Parallel electrophysiological abnormalities due to COVID-19 infection and to Alzheimer's disease and related dementia.
Authors:
Journal: Alzheimer's & dementia : the journal of the Alzheimer's Association
Publication Type: Journal Article
Date: 2024
DOI: PMC11485397
ID: 39206795
Abstract
Many coronavirus disease 2019 (COVID-19) positive individuals exhibit abnormal electroencephalographic (EEG) activity reflecting "brain fog" and mild cognitive impairments even months after the acute phase of infection. Resting-state EEG abnormalities include EEG slowing (reduced alpha rhythm; increased slow waves) and epileptiform activity. An expert panel conducted a systematic review to present compelling evidence that cognitive deficits due to COVID-19 and to Alzheimer's disease and related dementia (ADRD) are driven by overlapping pathologies and neurophysiological abnormalities. EEG abnormalities seen in COVID-19 patients resemble those observed in early stages of neurodegenerative diseases, particularly ADRD. It is proposed that similar EEG abnormalities in Long COVID and ADRD are due to parallel neuroinflammation, astrocyte reactivity, hypoxia, and neurovascular injury. These neurophysiological abnormalities underpinning cognitive decline in COVID-19 can be detected by routine EEG exams. Future research will explore the value of EEG monitoring of COVID-19 patients for predicting long-term outcomes and monitoring efficacy of therapeutic interventions. HIGHLIGHTS: Abnormal intrinsic electrophysiological brain activity, such as slowing of EEG, reduced alpha wave, and epileptiform are characteristic findings in COVID-19 patients. EEG abnormalities have the potential as neural biomarkers to identify neurological complications at the early stage of the disease, to assist clinical assessment, and to assess cognitive decline risk in Long COVID patients. Similar slowing of intrinsic brain activity to that of COVID-19 patients is typically seen in patients with mild cognitive impairments, ADRD. Evidence presented supports the idea that cognitive deficits in Long COVID and ADRD are driven by overlapping neurophysiological abnormalities resulting, at least in part, from neuroinflammatory mechanisms and astrocyte reactivity. Identifying common biological mechanisms in Long COVID-19 and ADRD can highlight critical pathologies underlying brain disorders and cognitive decline. It elucidates research questions regarding cognitive EEG and mild cognitive impairment in Long COVID that have not yet been adequately investigated.
Reference List
- de Erausquin GA, Snyder H, Brugha TS, et al. Chronic neuropsychiatric sequelae of SARS‐CoV‐2: protocol and methods from the Alzheimer's Association Global Consortium. Alzheimers Dement. 2022;8(1):e12348. doi:10.1002/trc2.12348|||Chaolin H, Lixue H, Wang Y, et al. 6‐month consequences of COVID‐19 in patients discharged from hospital: a cohort study. Lancet North Am Ed. 2021;397(10270):220‐232. doi:10.1016/S0140-6736(20)32656-8|||Logue JK, Franko NM, McCulloch DJ, et al. Sequelae in adults at 6 months after COVID‐19 infection. JAMA Netw Open. 2021;4(2):e210830. doi:10.1001/jamanetworkopen.2021.0830|||Premraj L, Kannapadi NV, Briggs J, et al. Mid and long‐term neurological and neuropsychiatric manifestations of post‐COVID‐19 syndrome: a meta‐analysis. J Neurol Sci. 2022;434:120162. doi:10.1016/j.jns.2022.120162|||Taquet M, Geddes JR, Husain M, Luciano S, Harrison PJ. 6‐month neurological and psychiatric outcomes in 236 379 survivors of COVID‐19: a retrospective cohort study using electronic health records. Lancet Psychiatry. 2021;8(5):416‐427. doi:10.1016/S2215-0366(21)00084-5|||Davis HE, Assaf GS, McCorkell L, et al. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine. 2021;38:101019. doi:10.1016/j.eclinm.2021.101019|||Rubega M, Ciringione L, Bertuccelli M, et al. High‐density EEG sleep correlates of cognitive and affective impairment at 12‐month follow‐up after COVID‐19. Clin Neurophysiol. 2022;140:126‐135. doi:10.1016/j.clinph.2022.05.017|||Kotzalidis GD, Ferrara OM, Margoni S, et al. Are the post COVID‐19 posttraumatic stress disorder (PTSD) symptoms justified by the effects of COVID‐19 on brain structure? A systematic review. J Pers Med. 2023;13(7):1140. doi:10.3390/jpm13071140|||
Berg S. What doctors wish patients knew about long COVID‐19 brain fog. American Medical Association. 2023. https://www.ama-assn.org/delivering-care/public-health/what-doctors-wish-patients-knew-about-long-covid-19-brain-fog
|||Azzolino D, Cesari M. Fatigue in the COVID‐19 pandemic. Lancet Healthy Longev. 2022;3(3):e128‐e129. doi:10.1016/S2666-7568(22)00029-0|||Soriano JB, Murthy S, Marshall JC, Relan P, Diaz JV. A clinical case definition of post‐COVID‐19 condition by a Delphi consensus. Lancet Infect Dis. 2022;22(4):e102‐e107. doi:10.1016/S1473-3099(21)00703-9|||Tavares‐Júnior JWL, Oliveira DN, da Silva JBS, et al. Long‐covid cognitive impairment: cognitive assessment and apolipoprotein E (APOE) genotyping correlation in a Brazilian cohort. Front Psychiatry. 2022;13:947583. doi:10.3389/fpsyt.2022.947583|||Light SN. The combined use of neuropsychiatric and neuropsychological assessment tools to make a differential dementia diagnosis in the presence of “Long‐Haul” COVID‐19. Case Rep Neurol. 