Associations of Plasma Glutamatergic Metabolites with Alpha Desynchronization during Cognitive Interference and Working Memory T
Authors:
Journal: Cells
Publication Type: Journal Article
Date: 2024
DOI: PMC11171970
ID: 38891102
Abstract
Electroencephalogram (EEG) studies have suggested compensatory brain overactivation in cognitively healthy (CH) older adults with pathological beta-amyloid(Aβ)/tau ratios during working memory and interference processing. However, the association between glutamatergic metabolites and brain activation proxied by EEG signals has not been thoroughly investigated. We aim to determine the involvement of these metabolites in EEG signaling. We focused on CH older adults classified under (1) normal CSF Aβ/tau ratios (CH-NATs) and (2) pathological Aβ/tau ratios (CH-PATs). We measured plasma glutamine, glutamate, pyroglutamate, and γ-aminobutyric acid concentrations using tandem mass spectrometry and conducted a correlational analysis with alpha frequency event-related desynchronization (ERD). Under the N-back working memory paradigm, CH-NATs presented negative correlations (r = ~-0.74--0.96, = 0.0001-0.0414) between pyroglutamate and alpha ERD but positive correlations (r = ~0.82-0.95, = 0.0003-0.0119) between glutamine and alpha ERD. Under Stroop interference testing, CH-NATs generated negative correlations between glutamine and left temporal alpha ERD (r = -0.96, = 0.037 and r = -0.97, = 0.027). Our study demonstrated that glutamine and pyroglutamate levels were associated with EEG activity only in CH-NATs. These results suggest cognitively healthy adults with amyloid/tau pathology experience subtle metabolic dysfunction that may influence EEG signaling during cognitive challenge. A longitudinal follow-up study with a larger sample size is needed to validate these pilot studies.
Chemical List
- Glutamic Acid|||Amyloid beta-Peptides|||tau Proteins
Reference List
- Cassani R., Estarellas M., San-Martin R., Fraga F.J., Falk T.H. Systematic Review on Resting-State EEG for Alzheimer’s Disease Diagnosis and Progression Assessment. Dis. Markers. 2018;2018:5174815. doi: 10.1155/2018/5174815.|||Harrington M.G., Chiang J., Pogoda J.M., Gomez M., Thomas K., Marion S.D., Miller K.J., Siddarth P., Yi X., Zhou F., et al. Executive function changes before memory in preclinical Alzheimer’s pathology: A prospective, cross-sectional, case control study. PLoS ONE. 2013;8:e79378. doi: 10.1371/journal.pone.0079378.|||Lloret A., Esteve D., Lloret M.A., Cervera-Ferri A., Lopez B., Nepomuceno M., Monllor P. When Does Alzheimer’s Disease Really Start? The Role of Biomarkers. Int. J. Mol. Sci. 2019;20:5536. doi: 10.3390/ijms20225536.|||Jahn H. Memory loss in Alzheimer’s disease. Dialogues Clin. Neurosci. 2013;15:445–454. doi: 10.31887/DCNS.2013.15.4/hjahn.|||Yener G.G., Basar E. Biomarkers in Alzheimer’s disease with a special emphasis on event-related oscillatory responses. Suppl. Clin. Neurophysiol. 2013;62:237–273. doi: 10.1016/b978-0-7020-5307-8.00020-x.|||Jack C.R., Jr., Bennett D.A., Blennow K., Carrillo M.C., Dunn B., Haeberlein S.B., Holtzman D.M., Jagust W., Jessen F., Karlawish J., et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s Dement. 2018;14:535–562. doi: 10.1016/j.jalz.2018.02.018.|||Weller J., Budson A. Current understanding of Alzheimer’s disease diagnosis and treatment. F1000Research. 2018;7:1161. doi: 10.12688/f1000research.14506.1.|||Crystal H., Dickson D., Fuld P., Masur D., Scott R., Mehler M., Masdeu J., Kawas C., Aronson M., Wolfson L. Clinico-pathologic studies in dementia: Nondemented subjects with pathologically confirmed Alzheimer’s disease. Neurology. 