A Rationale for Age-Adapted Immunosuppression in Organ Transplantation.
Authors:
Journal: Transplantation
Publication Type: Journal Article
Date: 2015
DOI: NIHMS694887
ID: 26244716
Abstract
Demographic changes are associated with a steady increase of older patients with end-stage organ failure in need for transplantation. As a result, the majority of transplant recipients are currently older than 50 years, and organs from elderly donors are more frequently used. Nevertheless, the benefit of transplantation in older patients is well recognized, whereas the most frequent causes of death among older recipients are potentially linked to side effects of their immunosuppressants.Immunosenescence is a physiological part of aging linked to higher rates of diabetes, bacterial infections, and malignancies representing the major causes of death in older patients. These age-related changes impact older transplant candidates and may have significant implications for an age-adapted immunosuppression. For instance, immunosenescence is linked to lower rates of acute rejections in older recipients, whereas the engraftment of older organs has been associated with higher rejection rates. Moreover, new-onset diabetes mellitus after transplantation is more frequent in the elderly, potentially related to corticosteroids, calcineurin inhibitors, and mechanistic target of rapamycin inhibitors.This review presents current knowledge for an age-adapted immunosuppression based on both, experimental and clinical studies in and beyond transplantation. Recommendations of maintenance and induction therapy may help to improve graft function and to design future clinical trials in the elderly.
Chemical List
- Immunosuppressive Agents
Reference List
- Matas AJ, Smith JM, Skeans MA, et al. OPTN/SRTR 2012 Annual Data Report: Kidney. American Journal of Transplantation. 2014;14(S1):11–44. doi:10.1111/ajt.12579.|||Eurotransplant International Foundation . Annual Report 2013. 2013.|||Danovitch GM, Cohen DJ, Weir MR, et al. Current status of kidney and pancreas transplantation in the United States, 1994-2003. Am. J. Transplant. 2005;5(4 Pt 2):904–915. doi:10.1111/j.1600-6135.2005.00835.x.|||Watt, Kymberly DS, Pedersen RA, Kremers WK, Heimbach JK, Sanchez W, Gores GJ. Long-term probability of and mortality from de novo malignancy after liver transplantation. Gastroenterology. 2009;137(6):2010–2017. doi:10.1053/j.gastro.2009.08.070.|||Karim A, Farrugia D, Cheshire J, et al. Recipient age and risk for mortality after kidney transplantation in England. Transplantation. 2014;97(8):832–838. doi:10.1097/01.TP.0000438026.03958.7b.|||Meier-Kriesche HU, Ojo AO, Hanson JA, Kaplan B. Exponentially increased risk of infectious death in older renal transplant recipients. Kidney Int. 2001;59(4):1539–1543. doi:10.1046/j.1523-1755.2001.0590041539.x.|||Jacobson PA, Schladt D, Oetting WS, et al. Lower calcineurin inhibitor doses in older compared to younger kidney transplant recipients yield similar troughs. Am. J. Transplant. 2012;12(12):3326–3336. doi:10.1111/j.1600-6143.2012.04232.x.|||Tullius SG, Milford E. Kidney allocation and the aging immune response. N. Engl. J. Med. 2011;364(14):1369–1370. doi:10.1056/NEJMc1103007.|||Zetterman RK, Belle SH, Hoofnagle JH, et al. Age and liver transplantation: a report of the Liver Transplantation Database. Transplantation. 