen P. J., Zielinski J., Przybylski J. (2016). Heart rate and respiratory rate influence on heart rate variability repeatability: effects of the correction for the prevailing heart rate. Front. Physiol. 7:356. 10.3389/fphys.2016.00356|||Greenwood P. M. (2007). Functional plasticity in cognitive aging: review and hypothesis. Neuropsychology 21 657–673.|||Guo P., Ballesteros A. B., Yeung S. P., Liu R., Saha A., Curtis L., et al. (2022). COVCOG 2: cognitive and memory deficits in long COVID: a second publication from the COVID and cognition study. Front. Aging Neurosci. 14:804937. 10.3389/fnagi.2022.804937|||Hansen A. L., Johnsen B. H., Thayer J. F. (2003). Vagal influence on working memory and attention. Int. J. Psychophysiol. 48 263–274.|||Hasan A. A., Callaghan P., Lymn J. S. (2014). Evaluation of the impact of a psycho-educational intervention on knowledge levels and psychological outcomes for people diagnosed with Schizophrenia and their caregivers in Jordan: a randomized controlled trial. BMC Psychiatry 14:17. 10.1186/1471-244X-14-17|||Hasty F., Garcia G., Davila C. H., Wittels S. H., Hendricks S., Chong S. (2020). Heart rate variability as a possible predictive marker for acute inflammatory response in COVID-19 patients. Mil. Med. 186 e34–e38. 10.1093/milmed/usaa405|||Havakuk O., King K. S., Grazette L., Yoon A. J., Fong M., Bregman N., et al. (2017). Heart failure-induced brain injury. J. Am. Coll. Cardiol. 69 1609–1616.|||Hayano J., Kisohara M., Ueda N., Yuda E. (2020). Impact of heart rate fragmentation on the assessment of heart rate variability. Appl. Sci. 10:3314.|||Hayano J., Yuda E. (2019). Pitfalls of assessment of autonomic function by heart rate variability. J. Physiol. Anthropol. 38:3.|||Hernando D., Roca S., Sancho J., Alesanco A., Bailon R. (2018). Validation of the apple watch for heart rate variability measurements during relax and mental stress in healthy subjects. Sensors 18:2619. 10.3390/s18082619|||Imahori Y., Vetrano D. L., Xia X., Grande G., Ljungman P., Fratiglioni L., et al. (2021). Association of resting heart rate with cognitive decline and dementia in older adults: a population-based cohort study. Alzheimers Dement. 18 1779–1787. 10.1002/alz.12495|||Imbimbo C., Spallazzi M., Ferrari-Pellegrini F., Villa A., Zilioli A., Mutti C., et al. (2022). Heart rate variability and cognitive performance in adults with cardiovascular risk. Cereb. Circ. Cogn. Behav. 3:100136.|||Jordan B. D. (2013). The clinical spectrum of sport-related traumatic brain injury. Nat. Rev. Neurol. 9 222–230.|||Kemp A. H., Lopez S. R., Passos V. M. A., Bittencourt M. S., Dantas E. M., Mill J. G., et al. (2016). Insulin resistance and carotid intima-media thickness mediate the association between resting-state heart rate variability and executive function: a path modelling study. Biol. Psychol. 117 216–224. 10.1016/j.biopsycho.2016.04.006|||Kim D. H., Lipsitz L. A., Ferrucci L., Varadhan R., Guralnik J. M., Carlson M. C., et al. (2006). Association between reduced heart rate variability and cognitive impairment in older disabled women in the community: women’s Health and Aging Study I. J. Am. Geriatr. Soc. 54 1751–1757. 10.1111/j.1532-5415.2006.00940.x|||Kim H. G., Cheon E. J., Bai D. S., Lee Y. H., Koo B. H. (2018). Stress and heart rate variability: a meta-analysis and review of the literature. Psychiatry Investig. 15 235–245.|||Kim M. S., Yoon J. H., Hong J. M. (2018). Early differentiation of dementia with Lewy bodies and Alzheimer’s disease: heart rate variability at mild cognitive impairment stage. Clin. Neurophysiol. 129 1570–1578. 10.1016/j.clinph.2018.05.004|||Kloner R. A. (2019). Lessons learned about stress and the heart after major earthquakes. Am. Heart J. 215 20–26. 