1988;38:1682–1687. doi: 10.1212/wnl.38.11.1682.|||Iacono D., Markesbery W.R., Gross M., Pletnikova O., Rudow G., Zandi P., Troncoso J.C. The Nun study: Clinically silent AD, neuronal hypertrophy, and linguistic skills in early life. Neurology. 2009;73:665–673. doi: 10.1212/WNL.0b013e3181b01077.|||Roberts R.O., Aakre J.A., Kremers W.K., Vassilaki M., Knopman D.S., Mielke M.M., Alhurani R., Geda Y.E., Machulda M.M., Coloma P., et al. Prevalence and Outcomes of Amyloid Positivity Among Persons without Dementia in a Longitudinal, Population-Based Setting. JAMA Neurol. 2018;75:970–979. doi: 10.1001/jamaneurol.2018.0629.|||Fagan A.M., Shaw L.M., Xiong C., Vanderstichele H., Mintun M.A., Trojanowski J.Q., Coart E., Morris J.C., Holtzman D.M. Comparison of analytical platforms for cerebrospinal fluid measures of beta-amyloid 1-42, total tau, and p-tau181 for identifying Alzheimer disease amyloid plaque pathology. Arch. Neurol. 2011;68:1137–1144. doi: 10.1001/archneurol.2011.105.|||Wang R., Reddy P.H. Role of Glutamate and NMDA Receptors in Alzheimer’s Disease. J. Alzheimer’s Dis. 2017;57:1041–1048. doi: 10.3233/JAD-160763.|||Bukke V.N., Archana M., Villani R., Romano A.D., Wawrzyniak A., Balawender K., Orkisz S., Beggiato S., Serviddio G., Cassano T. The Dual Role of Glutamatergic Neurotransmission in Alzheimer’s Disease: From Pathophysiology to Pharmacotherapy. Int. J. Mol. Sci. 2020;21:7452. doi: 10.3390/ijms21207452.|||Bai X., Edden R.A., Gao F., Wang G., Wu L., Zhao B., Wang M., Chan Q., Chen W., Barker P.B. Decreased gamma-aminobutyric acid levels in the parietal region of patients with Alzheimer’s disease. J. Magn. Reson. Imaging. 2015;41:1326–1331. doi: 10.1002/jmri.24665.|||Govindpani K., Calvo-Flores Guzman B., Vinnakota C., Waldvogel H.J., Faull R.L., Kwakowsky A. Towards a Better Understanding of GABAergic Remodeling in Alzheimer’s Disease. Int. J. Mol. Sci. 2017;18:1813. doi: 10.3390/ijms18081813.|||Goutagny R., Krantic S. Hippocampal oscillatory activity in Alzheimer’s disease: Toward the identification of early biomarkers? Aging Dis. 2013;4:134–140.|||Cruzat V., Macedo Rogero M., Noel Keane K., Curi R., Newsholme P. Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation. Nutrients. 2018;10:1564. doi: 10.3390/nu10111564.|||Kim H. Glutamine as an immunonutrient. Yonsei Med. J. 2011;52:892–897. doi: 10.3349/ymj.2011.52.6.892.|||Pelkey K.A., Chittajallu R., Craig M.T., Tricoire L., Wester J.C., McBain C.J. Hippocampal GABAergic Inhibitory Interneurons. Physiol Rev. 2017;97:1619–1747. doi: 10.1152/physrev.00007.2017.|||Andersen J.V., Markussen K.H., Jakobsen E., Schousboe A., Waagepetersen H.S., Rosenberg P.A., Aldana B.I. Glutamate metabolism and recycling at the excitatory synapse in health and neurodegeneration. Neuropharmacology. 2021;196:108719. doi: 10.1016/j.neuropharm.2021.108719.|||Jawhar S., Wirths O., Bayer T.A. Pyroglutamate amyloid-beta (Abeta): A hatchet man in Alzheimer disease. J. Biol. Chem. 2011;286:38825–38832. doi: 10.1074/jbc.R111.288308.|||Al-Qazzaz N.K., Ali S.H., Ahmad S.A., Chellappan K., Islam M.S., Escudero J. Role of EEG as biomarker in the early detection and classification of dementia. Sci. World J. 2014;2014:906038. doi: 10.1155/2014/906038.|||Begleiter H., Porjesz B. Genetics of human brain oscillations. Int. J. Psychophysiol. 2006;60:162–171. doi: 10.1016/j.ijpsycho.2005.12.013.|||Rochart R., Liu Q., Fonteh A.N., Harrington M.G., Arakaki X. Compromised Behavior and Gamma Power During Working Memory in Cognitively Healthy Individuals with Abnormal CSF Amyloid/Tau. Front. Aging Neurosci. 2020;12:574214. doi: 10.3389/fnagi.2020.574214.