1998;66(4):500–506.|||Kaczmarek I, Sadoni S, Schmoeckel M, et al. The need for a tailored immunosuppression in older heart transplant recipients. J. Heart Lung Transplant. 2005;24(11):1965–1968. doi:10.1016/j.healun.2005.04.008.|||Dharnidharka VR, Agodoa LY, Abbott KC. Risk factors for hospitalization for bacterial or viral infection in renal transplant recipients--an analysis of USRDS data. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons. 2007;7(3):653–661. doi:10.1111/j.1600-6143.2006.01674.x.|||Shao M, Wan Q, Xie W, Ye Q. Bloodstream infections among solid organ transplant recipients: epidemiology, microbiology, associated risk factors for morbility and mortality. Transplantation reviews (Orlando, Fla.) 2014;28(4):176–181. doi:10.1016/j.trre.2014.02.001.|||Candel FJ, Grima E, Matesanz M, et al. Bacteremia and septic shock after solid-organ transplantation. Transplantation proceedings. 2005;37(9):4097–4099. doi:10.1016/j.transproceed.2005.09.181.|||Dharnidharka VR, Caillard S, Agodoa LY, Abbott KC. Infection frequency and profile in different age groups of kidney transplant recipients. Transplantation. 2006;81(12):1662–1667. doi:10.1097/01.tp.0000226068.66819.37.|||Le Page, Amelia K, Mackie FE, McTaggart SJ, Kennedy SE. Cytomegalovirus & Epstein Barr Virus serostatus as a predictor of the long-term outcome of kidney transplantation. Nephrology (Carlton, Vic.) 2013;18(12):813–819. doi:10.1111/nep.12149.|||Silveira FP, Husain S. Fungal infections in solid organ transplantation. Medical mycology. 2007;45(4):305–320. doi:10.1080/13693780701200372.|||Ok Atılgan A, Özdemir BH, Kırnap M, et al. Invasive fungal infections in liver transplant recipients. Experimental and clinical transplantation : official journal of the Middle East Society for Organ Transplantation. 2014;12(Suppl 1):110–116.|||Kauffman CA. Fungal infections in older adults. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2001;33(4):550–555. doi:10.1086/322685.|||AlBugami M, Kiberd B. Malignancies: pre and post transplantation strategies. Transplantation reviews (Orlando, Fla.) 2014;28(2):76–83. doi:10.1016/j.trre.2013.12.002.|||Peev V, Reiser J, Alachkar N. Diabetes mellitus in the transplanted kidney. Frontiers in endocrinology. 2014;5:141. doi:10.3389/fendo.2014.00141.|||Pham PT, Pham PT, Pham SV, Pham PT, Pham PT. New onset diabetes after transplantation (NODAT): an overview. Diabetes, metabolic syndrome and obesity : targets and therapy. 2011;4:175–186. doi:10.2147/DMSO.S19027.|||Hoehn RS, Singhal A, Wima K, et al. Effect of pretransplant diabetes on short-term outcomes after liver transplantation: A National cohort study. Liver international : official journal of the International Association for the Study of the Liver. 2014 doi:10.1111/liv.12770.|||Fulop T, Larbi A, Witkowski JM, Kotb R, Hirokawa K, Pawelec G. Immunosenescence and cancer. Crit Rev Oncog. 2013;18(6):489–513.|||Weinberger B, Grubeck-Loebenstein B. Vaccines for the elderly. Clin. Microbiol. Infect. 2012;18(Suppl 5):100–108. doi:10.1111/j.1469-0691.2012.03944.x.|||Lynch HE, Goldberg GL, Chidgey A. 2009;30(7):366–373. doi:10.1016/j.it.2009.04.003.|||Naylor K, Li G, Vallejo AN, et al. The influence of age on T cell generation and TCR diversity. J. Immunol. 