2022;14(1):130‐148. doi:10.1159/000522020|||Hampshire A, Azor A, Atchison C, et al. Cognition and memory after Covid‐19 in a large community sample. N Engl J Med. 2024;390(9):806‐818. doi:10.1056/NEJMoa2311330|||Sáez‐Landete I, Gómez‐Domínguez A, Estrella‐León B, et al. Retrospective analysis of EEG in patients with COVID‐19: EEG recording in acute and follow‐up phases. Clin EEG Neurosci. 2022;53(3):215‐228. doi:10.1177/15500594211035923|||Cani I, Barone V, D'Angelo R, et al. Frontal encephalopathy related to hyperinflammation in COVID‐19. J Neurol. 2021;268(1):16‐19. doi:10.1007/s00415-020-10057-5|||Del Brutto OH, Wu S, Mera RM, Costa AF, Recalde BY, Issa NP. Cognitive decline among individuals with history of mild symptomatic SARS‐CoV‐2 infection: a longitudinal prospective study nested to a population cohort. Eur J Neurol. 2021;28:3245‐3253. doi:10.1111/ene.14775|||Pensato U, Muccioli L, Cani I, et al. Brain dysfunction in COVID‐19 and CAR‐T therapy: cytokine storm‐associated encephalopathy. Ann Clin Transl Neurol. 2021;8(4):968‐979. doi:10.1002/acn3.51348|||Daroische R, Hemminghyth MS, Eilertsen TH, Breitve MH, Chwiszczuk LJ. Cognitive impairment after COVID‐19–a review on objective test data. Front Neurol. 2021;12. doi:10.3389/fneur.2021.699582|||Toniolo S, Scarioni M, Di Lorenzo F, et al. Dementia and COVID‐19, a bidirectional liaison: risk factors, biomarkers, and optimal health care. J Alzheimer's Dis. 2021;82(3):883‐898. doi:10.3233/JAD-210335|||Vasile MC, Vasile CI, Arbune AA, Nechifor A, Arbune M. Cognitive dysfunction in hospitalized patient with moderate‐to‐severe COVID‐19: a 1‐year prospective observational study. J Multidiscip Healthc. 2023;16:3367‐3378. doi:10.2147/JMDH.S432969|||Zhou H, Lu S, Chen J, et al. The landscape of cognitive function in recovered COVID‐19 patients. J Psychiatr Res. 2020;129:98‐102. doi:10.1016/j.jpsychires.2020.06.022|||Olivera E, Sáez A, Carniglia L, Caruso C, Lasaga M, Durand D. Alzheimer's disease risk after COVID‐19: a view from the perspective of the infectious hypothesis of neurodegeneration. Neural Regen Res. 2023;18(7):1404‐1410. doi:10.4103/1673-5374.360273|||Solomon IH, Normandin E, Bhattacharyya S, et al. Neuropathological features of Covid‐19. N Engl J Med. 2020;383(10):989‐992. doi:10.1056/NEJMc2019373|||Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID‐19. Lancet. 2020;395(10234):1417‐1418. doi:10.1016/S0140-6736(20)30937-5|||Greene C, Connolly R, Brennan D, et al. Blood–brain barrier disruption and sustained systemic inflammation in individuals with long COVID‐associated cognitive impairment. Nat Neurosci. 2024;27(3):421‐432. doi:10.1038/s41593-024-01576-9|||Samudyata N, Oliveira AO, Malwade S, et al. SARS‐CoV‐2 promotes microglial synapse elimination in human brain organoids. Mol Psychiatry. 2022;27(10):3939‐3950. doi:10.1038/s41380-022-01786-2|||Hanson BA, Visvabharathy L, Ali ST, et al. Plasma biomarkers of neuropathogenesis in hospitalized patients with COVID‐19 and those with postacute sequelae of SARS‐CoV‐2 infection. Neurol Neuroimmunol Neuroinflammation. 2022;9(3):e1151. doi:10.1212/NXI.0000000000001151|||Babiloni C, Arakaki X, Azami H, et al. Measures of resting state EEG rhythms for clinical trials in Alzheimer's disease: recommendations of an expert panel. Alzheimers Dement. 2021;17(9):1528‐1553. doi:10.1002/alz.12311|||Pfurtscheller G, Lopes da Silva FH. Event‐related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol. 1999;110(11):1842‐1857. doi:10.1016/s1388-2457(99)00141-8|||Yener G, Hünerli‐Gündüz D, Yıldırım E, et al. Treatment effects on event‐related EEG potentials and oscillations in Alzheimer's disease. Int J Psychophysiol. 2022;177:179‐201. doi:10.1016/j.ijpsycho.2022.05.008|||Güntekin B, Aktürk T, Arakaki X, et al. Are there consistent abnormalities in event‐related EEG oscillations in patients with Alzheimer's disease compared to other diseases belonging to dementia? Psychophysiology. 2022;59(5):e13934. doi:10.1111/psyp.13934|||Borhani S, Zhao X, Kelly MR, et al. Gauging working memory capacity from differential resting brain oscillations in older individuals with a wearable device. Front Aging Neurosci. 2021;13:625006. doi:10.3389/fnagi.2021.625006|||Babiloni C, Jakhar D, Tucci F, et al. Resting state electroencephalographic alpha rhythms are sensitive to Alzheimer's disease mild cognitive impairment progression at a 6‐month follow‐up. Neurobiol Aging. 2024;137:19‐37. doi:10.1016/j.neurobiolaging.2024.01.013|||Babiloni C, Lopez S, Noce G, et al. Relationship between default mode network and resting‐state electroencephalographic alpha rhythms in cognitively unimpaired seniors and patients with dementia due to Alzheimer's disease. Cereb Cortex. 2023;33(20):10514‐10527. doi:10.1093/cercor/bhad300|||Babiloni C, Barry RJ, Başar E, et al. International Federation of Clinical Neurophysiology (IFCN) – EEG research workgroup: recommendations on frequency and topographic analysis of resting state EEG rhythms. Part 1: applications in clinical research studies. Clin Neurophysiol. 2020;131(1):285‐307. doi:10.1016/j.clinph.2019.06.234|||Ibanez A, Santamaria‐Garcia H, et al. The impact of SARS‐CoV‐2 in dementia across Latin America: a call for an urgent regional plan and coordinated response. Alzheimers Dement. 2020;6(1):e12092. doi:10.1002/trc2.12092|||Louis S, Dhawan A, Newey C, et al. Continuous electroencephalography characteristics and acute symptomatic seizures in COVID‐19 patients. Clin Neurophysiol. 