The connection between heart rate variability (HRV), neurological health, and cognition: A literature review.
Authors:
Journal: Frontiers in neuroscience
Publication Type: Journal Article
Date: 2023
DOI: PMC10014754
ID: 36937689
Abstract
The heart and brain have bi-directional influences on each other, including autonomic regulation and hemodynamic connections. Heart rate variability (HRV) measures variation in beat-to-beat intervals. New findings about disorganized sinus rhythm (erratic rhythm, quantified as heart rate fragmentation, HRF) are discussed and suggest overestimation of autonomic activities in HRV changes, especially during aging or cardiovascular events. When excluding HRF, HRV is regulated the central autonomic network (CAN). HRV acts as a proxy of autonomic activity and is associated with executive functions, decision-making, and emotional regulation in our health and wellbeing. Abnormal changes of HRV (e.g., decreased vagal functioning) are observed in various neurological conditions including mild cognitive impairments, dementia, mild traumatic brain injury, migraine, COVID-19, stroke, epilepsy, and psychological conditions (e.g., anxiety, stress, and schizophrenia). Efforts are needed to improve the dynamic and intriguing heart-brain interactions.
Reference List
- Ahmed M. W., Kadish A. H., Parker M. A., Goldberger J. J. (1994). Effect of physiologic and pharmacologic adrenergic stimulation on heart rate variability.
24
1082–1090.|||Akter T., Ferdousi S. (2017). Autonomic dysfunction and migraine: assessed by time series analysis of heart rate variability.
12
57–60. |||Albott C. S., Wozniak J. R., Mcglinch B. P., Wall M. H., Gold B. S., Vinogradov S. (2020). Battle buddies: rapid deployment of a psychological resilience intervention for healthcare workers during the COVID-19 Pandemic.
131
43–54. 10.1213/ANE.0000000000004912
|||Allan L. M., Ballard C. G., Allen J., Murray A., Davidson A. W., Mckeith I. G., et al. (2007). Autonomic dysfunction in dementia.
78
671–677.|||Allen J. J., Chambers A. S., Towers D. N. (2007). The many metrics of cardiac chronotropy: a pragmatic primer and a brief comparison of metrics.
74
243–262. 10.1016/j.biopsycho.2006.08.005
|||Almeida-Santos M. A., Barreto-Filho J. A., Oliveira J. L., Reis F. P., Da Cunha Oliveira C. C., Sousa A. C. (2016). Aging, heart rate variability and patterns of autonomic regulation of the heart.
63
1–8.|||Angius L., Santarnecchi E., Pascual-Leone A., Marcora S. M. (2019). Transcranial direct current stimulation over the left dorsolateral prefrontal cortex improves inhibitory control and endurance performance in healthy individuals.
419
34–45. 10.1016/j.neuroscience.2019.08.052
|||Arechavala R. J., Rochart R., Kloner R. A., Liu A., Wu D. A., Hung S. M., et al. (2021). Task switching reveals abnormal brain-heart electrophysiological signatures in cognitively healthy individuals with abnormal CSF amyloid/tau, a pilot study.
170
102–111. 10.1016/j.ijpsycho.2021.10.007
|||Balconi M., Fronda G., Irene V., Crivelli D. (2017). Conscious, pre-conscious and unconscious mechanisms in emotional behavioral. Some applications to the mindfulness approach with wearable devices.
7:1280.|||Billeci L., Marino D., Insana L., Vatti G., Varanini M. (2018). Patient-specific seizure prediction based on heart rate variability and recurrence quantification analysis.
13:e0204339. 10.1371/journal.pone.0204339
|||Billman G. E. (2013). The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance.
4:26. 10.3389/fphys.2013.00026
|||Binici Z., Mouridsen M. R., Kober L., Sajadieh A. (2011). Decreased nighttime heart rate variability is associated with increased stroke risk.
42
3196–3201.|||Bodapati R. K., Kizer J. R., Kop W. J., Kamel H., Stein P. K. (2017). Addition of 24-hour heart rate variability parameters to the cardiovascular health study stroke risk score and prediction of incident stroke: the cardiovascular health study.
6:e004305. 10.1161/JAHA.116.004305
|||Challapalli S., Kadish A. H., Horvath G., Goldberger J. J. (1999). Differential effects of parasympathetic blockade and parasympathetic withdrawal on heart rate variability.
10
1192–1199. 10.1111/j.1540-8167.1999.tb00295.x
|||Chalmers J. A., Quintana D. S., Abbott M. J., Kemp A. H. (2014). Anxiety disorders are associated with reduced heart rate variability: a meta-analysis.