2005;174(11):7446–7452.|||Hong MS, Dan JM, Choi J, Kang I. Age-associated changes in the frequency of naïve, memory and effector CD8+ T cells. Mechanisms of ageing and development. 2004;125(9):615–618. doi:10.1016/j.mad.2004.07.001.|||Saule P, Trauet J, Dutriez V, Lekeux V, Dessaint J, Labalette M. Accumulation of memory T cells from childhood to old age: central and effector memory cells in CD4(+) versus effector memory and terminally differentiated memory cells in CD8(+) compartment. Mechanisms of ageing and development. 2006;127(3):274–281. doi:10.1016/j.mad.2005.11.001.|||Brzezińska A, Magalska A, Szybińska A, Sikora E. Proliferation and apoptosis of human CD8(+)CD28(+) and CD8(+)CD28(−) lymphocytes during aging. Exp. Gerontol. 2004;39(4):539–544. doi:10.1016/j.exger.2003.09.026.|||Aubert G, Baerlocher GM, Vulto I, Poon SS, Lansdorp PM. Collapse of telomere homeostasis in hematopoietic cells caused by heterozygous mutations in telomerase genes. PLoS Genet. 2012;8(5):e1002696. doi:10.1371/journal.pgen.1002696.|||Chou JP, Effros RB. T cell replicative senescence in human aging. Curr. Pharm. Des. 2013;19(9):1680–1698.|||Larbi A, Cabreiro F, Zelba H, et al. Reduced oxygen tension results in reduced human T cell proliferation and increased intracellular oxidative damage and susceptibility to apoptosis upon activation. Free Radic. Biol. Med. 2010;48(1):26–34. doi:10.1016/j.freeradbiomed.2009.09.025.|||Frasca D, Diaz A, Romero M, Landin AM, Blomberg BB. Age effects on B cells and humoral immunity in humans. Ageing Research Reviews. 2011;10(3):330–335. doi:10.1016/j.arr.2010.08.004.|||Herrero C, Marqués L, Lloberas J, Celada A. IFN-gamma-dependent transcription of MHC class II IA is impaired in macrophages from aged mice. J. Clin. Invest. 2001;107(4):485–493. doi:10.1172/JCI11696.|||Demers P, Moffatt S, Oyer PE, Hunt SA, Reitz BA, Robbins RC. Long-term results of heart transplantation in patients older than 60 years. J. Thorac. Cardiovasc. Surg. 2003;126(1):224–231.|||Tullius SG, Tran H, Guleria I, Malek SK, Tilney NL, Milford E. The combination of donor and recipient age is critical in determining host immunoresponsiveness and renal transplant outcome. Ann. Surg. 2010;252(4):662–674. doi:10.1097/SLA.0b013e3181f65c7d.|||Frei U, Noeldeke J, Machold-Fabrizii V, et al. Prospective age-matching in elderly kidney transplant recipients--a 5-year analysis of the Eurotransplant Senior Program. Am. J. Transplant. 2008;8(1):50–57. doi:10.1111/j.1600-6143.2007.02014.x.|||Aalami OO, Fang TD, Song HM, Nacamuli RP. Physiological features of aging persons. Arch Surg. 2003;138(10):1068–1076. doi:10.1001/archsurg.138.10.1068.|||Corsonello A, Pedone C, Incalzi RA. Age-related pharmacokinetic and pharmacodynamic changes and related risk of adverse drug reactions. Curr. Med. Chem. 2010;17(6):571–584.|||Wooten JM. Pharmacotherapy considerations in elderly adults. South. Med. J. 2012;105(8):437–445. doi:10.1097/SMJ.0b013e31825fed90.|||Zulman DM, Sussman JB, Chen X, Cigolle CT, Blaum CS, Hayward RA. Examining the evidence: a systematic review of the inclusion and analysis of older adults in randomized controlled trials. J Gen Intern Med. 2011;26(7):783–790. doi:10.1007/s11606-010-1629-x.|||US Government Accountability Office . Prescription Drugs: FDA Guidance and Regulations Related to Data on Elderly Persons in Clinical Drug Trials: GAO-07-47R. Washington, D.C: 2007.