2020;131(11):2651‐2656. doi:10.1016/j.clinph.2020.08.003|||Antony AR, Haneef Z. Systematic review of EEG findings in 617 patients diagnosed with COVID‐19. Seizure. 2020;83:234‐241. doi:10.1016/j.seizure.2020.10.014|||Cecchetti G, Agosta F, Canu E, et al. Cognitive, EEG, and MRI features of COVID‐19 survivors: a 10‐month study. J Neurol. 2022;269(7):3400‐3412. doi:10.1007/s00415-022-11047-5|||Kubota T, Gajera PK, Kuroda N. Meta‐analysis of EEG findings in patients with COVID‐19. Epilepsy Behav. 2021;115:107682. doi:10.1016/j.yebeh.2020.107682|||Lin L, Al‐Faraj A, Ayub N, et al. Electroencephalographic Abnormalities are Common in COVID‐19 and are Associated with Outcomes. Ann Neurol. 2021;89(5):872‐883. doi:10.1002/ana.26060|||Furlanis G, Buoite Stella A, Biaduzzini F, et al. Cognitive deficit in post‐acute COVID‐19: an opportunity for EEG evaluation? Neurolog Sci. 2023;44(5):1491‐1498. doi:10.1007/s10072-023-06615-0|||Vellieux G, Sonneville R, Vledouts S, Jaquet P, Rouvel‐Tallec A, d'Ortho MP. COVID‐19‐associated neurological manifestations: an emerging electroencephalographic literature. Front Physiol. 2021;11:622466. doi:10.3389/fphys.2020.622466|||Toniolo S, Di Lorenzo F, Scarioni M, Frederiksen KS, Nobili F. Is the frontal lobe the primary target of SARS‐CoV‐2? J Alzheimer's Dis. 2021;81(1):75‐81. doi:10.3233/JAD-210008|||Zhao S, Toniolo S, Hampshire A, Husain M. Effects of COVID‐19 on cognition and brain health. Trends Cogn Sci. 2023;27(11):1053‐1067. doi:10.1016/j.tics.2023.08.008|||Balloy G, Leclair‐Visonneau L, Péréon Y, et al. Non‐lesional status epilepticus in a patient with coronavirus disease 2019. Clin Neurophysiol. 2020;131(8):2059‐2061. doi:10.1016/J.CLINPH.2020.05.005|||Pellinen J, Carroll E, Friedman D, et al. Continuous EEG findings in patients with COVID‐19 infection admitted to a New York academic hospital system. Epilepsia. 2020;61(10):2097‐2105. doi:10.1111/epi.16667|||Galanopoulou AS, Ferastraoaru V, Correa DJ, et al. EEG findings in acutely ill patients investigated for SARS‐CoV‐2/COVID‐19: a small case series preliminary report. Epilepsia Open. 2020;5(2):314‐324. doi:10.1002/EPI4.12399|||Parra A, Juanes A, Losada CP, et al. Psychotic symptoms in COVID‐19 patients. A retrospective descriptive study. Psychiatry Res. 2020;291:113254. doi:10.1016/J.PSYCHRES.2020.113254|||Lambrecq V, Hanin A, Munoz‐Musat E, et al. Association of clinical, biological, and brain magnetic resonance imaging findings with electroencephalographic findings for patients with COVID‐19. JAMA Netw Open. 2021;4(3):e211489‐e211489. doi:10.1001/jamanetworkopen.2021.1489|||Muccioli L, Pensato U, Cani I, et al. COVID‐19‐related encephalopathy presenting with aphasia resolving following tocilizumab treatment. J Neuroimmunol. 2020;349:577400. doi:10.1016/j.jneuroim.2020.577400|||Ayub N, Cohen J, Jing J, et al. Clinical electroencephalography findings and considerations in hospitalized patients with coronavirus SARS‐CoV‐2. Neurohospitalist. 2021;11(3):204‐213. doi:10.1177/1941874420972237/FORMAT/EPUB|||Koutroumanidis M, Gratwicke J, Sharma S, Whelan A, Tan SV, Glover G. Alpha coma EEG pattern in patients with severe COVID‐19 related encephalopathy. Clin Neurophysiol. 2021;132(1):218‐225. doi:10.1016/j.clinph.2020.09.008|||Vespignani H, Colas D, Lavin BS, et al. Report on electroencephalographic findings in critically ill patients with COVID‐19. Ann Neurol. 2020;88(3):626‐630. doi:10.1002/ana.25814|||Petrescu AM, Taussig D, Bouilleret V. Electroencephalogram (EEG) in COVID‐19: a systematic retrospective study. Neurophysiologie Clinique. 2020;50(3):155‐165. doi:10.1016/j.neucli.2020.06.001|||Pati S, Toth E, Chaitanya G. Quantitative EEG markers to prognosticate critically ill patients with COVID‐19: a retrospective cohort study. Clin Neurophysiol. 2020;131(8):1824‐1826. doi:10.1016/j.clinph.2020.06.001|||Kaplan PW, Genoud D, Ho TW, Jallon P. Etiology, neurologic correlations, and prognosis in alpha coma. Clin Neurophysiol. 1999;110(2):205‐213. doi:10.1016/S1388-2457(98)00046-7|||Kopańska M, Banaś‐Ząbczyk A, Łagowska A, Kuduk B, Szczygielski J. Changes in EEG recordings in COVID‐19 patients as a basis for more accurate QEEG diagnostics and EEG neurofeedback therapy: a systematic review. J Clin Med. 2021;10(6):1‐12. doi:10.3390/jcm10061300|||Babiloni C, Gentilini Cacciola E, Tucci F, et al. Resting‐state EEG rhythms are abnormal in post COVID‐19 patients with brain fog without cognitive and affective disorders. Clin Neurophysiol. 2024b;161:159‐172. doi:10.1016/j.clinph.2024.02.034|||
Kopanska M, Ochojska D, Banas‐Zabczyk A, Blajda J, Szczygielski J. Attempted brain wave modelling in participants under severe chronic stress using quantitative electroencephalogram. J Physiol Pharmacol. 2022;73(3):459‐468. https://jpp.krakow.pl/journal/archive/06_22/pdf/10.26402/jpp.2022.3.14.pdf