10.1016/j.ahj.2019.05.017|||Kloner R. A., Leor J., Poole W. K., Perritt R. (1997). Population-based analysis of the effect of the Northridge Earthquake on cardiac death in Los Angeles County, California. J. Am. Coll. Cardiol. 30 1174–1180. 10.1016/s0735-1097(97)00281-7|||Kloner R. A., Mcdonald S., Leeka J., Poole W. K. (2009). Comparison of total and cardiovascular death rates in the same city during a losing versus winning super bowl championship. Am. J. Cardiol. 103 1647–1650. 10.1016/j.amjcard.2009.02.012|||Koenig J., Thayer J. F. (2016). Sex differences in healthy human heart rate variability: a meta-analysis. Neurosci. Biobehav. Rev. 64 288–310.|||Kumral D., Schaare H. L., Beyer F., Reinelt J., Uhlig M., Liem F., et al. (2019). The age-dependent relationship between resting heart rate variability and functional brain connectivity. Neuroimage 185 521–533. 10.1016/j.neuroimage.2018.10.027|||Kurtoglu E., Afsin A., Aktas I., Akturk E., Kutlusoy E., Cagasar O. (2022). Altered cardiac autonomic function after recovery from COVID-19. Ann. Noninvasive Electrocardiol. 27:e12916. 10.1111/anec.12916|||La Fountaine M. F., Hohn A. N., Leahy C. L., Testa A. J., Weir J. P. (2022). Use of Mayer wave activity to demonstrate aberrant cardiovascular autonomic control following sports concussion injury. Ann. N. Y. Acad. Sci. 1507 121–132. 10.1111/nyas.14683|||Leal A., Pinto M. F., Lopes F., Bianchi A. M., Henriques J., Ruano M. G., et al. (2021). Heart rate variability analysis for the identification of the preictal interval in patients with drug-resistant epilepsy. Sci. Rep. 11:5987. 10.1038/s41598-021-85350-y|||Lensen I. S., Monfredi O. J., Andris R. T., Lake D. E., Moorman J. R. (2020). Heart rate fragmentation gives novel insights into non-autonomic mechanisms governing beat-to-beat control of the heart’s rhythm. JRSM Cardiovasc. Dis. 9:2048004020948732. 10.1177/2048004020948732|||Levy M. N. (1990). Autonomic interactions in cardiac control. Ann. N. Y. Acad. Sci. 601 209–221.|||Levy M. N., Yang T., Wallick D. W. (1993). Assessment of beat-by-beat control of heart rate by the autonomic nervous system: molecular biology technique are necessary, but not sufficient. J. Cardiovasc. Electrophysiol. 4 183–193. 10.1111/j.1540-8167.1993.tb01222.x|||Li C., Meng X., Pan Y., Li Z., Wang M., Wang Y. (2021). The association between heart rate variability and 90-day prognosis in patients with transient ischemic attack and minor stroke. Front. Neurol. 12:636474. 10.3389/fneur.2021.636474|||Madhavan M., Graff-Radford J., Piccini J. P., Gersh B. J. (2018). Cognitive dysfunction in atrial fibrillation. Nat. Rev. Cardiol. 15 744–756.|||Maier S. U., Hare T. A. (2017). Higher heart-rate variability is associated with ventromedial prefrontal cortex activity and increased resistance to temptation in dietary self-control challenges. J. Neurosci. 37 446–455. 10.1523/JNEUROSCI.2815-16.2016|||Makowiec D., Wejer D., Kaczkowska A., Zarczynska-Buchowiecka M., Struzik Z. R. (2015). Chronographic imprint of age-induced alterations in heart rate dynamical organization. Front. Physiol. 6:201. 10.3389/fphys.2015.00201|||Mantantzis K., Schlaghecken F., Maylor E. A. (2020). Heart rate variability predicts older adults’ avoidance of negativity. J. Gerontol. B Psychol. Sci. Soc. Sci. 75 1679–1688.|||Martin L. N., Delgado M. R. (2011). The influence of emotion regulation on decision-making under risk. J. Cogn. Neurosci. 23 2569–2581.|||Matei D., Constantinescu V., Corciova C., Ignat B., Matei R., Popescu C. D. (2015). Autonomic impairment in patients with migraine. Eur. Rev. Med. Pharmacol. Sci. 19 3922–3927.|||McCraty R., Childre D. (2010). Coherence: bridging personal, social, and global health. Altern. Ther. Health Med. 16 10–24.