|||Arakaki X., Hung S.M., Rochart R., Fonteh A.N., Harrington M.G. Alpha desynchronization during Stroop test unmasks cognitively healthy individuals with abnormal CSF Amyloid/Tau. Neurobiol. Aging. 2022;112:87–101. doi: 10.1016/j.neurobiolaging.2021.11.009.|||Zani A., Tumminelli C., Proverbio A.M. Electroencephalogram (EEG) Alpha Power as a Marker of Visuospatial Attention Orienting and Suppression in Normoxia and Hypoxia. An Exploratory Study. Brain Sci. 2020;10:140. doi: 10.3390/brainsci10030140.|||Klimesch W., Sauseng P., Hanslmayr S. EEG alpha oscillations: The inhibition-timing hypothesis. Brain Res. Rev. 2007;53:63–88. doi: 10.1016/j.brainresrev.2006.06.003.|||Bai Y., Nakao T., Xu J., Qin P., Chaves P., Heinzel A., Duncan N., Lane T., Yen N.S., Tsai S.Y., et al. Resting state glutamate predicts elevated pre-stimulus alpha during self-relatedness: A combined EEG-MRS study on “rest-self overlap”. Soc. Neurosci. 2016;11:249–263. doi: 10.1080/17470919.2015.1072582.|||Arrubla J., Farrher E., Strippelmann J., Tse D.H.Y., Grinberg F., Shah N.J., Neuner I. Microstructural and functional correlates of glutamate concentration in the posterior cingulate cortex. J. Neurosci. Res. 2017;95:1796–1808. doi: 10.1002/jnr.24010.|||Curic S., Leicht G., Thiebes S., Andreou C., Polomac N., Eichler I.C., Eichler L., Zollner C., Gallinat J., Steinmann S., et al. Reduced auditory evoked gamma-band response and schizophrenia-like clinical symptoms under subanesthetic ketamine. Neuropsychopharmacology. 2019;44:1239–1246. doi: 10.1038/s41386-019-0328-5.|||Wyss C., Tse D.H.Y., Kometer M., Dammers J., Achermann R., Shah N.J., Kawohl W., Neuner I. GABA metabolism and its role in gamma-band oscillatory activity during auditory processing: An MRS and EEG study. Hum. Brain Mapp. 2017;38:3975–3987. doi: 10.1002/hbm.23642.|||Hong L.E., Summerfelt A., Buchanan R.W., O’Donnell P., Thaker G.K., Weiler M.A., Lahti A.C. Gamma and delta neural oscillations and association with clinical symptoms under subanesthetic ketamine. Neuropsychopharmacology. 2010;35:632–640. doi: 10.1038/npp.2009.168.|||Plourde G., Baribeau J., Bonhomme V. Ketamine increases the amplitude of the 40-Hz auditory steady-state response in humans. Br. J. Anaesth. 1997;78:524–529. doi: 10.1093/bja/78.5.524.|||Sanacora G., Smith M.A., Pathak S., Su H.L., Boeijinga P.H., McCarthy D.J., Quirk M.C. Lanicemine: A low-trapping NMDA channel blocker produces sustained antidepressant efficacy with minimal psychotomimetic adverse effects. Mol. Psychiatry. 2014;19:978–985. doi: 10.1038/mp.2013.130.|||Wilder C., Moncrieffe K., Nolty A., Arakaki X., Fonteh A.N., Harrington M.G. Boston Naming Test predicts deterioration of cerebrospinal fluid biomarkers in pre-symptomatic Alzheimer’s disease. FASEB J. 2018;32:545.1. doi: 10.1096/fasebj.2018.32.1_supplement.545.1.|||Crum R.M., Anthony J.C., Bassett S.S., Folstein M.F. Population-based norms for the Mini-Mental State Examination by age and educational level. JAMA. 1993;269:2386–2391. doi: 10.1001/jama.1993.03500180078038.|||Arakaki X., Lee R., King K.S., Fonteh A.N., Harrington M.G. Alpha desynchronization during simple working memory unmasks pathological aging in cognitively healthy individuals. PLoS ONE. 2019;14:e0208517. doi: 10.1371/journal.pone.0208517.|||Jalalvandi M., ZahediNiya M., Kargar J., A Karimi S., Sharini H., Goodarzi N. Brain Functional Mechanisms in Attentional Processing Following Modified Conflict Stroop Task. J. Biomed. Phys. Eng. 2020;10:493–506. doi: 10.31661/jbpe.v0i0.2003-1084.