|||Corazza LA, Tatsch JFS, Barros MP, et al. Electroencephalographic findings among inpatients with COVID‐19 in a tertiary hospital from a middle‐income country. Arq Neuropsiquiatr. 2021;79(4):315‐320. doi:10.1590/0004-282X-ANP-2020-0555|||Benwell CSY, Davila‐Pérez P, Fried PJ, et al. EEG spectral power abnormalities and their relationship with cognitive dysfunction in patients with Alzheimer's disease and type 2 diabetes. Neurobiol Aging. 2020;85:83‐95. doi:10.1016/j.neurobiolaging.2019.10.004|||Jiang Y, Li J, Schmitt FA, et al. Memory‐related frontal brainwaves predict transition to mild cognitive impairment in healthy older individuals five years before diagnosis. J Alzheimer's Dis. 2021;79(2):531‐541. doi:10.3233/JAD-200931|||Podlesek A, Komidar L, Kavcic V. The relationship between perceived stress and subjective cognitive decline during the COVID‐19 epidemic. Front Psychol. 2021;12:647971. doi:10.3389/fpsyg.2021.647971|||Ranasinghe KG, Verma P, Cai C, et al. Altered excitatory and inhibitory neuronal subpopulation parameters are distinctly associated with tau and amyloid in Alzheimer's disease. eLife. 2022;11:e77850. doi:10.7554/eLife.77850|||Wiesman AI, Murman DL, Losh RA, et al. Spatially resolved neural slowing predicts impairment and amyloid burden in Alzheimer's disease. Brain. 2022;145(6):2177‐2189. Published online June 30, 2022. doi:10.1093/brain/awab430|||Lewis E, Fine N, Miller RJH, et al. Amyloidosis and COVID‐19: experience from an amyloid program in Canada. Ann Hematol. 2022;101(10):2307‐2315. doi:10.1007/s00277-022-04964-y|||Chaumont H, Kaczorowski F, San‐Galli A, et al. Cerebrospinal fluid biomarkers in SARS‐CoV‐2 patients with acute neurological syndromes. Rev Neurol (Paris). 2023;179(3):208‐217. doi:10.1016/j.neurol.2022.11.002|||Chen J, Chen J, Lei Z, et al. Amyloid precursor protein facilitates SARS‐CoV‐2 virus entry into cells and enhances amyloid‐β‐associated pathology in APP/PS1 mouse model of Alzheimer's disease. Transl Psychiatry. 2023;13(1):396. doi:10.1038/s41398-023-02692-z|||Premkumar T, Sajitha Lulu S. Molecular crosstalk between COVID‐19 and Alzheimer's disease using microarray and RNA‐seq datasets: a system biology approach. Front Med (Lausanne). 2023;10:1151046. doi:10.3389/fmed.2023.1151046|||Kirouac L, Rajic AJ, Cribbs DH, Padmanabhan J. Activation of Ras‐ERK signaling and GSK‐3 by amyloid precursor protein and amyloid beta facilitates neurodegeneration in Alzheimer's disease. eNeuro. 2017;4(2):1‐21. doi:10.1523/ENEURO.0149-16.2017|||Milton NGN. SARS‐CoV‐2 amyloid, is COVID‐19‐exacerbated dementia an amyloid disorder in the making? Frontiers in Dementia. 2023;2:1‐6. doi:10.3389/frdem.2023.1233340|||Pearson HA, Peers C. Physiological roles for amyloid beta peptides. J Physiol. 2006;575(1):5‐10. doi:10.1113/jphysiol.2006.111203|||Walker KA, Le Page LM, Terrando N, Duggan MR, Heneka MT, Bettcher BM. The role of peripheral inflammatory insults in Alzheimer's disease: a review and research roadmap. Mol Neurodegener. 2023;18(1):37. doi:10.1186/s13024-023-00627-2|||Stoddart P, Satchell SC, Ramnath R. Cerebral microvascular endothelial glycocalyx damage, its implications on the blood‐brain barrier and a possible contributor to cognitive impairment. Brain Res. 2022;1780:147804. doi:10.1016/j.brainres.2022.147804|||Erickson MA, Logsdon AF, Rhea EM, et al. Blood‐brain barrier penetration of non‐replicating SARS‐CoV‐2 and S1 variants of concern induce neuroinflammation which is accentuated in a mouse model of Alzheimer's disease. Brain Behav Immun. 2023;109:251‐268. doi:10.1016/j.bbi.2023.01.010|||Willette AA, Bendlin BB, Starks EJ, et al. Association of insulin resistance with cerebral glucose uptake in late middle‐aged adults at risk for Alzheimer disease. JAMA Neurol. 2015;72(9):1013‐1020. doi:10.1001/jamaneurol.2015.0613|||Furman S, Green K, Lane TE. COVID‐19 and the impact on Alzheimer's disease pathology. J Neurochem . Published online October 18, 2023;00:1‐15. doi:10.1111/jnc.15985|||Ziff OJ, Ashton NJ, Mehta PR, et al. Amyloid processing in COVID‐19‐associated neurological syndromes. J Neurochem. 2022;161(2):146‐157. doi:10.1111/jnc.15585|||Liu N, Jiang X, Li H. The viral hypothesis in Alzheimer's disease: sARS‐CoV‐2 on the cusp. Front Aging Neurosci. 2023;15:1129640. doi:10.3389/fnagi.2023.1129640|||Wang HC, Zhang QX, Zhao J, Wei NN. Molecular docking and molecular dynamics simulations studies on the protective and pathogenic roles of the amyloid‐β peptide between herpesvirus infection and Alzheimer's disease. J Mol Graph Model. 2022;113:108143. doi:10.1016/j.jmgm.2022.108143|||Gordon MN, Heneka MT, Le Page LM, et al. Impact of COVID‐19 on the onset and progression of Alzheimer's disease and related dementias: a roadmap for future research. Alzheimers Dement. 2022;18(5):1038‐1046. doi:10.1002/alz.12488|||Hassan H, Chen R. Hypoxia in Alzheimer's disease: effects of hypoxia inducible factors. Neural Regen Res. 2021;16(2):310‐311. doi:10.4103/1673-5374.290898|||Babiloni C, Arakaki X, Bonanni L, et al. EEG measures for clinical research in major vascular cognitive impairment: recommendations by an expert panel. Neurobiol Aging. 2021;103:78‐97. doi:10.1016/j.neurobiolaging.2021.03.003|||Babiloni C, Blinowska K, Bonanni L, et al. What electrophysiology tells us about Alzheimer's disease: a window into the synchronization and connectivity of brain neurons. Neurobiol Aging. 2020;85:58‐73. doi:10.1016/j.neurobiolaging.2019.09.008|||Cecchetti G, Vabanesi M, Chieffo R, et al. Cerebral involvement in COVID‐19 is associated with metabolic and coagulation derangements: an EEG study. J Neurol. 