5:80. 10.3389/fpsyt.2014.00080
|||Costa M. D., Davis R. B., Goldberger A. L. (2017). Heart rate fragmentation: a new approach to the analysis of cardiac interbeat interval dynamics.
8:255. 10.3389/fphys.2017.00255
|||Costa M. D., Redline S., Davis R. B., Heckbert S. R., Soliman E. Z., Goldberger A. L. (2018). Heart rate fragmentation as a novel biomarker of adverse cardiovascular events: the multi-ethnic study of atherosclerosis.
9:1117. 10.3389/fphys.2018.01117
|||Costa M. D., Redline S., Hughes T. M., Heckbert S. R., Goldberger A. L. (2021). Prediction of cognitive decline using heart rate fragmentation analysis: the multi-ethnic study of atherosclerosis.
13:708130. 10.3389/fnagi.2021.708130
|||Dziembowska I., Izdebski P., Rasmus A., Brudny J., Grzelczak M., Cysewski P. (2016). Effects of heart rate variability biofeedback on EEG alpha asymmetry and anxiety symptoms in male athletes: a pilot study.
41
141–150. 10.1007/s10484-015-9319-4
|||Forte G., Favieri F., Casagrande M. (2019). Heart rate variability and cognitive function: a systematic review.
13:710. 10.3389/fnins.2019.00710
|||Francesco B., Maria Grazia B., Emanuele G., Valentina F., Sara C., Chiara F., et al. (2012). Linear and nonlinear heart rate variability indexes in clinical practice.
2012:219080.|||Fung B. J., Crone D. L., Bode S., Murawski C. (2017). Cardiac signals are independently associated with temporal discounting and time perception.
11:1. 10.3389/fnbeh.2017.00001
|||Gambassi B. B., Neves V. R., Brito E. Z. A., Da Silva Fernandes D. S., Sa C. A., Da Rocha, et al. (2020). A validation study of a smartphone application for heart rate variability assessment in asymptomatic adults.
10
219–229. |||Gasior J. S., Sacha J., Jelen P. J., Zielinski J., Przybylski J. (2016). Heart rate and respiratory rate influence on heart rate variability repeatability: effects of the correction for the prevailing heart rate.
7:356. 10.3389/fphys.2016.00356
|||Greenwood P. M. (2007). Functional plasticity in cognitive aging: review and hypothesis.
21
657–673.|||Guo P., Ballesteros A. B., Yeung S. P., Liu R., Saha A., Curtis L., et al. (2022). COVCOG 2: cognitive and memory deficits in long COVID: a second publication from the COVID and cognition study.
14:804937. 10.3389/fnagi.2022.804937
|||Hansen A. L., Johnsen B. H., Thayer J. F. (2003). Vagal influence on working memory and attention.
48
263–274.|||Hasan A. A., Callaghan P., Lymn J. S. (2014). Evaluation of the impact of a psycho-educational intervention on knowledge levels and psychological outcomes for people diagnosed with Schizophrenia and their caregivers in Jordan: a randomized controlled trial.
14:17. 10.1186/1471-244X-14-17
|||Hasty F., Garcia G., Davila C. H., Wittels S. H., Hendricks S., Chong S. (2020). Heart rate variability as a possible predictive marker for acute inflammatory response in COVID-19 patients.
186
e34–e38. 10.1093/milmed/usaa405
|||Havakuk O., King K. S., Grazette L., Yoon A. J., Fong M., Bregman N., et al. (2017). Heart failure-induced brain injury.
69
1609–1616.|||Hayano J., Kisohara M., Ueda N., Yuda E. (2020). Impact of heart rate fragmentation on the assessment of heart rate variability.
10:3314.|||Hayano J., Yuda E. (2019). Pitfalls of assessment of autonomic function by heart rate variability.
38:3.|||Hernando D., Roca S., Sancho J., Alesanco A., Bailon R. (2018). Validation of the apple watch for heart rate variability measurements during relax and mental stress in healthy subjects.
18:2619. 10.3390/s18082619
|||Imahori Y., Vetrano D. L., Xia X., Grande G., Ljungman P., Fratiglioni L., et al. (2021). Association of resting heart rate with cognitive decline and dementia in older adults: a population-based cohort study.
18
1779–1787. 10.1002/alz.12495
|||Imbimbo C., Spallazzi M., Ferrari-Pellegrini F., Villa A., Zilioli A., Mutti C., et al. (2022). Heart rate variability and cognitive performance in adults with cardiovascular risk.
