Quick Links

Publications:

Choriocapillaris and Retinal Vascular Alterations in Presymptomatic Alzheimer's Disease.

Authors: Giulia Corradetti|||Deniz Oncel|||Shin Kadomoto|||Xianghong Arakaki|||Robert A Kloner|||Alfredo A Sadun|||SriniVas R Sadda|||Jane W Chan

Journal: Investigative ophthalmology & visual science

Publication Type: Comparative Study

Date: 2024

DOI: PMC10839815

ID: 38294804

Affiliations:

Affiliations

    Doheny Eye Institute, Pasadena, California, United States.|||Doheny Eye Institute, Pasadena, California, United States.|||Doheny Eye Institute, Pasadena, California, United States.|||Cognition and Brain Integration Laboratory, Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, California, United States.|||Clinical Neuroscience, Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, California, United States.|||Doheny Eye Institute, Pasadena, California, United States.|||Doheny Eye Institute, Pasadena, California, United States.|||Doheny Eye Institute, Pasadena, California, United States.

Abstract

To compare optical coherence tomography angiography (OCTA) retina metrics between cognitively healthy subjects with pathological versus normal cerebrospinal fluid (CSF) Aβ42/tau ratios.


Chemical List

    Amyloidogenic Proteins

Reference List

    GBD 2019 Dementia Forecasting Collaborators. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. . 2022; 7(2): e105–e125. ||| Milà-Alomà M, Ashton NJ, Shekari M, et al.. Plasma p-tau231 and p-tau217 as state markers of amyloid-β pathology in preclinical Alzheimer's disease. . 2022; 28(9): 1797–1801. ||| Olsson B, Lautner R, Andreasson U, et al.. CSF and blood biomarkers for the diagnosis of Alzheimer's disease: a systematic review and meta-analysis. . 2016; 15(7): 673–684. ||| Shi H, Koronyo Y, Rentsendorj A, et al.. Retinal vasculopathy in Alzheimer's disease. . 2021; 15: 731614. ||| Montagne A, Nation DA, Sagare AP, et al.. APOE4 leads to blood–brain barrier dysfunction predicting cognitive decline. . 2020; 581(7806): 71–76. ||| Fagan AM, Shaw LM, Xiong C, et al.. Comparison of analytical platforms for cerebrospinal fluid measures of β-amyloid 1-42, total tau, and p-tau for identifying Alzheimer disease amyloid plaque pathology. . 2011; 68(9): 1137–1144. ||| Harrington MG, Chiang J, Pogoda JM, et al.. Executive function changes before memory in preclinical Alzheimer's pathology: a prospective, cross-sectional, case control study. . 2013; 8(11): e79378. ||| Pfeffer RI, Kurosaki TT, Harrah CH Jr, Chance JM, Filos S.. Measurement of functional activities in older adults in the community. . 1982; 37(3): 323–329. ||| Crum RM, Anthony JC, Bassett SS, Folstein MF.. Population-based norms for the Mini-Mental State Examination by age and educational level. . 1993; 269(18): 2386–2391. ||| Freitas S, Simões MR, Alves L, Santana I.. Montreal cognitive assessment: validation study for mild cognitive impairment and Alzheimer disease. . 2013; 27(1): 37–43. ||| Yesavage JA. Geriatric Depression Scale. . 1988; 24(4): 709–711. ||| Berg L. Clinical Dementia Rating (CDR). . 1988; 24(4): 637–639. ||| Coley N, Andrieu S, Jaros M, Weiner M, Cedarbaum J, Vellas B.. Suitability of the Clinical Dementia Rating-Sum of Boxes as a single primary endpoint for Alzheimer's disease trials. . 2011; 7(6): 602–610.e2. ||| Nation DA, Delano-Wood L, Bangen KJ, et al.. Antemortem pulse pressure elevation predicts cerebrovascular disease in autopsy-confirmed Alzheimer's disease. . 2012; 30(3): 595–603. ||| Bangen KJ, Nation DA, Delano-Wood L, et al.. Aggregate effects of vascular risk factors on cerebrovascular changes in autopsy-confirmed Alzheimer's disease. . 2015; 11(4): 394–403.e1. ||| Wang RK, An L, Francis P, Wilson DJ.. Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography. . 2010; 35(9): 1467–1469. ||| Chu Z, Zhang Q, Gregori G, Rosenfeld PJ, Wang RK.. Guidelines for imaging the choriocapillaris using OCT angiography. . 2021; 222: 92–101. ||| Smith CA, Josey VL, West ME, et al.. Variability of scan quality and perfusion density in longitudinal optical coherence tomography angiography imaging [published online ahead of print October 19, 2023]. , 10.1136/bjo-2022-322979.||| Stino H, de Llano Pato E, Steiner I, et al.. Macular microvascular perfusion status in hypertensive patients with chronic kidney disease. . 2023; 12(17): 5493.||| Śpiewak D, Witek K, Drzyzga Ł, Mrukwa-Kominek E.. An analysis of optical coherence tomography angiography (OCT-A) perfusion density maps in patients treated for retinal vein occlusion with intravitreal aflibercept. . 