2020;267(11):3130‐3134. doi:10.1007/s00415-020-09958-2|||Levitan RM. Pulse oximetry as a biomarker for early identification and hospitalization of COVID‐19 pneumonia. Acad Emerg Med. 2020;27(8):785‐786. doi:10.1111/acem.14052|||Rahman A, Tabassum T, Araf Y, al Nahid A, Ullah MA, Hosen MJ. Silent hypoxia in COVID‐19: pathomechanism and possible management strategy. Mol Biol Rep. 2021;48(4):3863‐3869. doi:10.1007/s11033-021-06358-1|||Mol MBA, Strous MTA, van Osch FHM, et al. Heart‐rate‐variability (HRV), predicts outcomes in COVID‐19. PLoS One. 2021;16(10):e0258841. doi:10.1371/journal.pone.0258841|||Kurtoğlu E, Afsin A, Aktaş İ, Aktürk E, Kutlusoy E, Çağaşar Ö. Altered cardiac autonomic function after recovery from COVID‐19. Ann Noninvasive Electrocardiol. 2022;27(1):e12916. doi:10.1111/anec.12916|||Vernon SD, Funk S, Bateman L, et al. Orthostatic challenge causes distinctive symptomatic, hemodynamic and cognitive responses in long COVID and myalgic encephalomyelitis/chronic fatigue syndrome. Front Med (Lausanne). 2022;9:917019. doi:10.3389/fmed.2022.917019|||Abbasi J. The COVID heart – one year after SARS‐CoV‐2 infection, patients have an array of increased cardiovascular risks. JAMA. 2022;327(12):1113. doi:10.1001/jama.2022.2411|||Subudhi AW, Miramon BR, Granger ME, Roach RC. Frontal and motor cortex oxygenation during maximal exercise in normoxia and hypoxia. J Appl Physiol. 2009;106(4):1153‐1158. doi:10.1152/japplphysiol.91475.2008|||Schiff ND, Brown EN. Protective down‐regulated states in the human brain: a possible lesson from COVID‐19. Proc Natl Acad Sci. 2022;119(46):e2120221119. doi:10.1073/pnas.2120221119|||Appleton SL, Vakulin A, D'Rozario A, et al. Quantitative electroencephalography measures in rapid eye movement and nonrapid eye movement sleep are associated with apnea–hypopnea index and nocturnal hypoxemia in men. Sleep. 2019;42(7):zsz092. doi:10.1093/sleep/zsz092|||Yerlikaya D, Emek‐Savaş DD, Bircan Kurşun B, Öztura İ, Yener GG. Electrophysiological and neuropsychological outcomes of severe obstructive sleep apnea: effects of hypoxemia on cognitive performance. Cogn Neurodyn. 2018;12(5):471‐480. doi:10.1007/s11571-018-9487-z|||Toth M, Faludi B, Wackermann J, Czopf J, Kondakor I. Characteristic changes in brain electrical activity due to chronic hypoxia in patients with obstructive sleep apnea syndrome (OSAS): a combined EEG study using LORETA and omega complexity. Brain Topogr. 2009;22(3):185‐190. doi:10.1007/s10548-009-0110-9|||Babiloni C, Percio C, Lizio R, et al. A review of the effects of hypoxia, sleep deprivation and transcranial magnetic stimulation on EEG activity in humans: challenges for drug discovery for Alzheimer's disease. Curr Alzheimer Res. 2014;11(5):501‐518. doi:10.2174/1567205011666140317095623|||Shi ZY, Zhao DM, Gu ZZ. The influence of acute and chronic hypoxia on the electroencephalogram of human body. Sci Sin B. 1986;29(10):1065‐1076.|||Schellart NA, Reits D. Transient and maintained changes of the spontaneous occipital EEG during acute systemic hypoxia. Aviat Space Environ Med. 2001;72(5):462‐470.|||Pokorski M, Trojecka A, Marczak M, Wierzbicka A, Jernajczyk W. Cortical activity during hypoxic hyperventilation. J Physiol Pharmacol. 2003;54(Suppl 1):29‐34.|||Hutcheon EA, Vakorin VA, Nunes A, et al. Associations between spontaneous electroencephalogram oscillations and oxygen saturation across normobaric and hypobaric hypoxia. Hum Brain Mapp. 2023;44(6):2345‐2364. doi:10.1002/hbm.26214|||Blacker KJ, Seech TR, Funke ME, Kinney MJ. Deficits in visual processing during hypoxia as evidenced by visual mismatch negativity. Aerosp Med Hum Perform. 2021;92(5):326‐332. doi:10.3357/AMHP.5735.2021|||Nakata H, Miyamoto T, Ogoh S, Kakigi R, Shibasaki M. Effects of acute hypoxia on human cognitive processing: a study using ERPs and SEPs. J Appl Physiol. 2017;123(5):1246‐1255. doi:10.1152/japplphysiol.00348.2017|||Fowler B, Lindeis AE. The effects of hypoxia on auditory reaction time and P300 latency. Aviat Space Environ Med. 1992;63(11):976‐981.|||Fowler B, Kelso B. The effects of hypoxia on components of the human event‐related potential and relationship to reaction time. Aviat Space Environ Med. 1992;63(6):510‐516.|||Schneider S, Strüder HK. Monitoring effects of acute hypoxia on brain cortical activity by using electromagnetic tomography. Behav Brain Res. 2009;197(2):476‐480. doi:10.1016/j.bbr.2008.10.020|||Guedj E, Campion JY, Dudouet P, et al. 18F‐FDG brain PET hypometabolism in patients with long COVID. Eur J Nucl Med Mol Imaging. 2021;48(9):2823‐2833. doi:10.1007/s00259-021-05215-4|||Martini AL, Carli G, Kiferle L, et al. Time‐dependent recovery of brain hypometabolism in neuro‐COVID‐19 patients. Eur J Nucl Med Mol Imaging. 2022;50(1):90‐102. doi:10.1007/s00259-022-05942-2|||Arica‐Polat B, Gündogdu A, Cinar N, et al. Evaluation of cognitive deficits in patients infected with COVID‐19. Eur Rev Med Pharmacol Sci. 2022;26(2):678‐685.|||Reiss AB, Greene C, Dayaramani C, et al. Long COVID, the brain, nerves, and cognitive function. Neurol Int. 2023;15(3):821‐841. doi:10.3390/neurolint15030052|||Koralnik IJ, Tyler KL. COVID‐19: a global threat to the nervous system. Ann Neurol. 2020;88(1):1‐11. doi:10.1002/ANA.25807|||Baazaoui N, Iqbal K. COVID‐19 and neurodegenerative diseases: prion‐like spread and long‐term consequences. J Alzheimer's Dis. 2022;88(2):399‐416. doi:10.3233/JAD-220105|||Li W, Moore MJ, Vasilieva N, et al. Angiotensin‐converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426(27):450‐454. doi:10.1038/nature02145|||Bryce C, Grimes Z, Pujadas E, et al. Pathophysiology of SARS‐CoV‐2: the Mount Sinai COVID‐19 autopsy experience. Mod Pathol. 