3:100136.|||Jordan B. D. (2013). The clinical spectrum of sport-related traumatic brain injury.
9
222–230.|||Kemp A. H., Lopez S. R., Passos V. M. A., Bittencourt M. S., Dantas E. M., Mill J. G., et al. (2016). Insulin resistance and carotid intima-media thickness mediate the association between resting-state heart rate variability and executive function: a path modelling study.
117
216–224. 10.1016/j.biopsycho.2016.04.006
|||Kim D. H., Lipsitz L. A., Ferrucci L., Varadhan R., Guralnik J. M., Carlson M. C., et al. (2006). Association between reduced heart rate variability and cognitive impairment in older disabled women in the community: women’s Health and Aging Study I.
54
1751–1757. 10.1111/j.1532-5415.2006.00940.x
|||Kim H. G., Cheon E. J., Bai D. S., Lee Y. H., Koo B. H. (2018). Stress and heart rate variability: a meta-analysis and review of the literature.
15
235–245.|||Kim M. S., Yoon J. H., Hong J. M. (2018). Early differentiation of dementia with Lewy bodies and Alzheimer’s disease: heart rate variability at mild cognitive impairment stage.
129
1570–1578. 10.1016/j.clinph.2018.05.004
|||Kloner R. A. (2019). Lessons learned about stress and the heart after major earthquakes.
215
20–26. 10.1016/j.ahj.2019.05.017
|||Kloner R. A., Leor J., Poole W. K., Perritt R. (1997). Population-based analysis of the effect of the Northridge Earthquake on cardiac death in Los Angeles County, California.
30
1174–1180. 10.1016/s0735-1097(97)00281-7
|||Kloner R. A., Mcdonald S., Leeka J., Poole W. K. (2009). Comparison of total and cardiovascular death rates in the same city during a losing versus winning super bowl championship.
103
1647–1650. 10.1016/j.amjcard.2009.02.012
|||Koenig J., Thayer J. F. (2016). Sex differences in healthy human heart rate variability: a meta-analysis.
64
288–310.|||Kumral D., Schaare H. L., Beyer F., Reinelt J., Uhlig M., Liem F., et al. (2019). The age-dependent relationship between resting heart rate variability and functional brain connectivity.
185
521–533. 10.1016/j.neuroimage.2018.10.027
|||Kurtoglu E., Afsin A., Aktas I., Akturk E., Kutlusoy E., Cagasar O. (2022). Altered cardiac autonomic function after recovery from COVID-19.
27:e12916. 10.1111/anec.12916
|||La Fountaine M. F., Hohn A. N., Leahy C. L., Testa A. J., Weir J. P. (2022). Use of Mayer wave activity to demonstrate aberrant cardiovascular autonomic control following sports concussion injury.
1507
121–132. 10.1111/nyas.14683
|||Leal A., Pinto M. F., Lopes F., Bianchi A. M., Henriques J., Ruano M. G., et al. (2021). Heart rate variability analysis for the identification of the preictal interval in patients with drug-resistant epilepsy.
11:5987. 10.1038/s41598-021-85350-y
|||Lensen I. S., Monfredi O. J., Andris R. T., Lake D. E., Moorman J. R. (2020). Heart rate fragmentation gives novel insights into non-autonomic mechanisms governing beat-to-beat control of the heart’s rhythm.
9:2048004020948732. 10.1177/2048004020948732
|||Levy M. N. (1990). Autonomic interactions in cardiac control.
601
209–221.|||Levy M. N., Yang T., Wallick D. W. (1993). Assessment of beat-by-beat control of heart rate by the autonomic nervous system: molecular biology technique are necessary, but not sufficient.
4
183–193. 10.1111/j.1540-8167.1993.tb01222.x
|||Li C., Meng X., Pan Y., Li Z., Wang M., Wang Y. (2021). The association between heart rate variability and 90-day prognosis in patients with transient ischemic attack and minor stroke.
12:636474. 10.3389/fneur.2021.636474
|||Madhavan M., Graff-Radford J., Piccini J. P., Gersh B. J. (2018). Cognitive dysfunction in atrial fibrillation.
15
744–756.|||Maier S. U., Hare T. A. (2017). Higher heart-rate variability is associated with ventromedial prefrontal cortex activity and increased resistance to temptation in dietary self-control challenges.