|||Scott IA, Guyatt GH. Cautionary tales in the interpretation of clinical studies involving older persons. Arch. Intern. Med. 2010;170(7):587–595. doi:10.1001/archinternmed.2010.18.|||Blosser CD, Huverserian A, Bloom RD, et al. Age, exclusion criteria, and generalizability of randomized trials enrolling kidney transplant recipients. Transplantation. 2011;91(8):858–863. doi:10.1097/TP.0b013e31820f42d9.|||Saeki T, Ueda K, Tanigawara Y, Hori R, Komano T. Human P-glycoprotein transports cyclosporin A and FK506. J. Biol. Chem. 1993;268(9):6077–6080.|||Kaplan B, Lown K, Craig R, et al. Low bioavailability of cyclosporine microemulsion and tacrolimus in a small bowel transplant recipient: possible relationship to intestinal P-glycoprotein activity. Transplantation. 1999;67(2):333–335.|||Christians U. Transport proteins and intestinal metabolism: P-glycoprotein and cytochrome P4503A. Ther Drug Monit. 2004;26(2):104–106.|||George J, Byth K, Farrell GC. Age but not gender selectively affects expression of individual cytochrome P450 proteins in human liver. Biochem. Pharmacol. 1995;50(5):727–730.|||Warrington JS, Greenblatt DJ, von Moltke, Lisa L. Age-related differences in CYP3A expression and activity in the rat liver, intestine, and kidney. J. Pharmacol. Exp. Ther. 2004;309(2):720–729. doi:10.1124/jpet.103.061077.|||Dai Y, Iwanaga K, Lin YS, et al. In vitro metabolism of cyclosporine A by human kidney CYP3A5. Biochem. Pharmacol. 2004;68(9):1889–1902. doi:10.1016/j.bcp.2004.07.012.|||Passey C, Birnbaum AK, Brundage RC, Oetting WS, Israni AK, Jacobson PA. Dosing equation for tacrolimus using genetic variants and clinical factors. Br J Clin Pharmacol. 2011;72(6):948–957. doi:10.1111/j.1365-2125.2011.04039.x.|||Miura M, Satoh S, Kagaya H, et al. No impact of age on dose-adjusted pharmacokinetics of tacrolimus, mycophenolic acid and prednisolone 1 month after renal transplantation. Eur. J. Clin. Pharmacol. 2009;65(10):1047–1053. doi:10.1007/s00228-009-0721-9.|||Roy J, Lajoie J, Zijenah LS, et al. CYP3A5 genetic polymorphisms in different ethnic populations. Drug Metab. Dispos. 2005;33(7):884–887. doi:10.1124/dmd.105.003822.|||Vilas-Boas V, Silva R, Gaio AR, et al. P-glycoprotein activity in human Caucasian male lymphocytes does not follow its increased expression during aging. Cytometry A. 2011;79(11):912–919. doi:10.1002/cyto.a.21135.|||Brenner SS, Klotz U. P-glycoprotein function in the elderly. Eur. J. Clin. Pharmacol. 2004;60(2):97–102. doi:10.1007/s00228-004-0733-4.|||Falck P, Asberg A, Byberg K, et al. Reduced elimination of cyclosporine A in elderly (65 years) kidney transplant recipients. Transplantation. 2008;86(10):1379–1383. doi:10.1097/TP.0b013e31818aa4b6.|||Zahir H, McCaughan G, Gleeson M, Nand RA, McLachlan AJ. Factors affecting variability in distribution of tacrolimus in liver transplant recipients. Br J Clin Pharmacol. 2004;57(3):298–309.|||Størset E, Holford N, Midtvedt K, Bremer S, Bergan S, Åsberg A. Importance of hematocrit for a tacrolimus target concentration strategy. Eur. J. Clin. Pharmacol. 2014;70(1):65–77. doi:10.1007/s00228-013-1584-7.|||Robertsen I, Åsberg A, Ingerø AO, et al. Use of generic tacrolimus in elderly renal transplant recipients: precaution is needed. Transplantation. 