|||McCraty R., Shaffer F. (2015). Heart rate variability: new perspectives on physiological mechanisms, assessment of self-regulatory capacity, and health risk. Glob. Adv. Health Med. 4 46–61. 10.7453/gahmj.2014.073|||Mol M. B. A., Strous M. T. A., Van Osch F. H. M., Vogelaar F. J., Barten D. G., Farchi M., et al. (2021). Heart-rate-variability (HRV), predicts outcomes in COVID-19. PLoS One 16:e0258841. 10.1371/journal.pone.0258841|||Moore E. E., Jefferson A. L. (2021). Impact of cardiovascular hemodynamics on cognitive aging. Arterioscler. Thromb. Vasc. Biol. 41 1255–1264.|||Moridani M. K., Farhadi H. (2017). Heart rate variability as a biomarker for epilepsy seizure prediction. Bratisl Lek Listy 118 3–8.|||Myers K. A., Sivathamboo S., Perucca P. (2018). Heart rate variability measurement in epilepsy: How can we move from research to clinical practice? Epilepsia 59 2169–2178. 10.1111/epi.14587|||Nelson P. T., Jicha G. A., Kryscio R. J., Abner E. L., Schmitt F. A., Cooper G., et al. (2010). Low sensitivity in clinical diagnoses of dementia with Lewy bodies. J. Neurol. 257 359–366.|||Nicolini P., Ciulla M. M., De Asmundis C., Magrini F., Brugada P. (2012). The prognostic value of heart rate variability in the elderly, changing the perspective: from sympathovagal balance to chaos theory. Pacing Clin. Electrophysiol. 35 622–638. 10.1111/j.1540-8159.2012.03335.x|||Nicolini P., Ciulla M. M., Malfatto G., Abbate C., Mari D., Rossi P. D., et al. (2014). Autonomic dysfunction in mild cognitive impairment: evidence from power spectral analysis of heart rate variability in a cross-sectional case-control study. PLoS One 9:e96656. 10.1371/journal.pone.0096656|||Nicolini P., Mari D., Abbate C., Inglese S., Bertagnoli L., Tomasini E., et al. (2020). Autonomic function in amnestic and non-amnestic mild cognitive impairment: spectral heart rate variability analysis provides evidence for a brain-heart axis. Sci. Rep. 10:11661. 10.1038/s41598-020-68131-x|||Ottaviani C., Zingaretti P., Petta A. M., Antonucci G., Thayer J. F., Fernanda S. G. (2019). Resting heart rate variability predicts inhibitory control above and beyond impulsivity. J. Psychophysiol. 33:198.|||Prinsloo G. E., Rauch H. G., Karpul D., Derman W. E. (2013). The effect of a single session of short duration heart rate variability biofeedback on EEG: a pilot study. Appl. Psychophysiol. Biofeedback 38 45–56. 10.1007/s10484-012-9207-0|||Purkayastha S., Williams B., Murphy M., Lyng S., Sabo T., Bell K. R. (2019). Reduced heart rate variability and lower cerebral blood flow associated with poor cognition during recovery following concussion. Auton Neurosci. 220:102548. 10.1016/j.autneu.2019.04.004|||Rodrigues J., Studer E., Streuber S., Meyer N., Sandi C. (2020). Locomotion in virtual environments predicts cardiovascular responsiveness to subsequent stressful challenges. Nat Commun 11 5904. 10.1038/s41467-020-19736-3|||Rollman J. E., Kloner R. A., Bosson N., Niemann J. T., Gausche-Hill M., Williams M., et al. (2021). Emergency Medical Services Responses to Out-of-Hospital Cardiac Arrest and Suspected ST-Segment-Elevation Myocardial Infarction During the COVID-19 Pandemic in Los Angeles County. J Am Heart Assoc 10 e019635. 10.1161/JAHA.120.019635|||Rosenblueth A., Simeone F. A. (1934). The interrelations of vagal and accelerator effects on the cardiac rate. Am J Physiol 110 8.|||Russo M. A., Santarelli D. M., O’rourke D. (2017). The physiological effects of slow breathing in the healthy human. Breathe 13 298–309.|||Sakaki M., Yoo H. J., Nga L., Lee T. H., Thayer J. F., Mather M. (2016). Heart rate variability is associated with amygdala functional connectivity with MPFC across younger and older adults. Neuroimage 139 44–52. 