37
446–455. 10.1523/JNEUROSCI.2815-16.2016
|||Makowiec D., Wejer D., Kaczkowska A., Zarczynska-Buchowiecka M., Struzik Z. R. (2015). Chronographic imprint of age-induced alterations in heart rate dynamical organization.
6:201. 10.3389/fphys.2015.00201
|||Mantantzis K., Schlaghecken F., Maylor E. A. (2020). Heart rate variability predicts older adults’ avoidance of negativity.
75
1679–1688.|||Martin L. N., Delgado M. R. (2011). The influence of emotion regulation on decision-making under risk.
23
2569–2581.|||Matei D., Constantinescu V., Corciova C., Ignat B., Matei R., Popescu C. D. (2015). Autonomic impairment in patients with migraine.
19
3922–3927.|||McCraty R., Childre D. (2010). Coherence: bridging personal, social, and global health.
16
10–24.|||McCraty R., Shaffer F. (2015). Heart rate variability: new perspectives on physiological mechanisms, assessment of self-regulatory capacity, and health risk.
4
46–61. 10.7453/gahmj.2014.073
|||Mol M. B. A., Strous M. T. A., Van Osch F. H. M., Vogelaar F. J., Barten D. G., Farchi M., et al. (2021). Heart-rate-variability (HRV), predicts outcomes in COVID-19.
16:e0258841. 10.1371/journal.pone.0258841
|||Moore E. E., Jefferson A. L. (2021). Impact of cardiovascular hemodynamics on cognitive aging.
41
1255–1264.|||Moridani M. K., Farhadi H. (2017). Heart rate variability as a biomarker for epilepsy seizure prediction.
118
3–8.|||Myers K. A., Sivathamboo S., Perucca P. (2018). Heart rate variability measurement in epilepsy: How can we move from research to clinical practice?
59
2169–2178. 10.1111/epi.14587
|||Nelson P. T., Jicha G. A., Kryscio R. J., Abner E. L., Schmitt F. A., Cooper G., et al. (2010). Low sensitivity in clinical diagnoses of dementia with Lewy bodies.
257
359–366.|||Nicolini P., Ciulla M. M., De Asmundis C., Magrini F., Brugada P. (2012). The prognostic value of heart rate variability in the elderly, changing the perspective: from sympathovagal balance to chaos theory.
35
622–638. 10.1111/j.1540-8159.2012.03335.x
|||Nicolini P., Ciulla M. M., Malfatto G., Abbate C., Mari D., Rossi P. D., et al. (2014). Autonomic dysfunction in mild cognitive impairment: evidence from power spectral analysis of heart rate variability in a cross-sectional case-control study.
9:e96656. 10.1371/journal.pone.0096656
|||Nicolini P., Mari D., Abbate C., Inglese S., Bertagnoli L., Tomasini E., et al. (2020). Autonomic function in amnestic and non-amnestic mild cognitive impairment: spectral heart rate variability analysis provides evidence for a brain-heart axis.
10:11661. 10.1038/s41598-020-68131-x
|||Ottaviani C., Zingaretti P., Petta A. M., Antonucci G., Thayer J. F., Fernanda S. G. (2019). Resting heart rate variability predicts inhibitory control above and beyond impulsivity.
33:198.|||Prinsloo G. E., Rauch H. G., Karpul D., Derman W. E. (2013). The effect of a single session of short duration heart rate variability biofeedback on EEG: a pilot study.
38
45–56. 10.1007/s10484-012-9207-0
|||Purkayastha S., Williams B., Murphy M., Lyng S., Sabo T., Bell K. R. (2019). Reduced heart rate variability and lower cerebral blood flow associated with poor cognition during recovery following concussion.
220:102548. 10.1016/j.autneu.2019.04.004
|||Rodrigues J., Studer E., Streuber S., Meyer N., Sandi C. (2020). Locomotion in virtual environments predicts cardiovascular responsiveness to subsequent stressful challenges.
11
5904. 10.1038/s41467-020-19736-3
|||Rollman J. E., Kloner R. A., Bosson N., Niemann J. T., Gausche-Hill M., Williams M., et al. (2021). Emergency Medical Services Responses to Out-of-Hospital Cardiac Arrest and Suspected ST-Segment-Elevation Myocardial Infarction During the COVID-19 Pandemic in Los Angeles County.
10
e019635. 10.1161/JAHA.120.019635
|||Rosenblueth A., Simeone F. A. (1934). The interrelations of vagal and accelerator effects on the cardiac rate.