2015;99(3):528–532. doi:10.1097/TP.0000000000000384.|||Heit JJ, Apelqvist AA, Gu X, et al. Calcineurin/NFAT signalling regulates pancreatic beta-cell growth and function. Nature. 2006;443(7109):345–349. doi:10.1038/nature05097.|||Shah T, Kasravi A, Huang E, et al. Risk factors for development of new-onset diabetes mellitus after kidney transplantation. Transplantation. 2006;82(12):1673–1676. doi:10.1097/01.tp.0000250756.66348.9a.|||Heisel O, Heisel R, Balshaw R, Keown P. New onset diabetes mellitus in patients receiving calcineurin inhibitors: a systematic review and meta-analysis. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons. 2004;4(4):583–595. doi:10.1046/j.1600-6143.2003.00372.x.|||Silva HT, Yang HC, Meier-Kriesche H, et al. Long-term follow-up of a phase III clinical trial comparing tacrolimus extended-release/MMF, tacrolimus/MMF, and cyclosporine/MMF in de novo kidney transplant recipients. Transplantation. 2014;97(6):636–641. doi:10.1097/01.TP.0000437669.93963.8E.|||Haddad EM, McAlister VC, Renouf E, Malthaner R, Kjaer MS, Gluud LL. Cyclosporin versus tacrolimus for liver transplanted patients. The Cochrane database of systematic reviews. 2006;(4):CD005161. doi:10.1002/14651858.CD005161.pub2.|||Pahlavani MA, Vargas DM. Influence of aging and caloric restriction on activation of Ras/MAPK, calcineurin, and CaMK-IV activities in rat T cells. Proc. Soc. Exp. Biol. Med. 2000;223(2):163–169.|||Whisler RL, Beiqing L, Chen M. Age-related decreases in IL-2 production by human T cells are associated with impaired activation of nuclear transcriptional factors AP-1 and NF-AT. Cell. Immunol. 1996;169(2):185–195. doi:10.1006/cimm.1996.0109.|||Lindholm A. Factors influencing the pharmacokinetics of cyclosporine in man. Ther Drug Monit. 1991;13(6):465–477.|||Kauffman HM, Cherikh WS, Cheng Y, Hanto DW, Kahan BD. Maintenance immunosuppression with target-of-rapamycin inhibitors is associated with a reduced incidence of de novo malignancies. Transplantation. 2005;80(7):883–889.|||Fischer L, Klempnauer J, Beckebaum S, et al. A randomized, controlled study to assess the conversion from calcineurin-inhibitors to everolimus after liver transplantation--PROTECT. Am. J. Transplant. 2012;12(7):1855–1865. doi:10.1111/j.1600-6143.2012.04049.x.|||Tateishi T, Nakura H, Asoh M, et al. A comparison of hepatic cytochrome P450 protein expression between infancy and postinfancy. Life Sci. 1997;61(26):2567–2574.|||Zimmerman JJ, Lasseter KC, Lim H, et al. Pharmacokinetics of sirolimus (rapamycin) in subjects with mild to moderate hepatic impairment. J Clin Pharmacol. 2005;45(12):1368–1372. doi:10.1177/0091270005281350.|||Kovarik JM, Sabia HD, Figueiredo J, et al. Influence of hepatic impairment on everolimus pharmacokinetics: implications for dose adjustment. Clin. Pharmacol. Ther. 2001;70(5):425–430.|||Johnston O, Rose CL, Webster AC, Gill JS. Sirolimus is associated with new-onset diabetes in kidney transplant recipients. Journal of the American Society of Nephrology : JASN. 2008;19(7):1411–1418. doi:10.1681/ASN.2007111202.|||Flechner SM, Glyda M, Cockfield S, et al. The ORION study: comparison of two sirolimus-based regimens versus tacrolimus and mycophenolate mofetil in renal allograft recipients. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons. 2011;11(8):1633–1644. doi:10.1111/j.1600-6143.2011.03573.x.|||McLean AJ, Le Couteur, David G. Aging biology and geriatric clinical pharmacology. Pharmacol. Rev. 2004;56(2):163–184. doi:10.1124/pr.56.2.4.|||Woo J, Chan HS, Or KH, Arumanayagam M. Effect of age and disease on two drug binding proteins: albumin and alpha-1- acid glycoprotein. Clin. Biochem. 1994;27(4):289–292.|||Tredger JM, Brown NW, Adams J, et al. Monitoring mycophenolate in liver transplant recipients: toward a therapeutic range. Liver Transpl. 2004;10(4):492–502. doi:10.1002/lt.20124.|||van Hest Reinier M, Mathot Ron A A, Pescovitz MD, Gordon R, Mamelok RD, van Gelder T. Explaining variability in mycophenolic acid exposure to optimize mycophenolate mofetil dosing: a population pharmacokinetic meta-analysis of mycophenolic acid in renal transplant recipients. J. Am. Soc. Nephrol. 2006;17(3):871–880. doi:10.1681/ASN.2005101070.|||Kees MG, Steinke T, Moritz S, et al. Omeprazole impairs the absorption of mycophenolate mofetil but not of enteric-coated mycophenolate sodium in healthy volunteers. J Clin Pharmacol. 2012;52(8):1265–1272. doi:10.1177/0091270011412968.|||Staatz CE, Tett SE. Clinical pharmacokinetics and pharmacodynamics of mycophenolate in solid organ transplant recipients. Clin Pharmacokinet. 2007;46(1):13–58. doi:10.2165/00003088-200746010-00002.|||Czock D, Keller F, Rasche FM, Häussler U. Pharmacokinetics and pharmacodynamics of systemically administered glucocorticoids. Clin Pharmacokinet. 2005;44(1):61–98. doi:10.2165/00003088-200544010-00003.|||Sæves I, Line P, Bergan S. The pharmacokinetics of prednisolone and prednisone in adult liver transplant recipients early after transplantation. Ther Drug Monit. 2012;34(4):452–459. doi:10.1097/FTD.0b013e31825ee3f8.|||Kawai S, Ichikawa Y, Homma M. Differences in metabolic properties among cortisol, prednisolone, and dexamethasone in liver and renal diseases: accelerated metabolism of dexamethasone in renal failure. J. Clin. Endocrinol. Metab. 1985;60(5):848–854. doi:10.1210/jcem-60-5-848.|||Booker BM, Magee MH, Blum RA, Lates CD, Jusko WJ. Pharmacokinetic and pharmacodynamic interactions between diltiazem and methylprednisolone in healthy volunteers. Clin. Pharmacol. Ther. 2002;72(4):370–382. doi:10.1067/mcp.2002.127944.|||Lebrun-Vignes B, Archer VC, Diquet B, et al. Effect of itraconazole on the pharmacokinetics of prednisolone and methylprednisolone and cortisol secretion in healthy subjects. Br J Clin Pharmacol. 2001;51(5):443–450.|||Shimada T, Terada A, Yokogawa K, et al. Lowered blood concentration of tacrolimus and its recovery with changes in expression of CYP3A and P-glycoprotein after high-dose steroid therapy. Transplantation. 2002;74(10):1419–1424. doi:10.1097/01.TP.0000038287.39271.8F.|||Bergmann TK, Barraclough KA, Lee KJ, Staatz CE. Clinical pharmacokinetics and pharmacodynamics of prednisolone and prednisone in solid organ transplantation. Clinical pharmacokinetics. 2012;51(11):711–741. doi:10.1007/s40262-012-0007-8.|||Stuck AE, Frey BM, Frey FJ. Kinetics of prednisolone and endogenous cortisol suppression in the elderly. Clin. Pharmacol. Ther. 1988;43(4):354–362.|||Tornatore KM, Logue G, Venuto RC, Davis PJ. Cortisol pharmacodynamics after methylprednisolone administration in young and elderly males. J Clin Pharmacol. 