|||Morawski M., Schilling S., Kreuzberger M., Waniek A., Jager C., Koch B., Cynis H., Kehlen A., Arendt T., Hartlage-Rubsamen M., et al. Glutaminyl cyclase in human cortex: Correlation with (pGlu)-amyloid-beta load and cognitive decline in Alzheimer’s disease. J. Alzheimer’s Dis. 2014;39:385–400. doi: 10.3233/JAD-131535.|||Michno W., Nystrom S., Wehrli P., Lashley T., Brinkmalm G., Guerard L., Syvanen S., Sehlin D., Kaya I., Brinet D., et al. Pyroglutamation of amyloid-betax-42 (Abetax-42) followed by Abeta1-40 deposition underlies plaque polymorphism in progressing Alzheimer’s disease pathology. J. Biol. Chem. 2019;294:6719–6732. doi: 10.1074/jbc.RA118.006604.|||Gunn A.P., Wong B.X., McLean C., Fowler C., Barnard P.J., Duce J.A., Roberts B.R., Group A.R. Increased glutaminyl cyclase activity in brains of Alzheimer’s disease individuals. J. Neurochem. 2021;156:979–987. doi: 10.1111/jnc.15114.|||Hartlage-Rubsamen M., Bluhm A., Moceri S., Machner L., Koppen J., Schenk M., Hilbrich I., Holzer M., Weidenfeller M., Richter F., et al. A glutaminyl cyclase-catalyzed alpha-synuclein modification identified in human synucleinopathies. Acta Neuropathol. 2021;142:399–421. doi: 10.1007/s00401-021-02349-5.|||Bayer T.A. Pyroglutamate Abeta cascade as drug target in Alzheimer’s disease. Mol. Psychiatry. 2022;27:1880–1885. doi: 10.1038/s41380-021-01409-2.|||Valenti M.T., Bolognin S., Zanatta C., Donatelli L., Innamorati G., Pampanin M., Zanusso G., Zatta P., Dalle Carbonare L. Increased glutaminyl cyclase expression in peripheral blood of Alzheimer’s disease patients. J. Alzheimer’s Dis. 2013;34:263–271. doi: 10.3233/JAD-120517.|||Gunn A.P., Masters C.L., Cherny R.A. Pyroglutamate-Abeta: Role in the natural history of Alzheimer’s disease. Int. J. Biochem. Cell Biol. 2010;42:1915–1918. doi: 10.1016/j.biocel.2010.08.015.|||Caccamo A., Oddo S., Billings L.M., Green K.N., Martinez-Coria H., Fisher A., LaFerla F.M. M1 receptors play a central role in modulating AD-like pathology in transgenic mice. Neuron. 2006;49:671–682. doi: 10.1016/j.neuron.2006.01.020.|||Fisher A. Cholinergic treatments with emphasis on m1 muscarinic agonists as potential disease-modifying agents for Alzheimer’s disease. Neurotherapeutics. 2008;5:433–442. doi: 10.1016/j.nurt.2008.05.002.|||Fisher M.C., Zeisel S.H., Mar M.H., Sadler T.W. Perturbations in choline metabolism cause neural tube defects in mouse embryos in vitro. FASEB J. 2002;16:619–621. doi: 10.1096/fj.01-0564fje.|||Yi J.H., Whitcomb D.J., Park S.J., Martinez-Perez C., Barbati S.A., Mitchell S.J., Cho K. M1 muscarinic acetylcholine receptor dysfunction in moderate Alzheimer’s disease pathology. Brain Commun. 2020;2:fcaa058. doi: 10.1093/braincomms/fcaa058.|||Roy R.G., Mandal P.K., Maroon J.C. Oxidative Stress Occurs Prior to Amyloid Abeta Plaque Formation and Tau Phosphorylation in Alzheimer’s Disease: Role of Glutathione and Metal Ions. ACS Chem. Neurosci. 2023;14:2944–2954. doi: 10.1021/acschemneuro.3c00486.|||Mandal P.K., Roy R.G., Samkaria A. Oxidative Stress: Glutathione and Its Potential to Protect Methionine-35 of Abeta Peptide from Oxidation. ACS Omega. 2022;7:27052–27061. doi: 10.1021/acsomega.2c02760.|||Mandal P.K., Saharan S., Tripathi M., Murari G. Brain glutathione levels--a novel biomarker for mild cognitive impairment and Alzheimer’s disease. Biol. Psychiatry. 2015;78:702–710. doi: 10.1016/j.biopsych.2015.04.005.|||Mandal P.K., Tripathi M., Sugunan S. Brain oxidative stress: Detection and mapping of anti-oxidant marker ‘Glutathione’ in different brain regions of healthy male/female, MCI and Alzheimer patients using non-invasive magnetic resonance spectroscopy. Biochem. Biophys. Res. Commun. 2012;417:43–48. doi: 10.1016/j.bbrc.2011.11.047.