110
8.|||Russo M. A., Santarelli D. M., O’rourke D. (2017). The physiological effects of slow breathing in the healthy human.
13
298–309.|||Sakaki M., Yoo H. J., Nga L., Lee T. H., Thayer J. F., Mather M. (2016). Heart rate variability is associated with amygdala functional connectivity with MPFC across younger and older adults.
139
44–52. 10.1016/j.neuroimage.2016.05.076
|||Salomon R., Noel J. P., Lukowska M., Faivre N., Metzinger T., Serino A., et al. (2017). Unconscious integration of multisensory bodily inputs in the peripersonal space shapes bodily self-consciousness.
166
174–183. 10.1016/j.cognition.2017.05.028
|||Schulz S., Haueisen J., Bar K. J., Voss A. (2019). Altered causal coupling pathways within the central-autonomic-network in patients suffering from schizophrenia.
21:733. 10.3390/e21080733
|||Schulz S., Haueisen J., Bar K. J., Voss A. (2020). The cardiorespiratory network in healthy first-degree relatives of schizophrenic patients.
14:617. 10.3389/fnins.2020.00617
|||Shaffer F., Ginsberg J. P. (2017). An overview of heart rate variability metrics and norms.
5:258. 10.3389/fpubh.2017.00258
|||Shaffer F., Mccraty R., Zerr C. L. (2014). A healthy heart is not a metronome: an integrative review of the heart’s anatomy and heart rate variability.
5:1040. 10.3389/fpsyg.2014.01040
|||Shimizu K., Arai Y., Hirose N., Yonemoto T., Wakida Y. (2002). Prognostic significance of heart rate variability in centenarians.
24
91–97. 10.1081/ceh-100108719
|||Smets E., De Raedt W., Van Hoof C. (2019). Into the wild: the challenges of physiological stress detection in laboratory and ambulatory settings.
23
463–473. 10.1109/JBHI.2018.2883751
|||Song R., Pan K. Y., Xu H., Qi X., Buchman A. S., Bennett D. A., et al. (2021). Association of cardiovascular risk burden with risk of dementia and brain pathologies: a population-based cohort study.
17
1914–1922.|||Stein P. K., Le Q., Domitrovich P. P., Investigators C. (2008). Development of more erratic heart rate patterns is associated with mortality post-myocardial infarction.
41
110–115. 10.1016/j.jelectrocard.2007.11.005
|||Ture U., Yasargil M. G., Al-Mefty O., Yasargil D. C. (2000). Arteries of the insula.
92
676–687.|||von Rosenberg W., Chanwimalueang T., Adjei T., Jaffer U., Goverdovsky V., Mandic D. P. (2017). Resolving ambiguities in the LF/HF Ratio: LF-HF scatter plots for the categorization of mental and physical stress from HRV.
8:360. 10.3389/fphys.2017.00360
|||Voss A., Schroeder R., Heitmann A., Peters A., Perz S. (2015). Short-term heart rate variability–influence of gender and age in healthy subjects.
10:e0118308. 10.1371/journal.pone.0118308
|||Wdowczyk J., Makowiec D., Gruchala M., Wejer D., Struzik Z. R. (2018). Dynamical landscape of heart rhythm in long-term heart transplant recipients: a way to discern erratic rhythms.
9:274. 10.3389/fphys.2018.00274
|||Wegmann E., Muller S. M., Turel O., Brand M. (2020). Interactions of impulsivity, general executive functions, and specific inhibitory control explain symptoms of social-networks-use disorder: an experimental study.
10:3866. 10.1038/s41598-020-60819-4
|||Williams P. G., Cribbet M. R., Tinajero R., Rau H. K., Thayer J. F., Suchy Y. (2019). The association between individual differences in executive functioning and resting high-frequency heart rate variability.
148:107772. 10.1016/j.biopsycho.2019.107772
|||Yang X., Spangler D. P., Thayer J. F., Friedman B. H. (2021). Resting heart rate variability modulates the effects of concurrent working memory load on affective startle modification.
58:e13833. 10.1111/psyp.13833
|||Zeng W., Marshall K., Min S., Daou I., Chapleau M., Abboud F., et al. (2018). PIEZOs mediate neuronal sensing of blood pressure and the baroreceptor reflex.
362
464–467. 10.1126/science.aau6324
|||Zhang L., Qiu S., Zhao C., Wang P., Yu S. (2021). Heart rate variability analysis in episodic migraine: a cross-sectional study.
12:647092. 10.3389/fneur.2021.647092