1997;37(4):304–311.|||Penfornis A, Kury-Paulin S. Immunosuppressive drug-induced diabetes. Diabetes & metabolism. 2006;32(5 Pt 2):539–546.|||Midtvedt K, Hjelmesaeth J, Hartmann A, et al. Insulin resistance after renal transplantation: the effect of steroid dose reduction and withdrawal. Journal of the American Society of Nephrology : JASN. 2004;15(12):3233–3239. doi:10.1097/01.ASN.0000145435.80005.1E.|||Zhou Z, Shen J, Hong Y, Kaul S, Pfister M, Roy A. Time-varying belatacept exposure and its relationship to efficacy/safety responses in kidney-transplant recipients. Clinical pharmacology and therapeutics. 2012;92(2):251–257. doi:10.1038/clpt.2012.84.|||Agrawal A, Agrawal S, Cao J, Su H, Osann K, Gupta S. Altered innate immune functioning of dendritic cells in elderly humans: a role of phosphoinositide 3-kinase-signaling pathway. J. Immunol. 2007;178(11):6912–6922.|||Leng Q, Bentwich Z, Borkow G. CTLA-4 upregulation during aging. Mech. Ageing Dev. 2002;123(10):1419–1421.|||Masson P, Henderson L, Chapman JR, Craig JC, Webster AC. Belatacept for kidney transplant recipients. The Cochrane database of systematic reviews. 2014;11:CD010699. doi:10.1002/14651858.CD010699.pub2.|||Coffey GP, Stefanich E, Palmieri S, et al. In vitro internalization, intracellular transport, and clearance of an anti-CD11a antibody (Raptiva) by human T-cells. J. Pharmacol. Exp. Ther. 2004;310(3):896–904. doi:10.1124/jpet.104.067611.|||van Bueren Lammerts, Jeroen J, Bleeker WK, Bøgh HO, et al. Effect of target dynamics on pharmacokinetics of a novel therapeutic antibody against the epidermal growth factor receptor: implications for the mechanisms of action. Cancer Res. 2006;66(15):7630–7638. doi:10.1158/0008-5472.CAN-05-4010.|||Mahbub S, Deburghgraeve CR, Kovacs EJ. Advanced age impairs macrophage polarization. J. Interferon Cytokine Res. 2012;32(1):18–26. doi:10.1089/jir.2011.0058.|||Kovarik JM, Kahan BD, Rajagopalan PR, et al. Population pharmacokinetics and exposure-response relationships for basiliximab in kidney transplantation. The U.S. Simulect Renal Transplant Study Group. Transplantation. 1999;68(9):1288–1294.|||Budde K, Matz M, Dürr M, Glander P. Biomarkers of over-immunosuppression. Clin. Pharmacol. Ther. 2011;90(2):316–322. doi:10.1038/clpt.2011.111.|||Steinebrunner N, Sandig C, Sommerer C, et al. Pharmacodynamic monitoring of nuclear factor of activated T cell-regulated gene expression in liver allograft recipients on immunosuppressive therapy with calcineurin inhibitors in the course of time and correlation with acute rejection episodes--a prospective study. Ann. Transplant. 2014;19:32–40. doi:10.12659/AOT.889809.|||Leogrande D, Teutonico A, Ranieri E, et al. Monitoring biological action of rapamycin in renal transplantation. Am. J. Kidney Dis. 2007;50(2):314–325. doi:10.1053/j.ajkd.2007.05.002.|||Vethe NT, Ali AM, Reine PA, et al. Simultaneous quantification of IMPDH activity and purine bases in lymphocytes using LC-MS/MS: assessment of biomarker responses to mycophenolic acid. Ther Drug Monit. 2014;36(1):108–118. doi:10.1097/FTD.0b013e3182a13900.|||Ducloux D, Courivaud C, Bamoulid J, et al. Prolonged CD4 T cell lymphopenia increases morbidity and mortality after renal transplantation. J. Am. Soc. Nephrol. 2010;21(5):868–875. doi:10.1681/ASN.2009090976.