10.1016/j.neuroimage.2016.05.076|||Salomon R., Noel J. P., Lukowska M., Faivre N., Metzinger T., Serino A., et al. (2017). Unconscious integration of multisensory bodily inputs in the peripersonal space shapes bodily self-consciousness. Cognition 166 174–183. 10.1016/j.cognition.2017.05.028|||Schulz S., Haueisen J., Bar K. J., Voss A. (2019). Altered causal coupling pathways within the central-autonomic-network in patients suffering from schizophrenia. Entropy 21:733. 10.3390/e21080733|||Schulz S., Haueisen J., Bar K. J., Voss A. (2020). The cardiorespiratory network in healthy first-degree relatives of schizophrenic patients. Front. Neurosci. 14:617. 10.3389/fnins.2020.00617|||Shaffer F., Ginsberg J. P. (2017). An overview of heart rate variability metrics and norms. Front. Public Health 5:258. 10.3389/fpubh.2017.00258|||Shaffer F., Mccraty R., Zerr C. L. (2014). A healthy heart is not a metronome: an integrative review of the heart’s anatomy and heart rate variability. Front. Psychol. 5:1040. 10.3389/fpsyg.2014.01040|||Shimizu K., Arai Y., Hirose N., Yonemoto T., Wakida Y. (2002). Prognostic significance of heart rate variability in centenarians. Clin. Exp. Hypertens. 24 91–97. 10.1081/ceh-100108719|||Smets E., De Raedt W., Van Hoof C. (2019). Into the wild: the challenges of physiological stress detection in laboratory and ambulatory settings. IEEE J. Biomed. Health Inform. 23 463–473. 10.1109/JBHI.2018.2883751|||Song R., Pan K. Y., Xu H., Qi X., Buchman A. S., Bennett D. A., et al. (2021). Association of cardiovascular risk burden with risk of dementia and brain pathologies: a population-based cohort study. Alzheimers Dement. 17 1914–1922.|||Stein P. K., Le Q., Domitrovich P. P., Investigators C. (2008). Development of more erratic heart rate patterns is associated with mortality post-myocardial infarction. J. Electrocardiol. 41 110–115. 10.1016/j.jelectrocard.2007.11.005|||Ture U., Yasargil M. G., Al-Mefty O., Yasargil D. C. (2000). Arteries of the insula. J Neurosurg 92 676–687.|||von Rosenberg W., Chanwimalueang T., Adjei T., Jaffer U., Goverdovsky V., Mandic D. P. (2017). Resolving ambiguities in the LF/HF Ratio: LF-HF scatter plots for the categorization of mental and physical stress from HRV. Front. Physiol. 8:360. 10.3389/fphys.2017.00360|||Voss A., Schroeder R., Heitmann A., Peters A., Perz S. (2015). Short-term heart rate variability–influence of gender and age in healthy subjects. PLoS One 10:e0118308. 10.1371/journal.pone.0118308|||Wdowczyk J., Makowiec D., Gruchala M., Wejer D., Struzik Z. R. (2018). Dynamical landscape of heart rhythm in long-term heart transplant recipients: a way to discern erratic rhythms. Front. Physiol. 9:274. 10.3389/fphys.2018.00274|||Wegmann E., Muller S. M., Turel O., Brand M. (2020). Interactions of impulsivity, general executive functions, and specific inhibitory control explain symptoms of social-networks-use disorder: an experimental study. Sci. Rep. 10:3866. 10.1038/s41598-020-60819-4|||Williams P. G., Cribbet M. R., Tinajero R., Rau H. K., Thayer J. F., Suchy Y. (2019). The association between individual differences in executive functioning and resting high-frequency heart rate variability. Biol. Psychol. 148:107772. 10.1016/j.biopsycho.2019.107772|||Yang X., Spangler D. P., Thayer J. F., Friedman B. H. (2021). Resting heart rate variability modulates the effects of concurrent working memory load on affective startle modification. Psychophysiology 58:e13833. 10.1111/psyp.13833|||Zeng W., Marshall K., Min S., Daou I., Chapleau M., Abboud F., et al. (2018). PIEZOs mediate neuronal sensing of blood pressure and the baroreceptor reflex. Science 362 464–467. 10.1126/science.aau6324|||Zhang L., Qiu S., Zhao C., Wang P., Yu S. (2021). Heart rate variability analysis in episodic migraine: a cross-sectional study. Front. Neurol. 12:647092. 10.3389/fneur.2021.647092