2023; 13(19): 3100. ||| Yospon T, Rojananuangnit K.. Optical coherence tomography angiography (OCTA) differences in vessel perfusion density and flux index of the optic nerve and peri-papillary area in healthy, glaucoma suspect and glaucomatous eyes. . 2023; 17: 3011–3021. ||| Shiihara H, Terasaki H, Sonoda S, et al.. Objective evaluation of size and shape of superficial foveal avascular zone in normal subjects by optical coherence tomography angiography. . 2018; 8(1): 10143. ||| Shiihara H, Sakamoto T, Yamashita T, et al.. Reproducibility and differences in area of foveal avascular zone measured by three different optical coherence tomographic angiography instruments. 2017; 7(1): 9853. ||| Yu Y, Zhang T, Meadway A, Wang X, Zhang Y.. High-speed adaptive optics for imaging of the living human eye. . 2015; 23(18): 23035–23052. ||| Zhang Q, Zheng F, Motulsky EH, et al.. A novel strategy for quantifying choriocapillaris flow voids using swept-source OCT angiography. . 2018; 59(1): 203–211. ||| Zhang Q, Shi Y, Zhou H, et al.. Accurate estimation of choriocapillaris flow deficits beyond normal intercapillary spacing with swept source OCT angiography. . 2018; 8(7): 658–666. ||| Asanad S, Ross-Cisneros FN, Barron E, et al.. The retinal choroid as an oculovascular biomarker for Alzheimer's dementia: a histopathological study in severe disease. . 2019; 11: 775–783.||| Robbins CB, Grewal DS, Thompson AC, et al.. Choroidal structural analysis in Alzheimer disease, mild cognitive impairment, and cognitively healthy controls. . 2021; 223: 359–367. ||| Marchesi VT. Alzheimer's dementia begins as a disease of small blood vessels, damaged by oxidative-induced inflammation and dysregulated amyloid metabolism: implications for early detection and therapy. . 2011; 25(1): 5–13. ||| Bulut M, Kurtuluş F, Gözkaya O, et al.. Evaluation of optical coherence tomography angiographic findings in Alzheimer's type dementia. . 2018; 102(2): 233–237. ||| Gharbiya M, Trebbastoni A, Parisi F, et al.. Choroidal thinning as a new finding in Alzheimer's disease: evidence from enhanced depth imaging spectral domain optical coherence tomography. . 2014; 40(4): 907–917. ||| Tiosano L, Corradetti G, Sadda SR.. Progression of choriocapillaris flow deficits in clinically stable intermediate age-related macular degeneration. . 2021; 35(11): 2991–2998. ||| Cheung CY-L, Ong YT, Ikram MK, et al.. Microvascular network alterations in the retina of patients with Alzheimer's disease. . 2014; 10(2): 135–142. ||| Zlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders. . 2011; 12(12): 723–738. ||| Koronyo-Hamaoui M, Doustar J, Oviatt M, Black KL, Koronyo Y.. Advances in retinal imaging: retinal amyloid imaging. In: Grzybowski A, Barboni P, eds. . Cham: Springer International Publishing; 2020: 83–122.||| Koronyo Y, Rentsendorj A, Mirzaei N, et al.. Retinal pathological features and proteome signatures of Alzheimer's disease. . 2023; 145(4): 409–438. ||| O'Bryhim BE, Apte RS, Kung N, Coble D, Van Stavern GP.. Association of preclinical Alzheimer disease with optical coherence tomographic angiography findings. . 2018; 136(11): 1242–1248. ||| O'Bryhim BE, Lin JB, Van Stavern GP, Apte RS.. OCT angiography findings in preclinical Alzheimer's disease: 3-year follow-up. . 2021; 128(10): 1489–1491. ||| Ma JP, Robbins CB, Lee JM, et al.. Longitudinal analysis of the retina and choroid in cognitively normal individuals at higher genetic risk of Alzheimer disease. . 2022; 6(7): 607–619. ||| Jack CR Jr, Bennett DA, Blennow K, et al.. NIA-AA research framework: toward a biological definition of Alzheimer's disease. . 2018; 14(4): 535–562. ||| Corvi F, Corradetti G, Sadda SR.. Correlation between the angiographic choriocapillaris and the structural inner choroid. . 2021; 46(6): 871–877. ||| Corradetti G, Tiosano L, Nassisi M, et al.. Scotopic microperimetric sensitivity and inner choroid flow deficits as predictors of progression to nascent geographic atrophy. . 2021; 105(11): 1584–1590. ||| Magesan K, Gnanaraj R, Tojjar J, et al.. Fractal analysis of the macular region in healthy eyes using swept-source optical coherence tomography angiography. . 2023; 261(10): 2787–2794. ||| van de Kreeke JA, Nguyen H-T, Konijnenberg E, et al.. Optical coherence tomography angiography in preclinical Alzheimer's disease. . 2020; 104(2): 157–161. ||| Vos SJ, Xiong C, Visser PJ, et al.. Preclinical Alzheimer's disease and its outcome: a longitudinal cohort study. . 2013; 12(10): 957–965. ||| Therriault J, Servaes S, Tissot C, et al.. Equivalence of plasma p-tau217 with cerebrospinal fluid in the diagnosis of Alzheimer's disease. . 2023; 19(11): 4967–4977.