2021;34(8):1456‐1467. doi:10.1038/s41379-021-00793-y|||Kanberg N, Simrén J, Edén A, et al. Neurochemical signs of astrocytic and neuronal injury in acute COVID‐19 normalizes during long‐term follow‐up. EBioMedicine. 2021;70:103512. doi:10.1016/j.ebiom.2021.103512|||Lavi E, Cong L. Type I astrocytes and microglia induce a cytokine response in an encephalitic murine coronavirus infection. Exp Mol Pathol. 2020;115:104474. doi:10.1016/j.yexmp.2020.104474|||Escartin C, Galea E, Lakatos A, et al. Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci. 2021;24(3):312‐325. doi:10.1038/s41593-020-00783-4|||Price BR, Johnson LA, Norris CM. Reactive astrocytes: the nexus of pathological and clinical hallmarks of Alzheimer's disease. Ageing Res Rev. 2021;68:101335. doi:10.1016/j.arr.2021.101335|||Andrews MG, Mukhtar T, Eze UC, et al. Tropism of SARS‐CoV‐2 for human cortical astrocytes. Proc Natl Acad Sci USA. 2022;119(30):e2122236119. doi:10.1073/pnas.2122236119|||Leng K, Rose IVL, Kim H, et al. CRISPRi screens in human astrocytes elucidate regulators of distinct inflammatory reactive states. Published online 2022:2021.08.23.457400v3. J bioRxiv. doi:10.1101/2021.08.23.457400|||Wang C, Zhang M, Garcia G, et al. ApoE‐Isoform‐dependent SARS‐CoV‐2 neurotropism and cellular response. Cell Stem Cell. 2021;28(2):331‐342. doi:10.1016/j.stem.2020.12.018. e5.|||Liszewski MK, Java A, Schramm EC, Atkinson JP. Complement dysregulation and disease: insights from contemporary genetics. Annu Rev Pathol. 2017;12:25‐52. doi:10.1146/annurev-pathol-012615-044145|||Zelek WM, Harrison RA. Complement and COVID‐19: three years on, what we know, what we don't know, and what we ought to know. Immunobiology. 2023;228(3):152393. doi:10.1016/j.imbio.2023.152393|||Hong S, Beja‐Glasser VF, Nfonoyim BM, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science. 2016;352(6286):712‐716. doi:10.1126/science.aad8373|||Shim KH, Kim D, Kang MJ, et al. Subsequent correlated changes in complement component 3 and amyloid beta oligomers in the blood of patients with Alzheimer's disease. Alzheimers Dement. 2024;20(4):2731‐2741. doi:10.1002/alz.13734|||Price BR, Norris CM, Sompol P, Wilcock DM. An emerging role of astrocytes in vascular contributions to cognitive impairment and dementia. J Neurochem. 2018;144(5):644‐650. doi:10.1111/jnc.14273|||Sompol P, Gollihue JL, Weiss BE, et al. Targeting astrocyte signaling alleviates cerebrovascular and synaptic function deficits in a diet‐based mouse model of small cerebral vessel disease. J Neurosci. 2023;43(10):1797‐1813. doi:10.1523/JNEUROSCI.1333-22.2023|||Sama MA, Mathis DM, Furman JL, et al. Interleukin‐1β‐dependent signaling between astrocytes and neurons depends critically on astrocytic calcineurin/NFAT activity. J Biol Chem. 2008;283(32):21953‐21964. doi:10.1074/jbc.M800148200|||Sompol P, Furman JL, Pleiss MM, et al. Calcineurin/NFAT signaling in activated astrocytes drives network hyperexcitability in abeta‐bearing mice. J Neurosci. 2017;37(25):6132‐6148. doi:10.1523/JNEUROSCI.0877-17.2017|||Sompol P, Norris CM. Ca(2+), astrocyte activation and calcineurin/NFAT signaling in age‐related neurodegenerative diseases. Front Aging Neurosci. 2018;10:199. doi:10.3389/fnagi.2018.00199|||Drager NM, Sattler SM, Huang CT, et al. A CRISPRi/a platform in human iPSC‐derived microglia uncovers regulators of disease states. Nat Neurosci. 2022;25(9):1149‐1162. doi:10.1038/s41593-022-01131-4|||Furman JL, Sama DM, Gant JC, et al. Targeting astrocytes ameliorates neurologic changes in a mouse model of Alzheimer's disease. J Neurosci. 2012;32(46):16129‐16140. doi:10.1523/JNEUROSCI.2323-12.2012|||Abdul HM, Sama MA, Furman JL, et al. Cognitive decline in Alzheimer's disease is associated with selective changes in calcineurin/NFAT signaling. J Neurosci. 2009;29(41):12957‐12969. doi:10.1523/JNEUROSCI.1064-09.2009|||Lim D, Iyer A, Ronco V, et al. Amyloid beta deregulates astroglial mGluR5‐mediated calcium signaling via calcineurin and Nf‐kB. Glia. 2013;61(7):1134‐1145. doi:10.1002/glia.22502|||Kraner SD, Sompol P, Prateeptrang S, et al. Development of a monoclonal antibody specific for a calpain‐generated ∆48 kDa calcineurin fragment, a marker of distressed astrocytes. J Neurosci Methods. 2024;402:110012. doi:10.1016/j.jneumeth.2023.110012|||Pleiss MM, Sompol P, Kraner SD, et al. Calcineurin proteolysis in astrocytes: implications for impaired synaptic function. Biochimica et Biophysica Acta (BBA). 2016;1862(9):1521‐1532. doi:10.1016/j.bbadis.2016.05.007|||Serrano‐Pérez MC, Martín ED, Vaquero CF, et al. Response of transcription factor NFATc3 to excitotoxic and traumatic brain insults: identification of a subpopulation of reactive astrocytes. Glia. 2011;59(1):94‐107. doi:10.1002/glia.21079|||Furman JL, Sompol P, Kraner SD, et al. Blockade of astrocytic calcineurin/NFAT signaling helps to normalize hippocampal synaptic function and plasticity in a rat model of traumatic brain injury. J Neurosci. 2016;36(5):1502‐1515. doi:10.1523/JNEUROSCI.1930-15.2016|||Hari R, Puce A. MEG—EEG Primer. 2nd ed. Oxford University Press Inc; 2023.|||Scheff SW, Price DA, Schmitt FA, Scheff MA, Mufson EJ. Synaptic loss in the inferior temporal gyrus in mild cognitive impairment and Alzheimer's disease. J Alzheimer's Dis. 2011;24(3):547‐557. doi:10.3233/JAD-2011-101782|||Pilotto A, Odolini S, Masciocchi S, et al. Steroid‐responsive encephalitis in coronavirus disease 2019. Ann Neurol. 