|||Dwivedi D., Megha K., Mishra R., Mandal P.K. Glutathione in Brain: Overview of Its Conformations, Functions, Biochemical Characteristics, Quantitation and Potential Therapeutic Role in Brain Disorders. Neurochem. Res. 2020;45:1461–1480. doi: 10.1007/s11064-020-03030-1.|||Tamagno E., Guglielmotto M., Vasciaveo V., Tabaton M. Oxidative Stress and Beta Amyloid in Alzheimer’s Disease. Which Comes First: The Chicken or the Egg? Antioxidants. 2021;10:1479. doi: 10.3390/antiox10091479.|||Wang X., Michaelis E.K. Selective neuronal vulnerability to oxidative stress in the brain. Front. Aging Neurosci. 2010;2:12. doi: 10.3389/fnagi.2010.00012.|||Salim S. Oxidative Stress and the Central Nervous System. J. Pharmacol. Exp. Ther. 2017;360:201–205. doi: 10.1124/jpet.116.237503.|||Kandlur A., Satyamoorthy K., Gangadharan G. Oxidative Stress in Cognitive and Epigenetic Aging: A Retrospective Glance. Front. Mol. Neurosci. 2020;13:41. doi: 10.3389/fnmol.2020.00041.|||Anwar M.M. Oxidative stress-A direct bridge to central nervous system homeostatic dysfunction and Alzheimer’s disease. Cell Biochem. Funct. 2022;40:17–27. doi: 10.1002/cbf.3673.|||Bustillo J.R., Upston J., Mayer E.G., Jones T., Maudsley A.A., Gasparovic C., Tohen M., Lenroot R. Glutamatergic hypo-function in the left superior and middle temporal gyri in early schizophrenia: A data-driven three-dimensional proton spectroscopic imaging study. Neuropsychopharmacology. 2020;45:1851–1859. doi: 10.1038/s41386-020-0707-y.|||Volk C., Jaramillo V., Studler M., Furrer M., O’Gorman Tuura R.L., Huber R. Diurnal changes in human brain glutamate + glutamine levels in the course of development and their relationship to sleep. Neuroimage. 2019;196:269–275. doi: 10.1016/j.neuroimage.2019.04.040.|||Schwab C., Yu S., Wong W., McGeer E.G., McGeer P.L. GAD65, GAD67, and GABAT immunostaining in human brain and apparent GAD65 loss in Alzheimer’s disease. J. Alzheimer’s Dis. 2013;33:1073–1088. doi: 10.3233/JAD-2012-121330.|||Yoo H.C., Yu Y.C., Sung Y., Han J.M. Glutamine reliance in cell metabolism. Exp. Mol. Med. 2020;52:1496–1516. doi: 10.1038/s12276-020-00504-8.|||Scalise M., Pochini L., Galluccio M., Indiveri C. Glutamine transport. From energy supply to sensing and beyond. Biochim. Biophys. Acta. 2016;1857:1147–1157. doi: 10.1016/j.bbabio.2016.03.006.|||Hayes J.D., Dinkova-Kostova A.T., Tew K.D. Oxidative Stress in Cancer. Cancer Cell. 2020;38:167–197. doi: 10.1016/j.ccell.2020.06.001.|||Yang S.Y., He Yang X.Y., Healy-Louie G., Schulz H., Elzinga M. Nucleotide sequence of the fadA gene. Primary structure of 3-ketoacyl-coenzyme A thiolase from Escherichia coli and the structural organization of the fadAB operon. J. Biol. Chem. 1991;266:16255. doi: 10.1016/S0021-9258(18)98543-1.|||Wittnam J.L., Portelius E., Zetterberg H., Gustavsson M.K., Schilling S., Koch B., Demuth H.U., Blennow K., Wirths O., Bayer T.A. Pyroglutamate amyloid beta (Abeta) aggravates behavioral deficits in transgenic amyloid mouse model for Alzheimer disease. J. Biol. Chem. 2012;287:8154–8162. doi: 10.1074/jbc.M111.308601.|||Wirths O., Breyhan H., Cynis H., Schilling S., Demuth H.U., Bayer T.A. Intraneuronal pyroglutamate-Abeta 3-42 triggers neurodegeneration and lethal neurological deficits in a transgenic mouse model. Acta Neuropathol. 2009;118:487–496. doi: 10.1007/s00401-009-0557-5.|||Biria M., Banca P., Healy M.P., Keser E., Sawiak S.J., Rodgers C.T., Rua C., de Souza A., Marzuki A.A., Sule A., et al. Cortical glutamate and GABA are related to compulsive behaviour in individuals with obsessive compulsive disorder and healthy controls. Nat. Commun. 2023;14:3324. doi: 10.1038/s41467-023-38695-z.