2020;88(2):423‐427. doi:10.1002/ana.25783|||Seery N, Butzkueven H, O'Brien TJ, Monif M. Contemporary advances in anti‐NMDAR antibody (Ab)‐mediated encephalitis. Autoimmun Rev. 2022;21(4):103057. doi:10.1016/j.autrev.2022.103057|||Lavi Y, Vojdani A, Halpert G, et al. Dysregulated levels of circulating autoantibodies against neuronal and nervous system autoantigens in COVID‐19 patients. Diagnostics. 2023;13(4):687. doi:10.3390/diagnostics13040687|||Douaud G, Lee S, Alfaro‐Almagro F, et al. SARS‐CoV‐2 is associated with changes in brain structure in UK Biobank. Nature. 2022;604(7907):697‐707. doi:10.1038/s41586-022-04569-5|||Parsons N, Outsikas A, Parish A, et al. Modelling the anatomic distribution of neurologic events in patients with COVID‐19: a systematic review of MRI findings. Am J Neuroradiol. 2021;42(7):1190‐1195. doi:10.3174/ajnr.A7113|||Haykal MA, Menkes DL. The clinical neurophysiology of COVID‐19‐direct infection, long‐term sequelae and para‐immunization responses: a literature review. Clin Neurophysiol Pract. 2023;8:3‐11. doi:10.1016/j.cnp.2022.09.005|||Erausquin GA, Snyder H, Carrillo M, Hosseini AA, Brugha TS, Seshadri S. The chronic neuropsychiatric sequelae of COVID‐19: the need for a prospective study of viral impact on brain functioning. Alzheimers Dement. 2021;17(6):1056‐1065. doi:10.1002/alz.12255|||Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020;77(6):683. doi:10.1001/jamaneurol.2020.1127|||
Wolfe F. Fatigue assessments in rheumatoid arthritis: comparative performance of visual analog scales and longer fatigue questionnaires in 7760 patients. J Rheumatol. 2004;31(10):1896‐1902. www.jrheum.org
|||Lacourt TE, Vichaya EG, Chiu GS, Dantzer R, Heijnen CJ. The high costs of low‐grade inflammation: persistent fatigue as a consequence of reduced cellular‐energy availability and non‐adaptive energy expenditure. Front Behav Neurosci. 2018;12:78. doi:10.3389/fnbeh.2018.00078|||Saab C, Valsamis H, Baki S, et al. SARS‐CoV‐2 slows brain rhythms with more severe effects in younger individuals. Research Square, Posted online 2022. doi:10.21203/rs.3.rs-1197196/v1|||Valsamis H, Baki SA, Leung J, et al. SARS‐CoV‐2 alters neural synchronies in the brain with more severe effects in younger individuals. Sci Rep. 2023;13(1):2942. doi:10.1038/s41598-023-29856-7|||Khair A. Intermittent frontal rhythmic discharges as an electroencephalogram biomarker of acute SARS‐CoV‐2 infection‐associated encephalopathy in children. Cureus. 2021;13(10):e19149. doi:10.7759/cureus.19149. Published online October 30, 2021.|||Pan AP, Meeks J, Potter T, et al. SARS‐CoV‐2 susceptibility and COVID‐19 mortality among older adults with cognitive impairment: cross‐sectional analysis from hospital records in a diverse US metropolitan area. Front Neurol. 2021;12:692662. doi:10.3389/fneur.2021.692662|||Seibert KM, Lee W, Eid A, et al. EEG background frequency is associated with discharge outcomes in non‐ICU hospitalized patients with COVID‐19. Front Neurol. 2022;13:941903.|||Mallapaty S. COVID reinfections surge during Omicron onslaught. Nature. 2022. Published online February 16, 2022. doi:10.1038/d41586-022-00438-3|||Chen T, Wu D, Chen H, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ. 2020;368:m1091. Published online March 26, 2020:m1091. doi:10.1136/bmj.m1091|||Babiloni C, Noce G, Ferri R, et al. Resting State alpha electroencephalographic rhythms are affected by sex in cognitively unimpaired seniors and patients with Alzheimer's disease and amnesic mild cognitive impairment: a retrospective and exploratory study. Cereb Cortex. 2022;32(10):2197‐2215. doi:10.1093/cercor/bhab348|||Babiloni C. The dark side of Alzheimer's disease: neglected physiological biomarkers of brain hyperexcitability and abnormal consciousness level. J Alzheimer's Dis. 2022;8(3):801‐807. Published online June 24, 2022:1‐7. doi:10.3233/jad-220582|||Delorme C, Houot M, Rosso C, et al. The wide spectrum of COVID‐19 neuropsychiatric complications within a multidisciplinary centre. Brain Commun. 2021;3(3):fcab135. doi:10.1093/braincomms/fcab135|||Vranic A, Jiang Y, Zhao X. Editorial: individual differences in cognition and affects in the era of pandemic and machine learning. Front Psychol. 2022;13:848086. doi:10.3389/fpsyg.2022.848086|||Rodríguez‐Hidalgo AJ, Pantaleón Y, Dios I, Falla D. Fear of COVID‐19, stress, and anxiety in university undergraduate students: a predictive model for depression. Front Psychol. 2020;11:591797. doi:10.3389/fpsyg.2020.591797|||Santamaría‐García H, Burgaleta M, Legaz A, et al. The price of prosociality in pandemic times. Humanit Soc Sci Commun. 2022;9(1):15. doi:10.1057/s41599-021-01022-2|||
Chirikov I, Soria KM, Horgos B, Jones‐White D. Undergraduate and Graduate Students' Mental Health During the COVID‐19 Pandemic. UC Berkeley: Center for Studies in Higher Education. 2020. Retrieved from https://escholarship.org/uc/item/80k5d5hw
|||Pavlović T, Azevedo F, De K, et al. Predicting attitudinal and behavioral responses to COVID‐19 pandemic using machine learning. PNAS Nexus. 2022;1(3):pgac093. Published online July 5, 2022. doi:10.1093/pnasnexus/pgac093|||van Bavel JJ, Cichocka A, Capraro V, et al. National identity predicts public health support during a global pandemic. Nat Commun. 2022;13(1):517. doi:10.1038/s41467-021-27668-9|||Bakker ED, van der Pas SL, Zwan MD, et al. Steeper memory decline after COVID‐19 lockdown measures. Alzheimers Res Ther. 2023;15(1):81. doi:10.1186/s13195-023-01226-5|||Hegna E, Rački V, Hero M, et al. Post COVID‐19 syndrome in neurology patients: a single center experience. Pathogens. 2023;12(6):796. doi:10.3390/pathogens12060796|||Dell'Acqua C, Moretta T, Dal Bò E, Messerotti Benvenuti S, Palomba D. Emotional processing prospectively modulates the impact of anxiety on COVID‐19 pandemic‐related post‐traumatic stress symptoms: an ERP study. J Affect Disord. 2022;303:245‐254. doi:10.1016/j.jad.2022.02.027|||Rice GM, Snider D, Drollinger S, et al. Gender differences in Dry‐EEG manifestations during acute and insidious normobaric hypoxia. Aerosp Med Hum Perform. 2019;90(4):369‐377. doi:10.3357/AMHP.5227.2019|||Günther W, Giunta R, Klages U, et al. Findings of electroencephalographic brain mapping in mild to moderate dementia of the Alzheimer type during resting, motor, and music‐perception conditions. Psychiatry Res. 1993;50(3):163‐176. doi:10.1016/0925-4927(93)90028-g|||Barclay LL, Zemcov A, Blass JP, McDowell FH. Factors associated with duration of survival in Alzheimer's disease. Biol Psychiatry. 1985;20(1):86‐93. doi:10.1016/0006-3223(85)90139-8|||Claus JJ, van Gool WA, Teunisse S, et al. Predicting survival in patients with early Alzheimer's disease. Dement Geriatr Cogn Disord. 1998;9(5):284‐293. doi:10.1159/000017073|||Király A, Szabó N, Tóth E, et al. Male brain ages faster: the age and gender dependence of subcortical volumes. Brain Imaging Behav. 2016;10(3):901‐910. doi:10.1007/s11682-015-9468-3|||Ruigrok ANV, Salimi‐Khorshidi G, Lai MC, et al. A meta‐analysis of sex differences in human brain structure. Neurosci Biobehav Rev. 2014;39(100):34‐50. doi:10.1016/j.neubiorev.2013.12.004|||Macedo A, Gómez C, Rebelo MÂ, et al. Risk variants in three Alzheimer's disease genes show association with EEG endophenotypes. J Alzheimers Dis. 2021;80(1):209‐223. doi:10.3233/JAD-200963|||Rattay P, Michalski N, Domanska OM, et al. Differences in risk perception, knowledge and protective behaviour regarding COVID‐19 by education level among women and men in Germany. Results from the COVID‐19 Snapshot Monitoring (COSMO) study. PLoS One. 2021;16(5):e0251694. doi:10.1371/journal.pone.0251694|||Arenaza‐Urquijo EM, Wirth M, Chételat G. Cognitive reserve and lifestyle: moving towards preclinical Alzheimer's disease. Front Aging Neurosci. 2015;7:134. doi:10.3389/fnagi.2015.00134|||Stern Y, Gazes Y, Razlighi Q, Steffener J, Habeck C. A task‐invariant cognitive reserve network. Neuroimage. 2018;178:36‐45. doi:10.1016/j.neuroimage.2018.05.033|||Lopez S, Hampel H, Chiesa PA, et al. The association between posterior resting‐state EEG alpha rhythms and functional MRI connectivity in older adults with subjective memory complaint. Neurobiol Aging. 2024;137:62‐77. doi:10.1016/j.neurobiolaging.2024.02.008|||Mohamed AE, Yousef AM. Depressive, anxiety, and post‐traumatic stress symptoms affecting hospitalized and home‐isolated COVID‐19 patients: a comparative cross‐sectional study. Middle East Current Psychiatry. 2021;28(1):28. doi:10.1186/s43045-021-00105-9|||De Felice FG, Gonçalves RA, Ferreira ST. Impaired insulin signalling and allostatic load in Alzheimer disease. Nat Rev Neurosci. 2022;23(4):215‐230. doi:10.1038/s41583-022-00558-9|||Migeot JA, Duran‐Aniotz CA, Signorelli CM, Piguet O, Ibáñez A. A predictive coding framework of allostatic–interoceptive overload in frontotemporal dementia. Trends Neurosci. 2022;45(11):838‐853. doi:10.1016/j.tins.2022.08.005|||Mackey K, Ayers CK, Kondo KK, et al. Racial and ethnic disparities in COVID‐19 – related infections, hospitalizations, and deaths. Ann Intern Med. 2021;174(3):362‐373. doi:10.7326/M20-6306|||Choy T, Baker E, Stavropoulos K. Systemic racism in EEG research: considerations and potential solutions. Affect Sci. 2022;3(1):14‐20. doi:10.1007/s42761-021-00050-0|||Barnes LL, Duarte A, Sheridan MA, Rajah MN. Toward a More Representative Brain: The Importance and Absence of Diversity in Human Neuroscience Research Across the Lifespan. Frontiers Media SA; 2021. doi:10.3389/978-2-88966-883-0|||
Fact Sheet: Race, Ethnicity, and Alzhiemer's. Alzheimer's Impact Movement: Alzheimer's Association. 2020. https://aaic.alz.org/downloads2020/2020_Race_and_Ethnicity_Fact_Sheet.pdf
|||Rajabli F, Beecham GW, Hendrie HC, et al. A locus at 19q13.31 significantly reduces the ApoE ε4 risk for Alzheimer's Disease in African Ancestry. PLoS Genet. 2022;18(7):e1009977. doi:10.1371/journal.pgen.1009977|||Webb EK, Etter JA, Kwasa JA. Addressing racial and phenotypic bias in human neuroscience methods. Nat Neurosci. 2022;25(4):410‐414. doi:10.1038/s41593-022-01046-0|||Turney IC, Lao PJ, Rentería MA, et al. Brain aging among racially and ethnically diverse middle‐aged and older adults. JAMA Neurol. Published online November 14, 2022;80(1):73‐81. doi:10.1001/jamaneurol.2022.3919|||Ibanez A, Kosik KS. COVID‐19 in older people with cognitive impairment in Latin America. J Parkinsons Dis. 2020;19:719‐721. doi:10.1016/S1474-4422(20)30270-2|||Guermandi M, Benatti S, Bertini L. A Wearable Device for Minimally Invasive Behind‐the‐Ear EEG and Evoked Potentials. 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE; 2018:1‐4. doi:10.1109/BIOCAS.2018.8584814|||Zheng Y, Liu C, Lai NYG, et al. Current development of biosensing technologies towards diagnosis of mental diseases. Front Bioeng Biotechnol. 2023;11:1190211. doi:10.3389/fbioe.2023.1190211