|||Ducloux D, Bamoulid J, Courivaud C, et al. Thymic function, anti-thymocytes globulins, and cancer after renal transplantation. Transpl. Immunol. 2011;25(1):56–60. doi:10.1016/j.trim.2011.05.003.|||Hricik DE, Nickerson P, Formica RN, et al. Multicenter validation of urinary CXCL9 as a risk-stratifying biomarker for kidney transplant injury. Am. J. Transplant. 2013;13(10):2634–2644. doi:10.1111/ajt.12426.|||Jackson JA, Kim EJ, Begley B, et al. Urinary chemokines CXCL9 and CXCL10 are noninvasive markers of renal allograft rejection and BK viral infection. Am. J. Transplant. 2011;11(10):2228–2234. doi:10.1111/j.1600-6143.2011.03680.x.|||Chen Y, Tai Q, Hong S, et al. Pretransplantation soluble CD30 level as a predictor of acute rejection in kidney transplantation: a meta-analysis. Transplantation. 2012;94(9):911–918. doi:10.1097/TP.0b013e31826784ad.|||Kowalski RJ, Post DR, Mannon RB, et al. Assessing relative risks of infection and rejection: a meta-analysis using an immune function assay. Transplantation. 2006;82(5):663–668. doi:10.1097/01.tp.0000234837.02126.70.|||Schulz-Juergensen S, Burdelski MM, Oellerich M, Brandhorst G. Intracellular ATP production in CD4+ T cells as a predictor for infection and allograft rejection in trough-level guided pediatric liver transplant recipients under calcineurin-inhibitor therapy. Ther Drug Monit. 2012;34(1):4–10. doi:10.1097/FTD.0b013e31823c5668.|||KDIGO clinical practice guideline for the care of kidney transplant recipients. Am. J. Transplant. 2009;9(Suppl 3):S1–155. doi:10.1111/j.1600-6143.2009.02834.x.|||Gill J, Sampaio M, Gill JS, et al. Induction immunosuppressive therapy in the elderly kidney transplant recipient in the United States. Clin J Am Soc Nephrol. 2011;6(5):1168–1178. doi:10.2215/CJN.07540810.|||Khanmoradi K, Knorr JP, Feyssa EL, et al. Evaluating safety and efficacy of rabbit antithymocyte globulin induction in elderly kidney transplant recipients. Exp Clin Transplant. 2013;11(3):222–228. doi:10.6002/ect.2012.0211.|||Patel SJ, Knight RJ, Suki WN, et al. Rabbit antithymocyte induction and dosing in deceased donor renal transplant recipients over 60 yr of age. Clin Transplant. 2011;25(3):E250–6. doi:10.1111/j.1399-0012.2010.01393.x.|||Brennan DC, Daller JA, Lake KD, Cibrik D, Del Castillo D. Rabbit antithymocyte globulin versus basiliximab in renal transplantation. N. Engl. J. Med. 2006;355(19):1967–1977. doi:10.1056/NEJMoa060068.|||Webster AC, Ruster LP, McGee R, et al. Interleukin 2 receptor antagonists for kidney transplant recipients. Cochrane Database Syst Rev. 2010;(1):CD003897. doi:10.1002/14651858.CD003897.pub3.|||Haynes R, Harden P, Judge P, et al. Alemtuzumab-based induction treatment versus basiliximab-based induction treatment in kidney transplantation (the 3C Study): a randomised trial. Lancet. 2014;384(9955):1684–1690. doi:10.1016/S0140-6736(14)61095-3.|||Boffa DJ, Luan F, Thomas D, et al. Rapamycin inhibits the growth and metastatic progression of non-small cell lung cancer. Clin. Cancer Res. 2004;10(1 Pt 1):293–300.|||Luan FL, Ding R, Sharma VK, Chon WJ, Lagman M, Suthanthiran M. Rapamycin is an effective inhibitor of human renal cancer metastasis. Kidney Int. 2003;63(3):917–926. doi:10.1046/j.1523-1755.2003.00805.x.|||Gabryšová L, Christensen JR, Wu X, Kissenpfennig A, Malissen B, O'Garra A. Integrated T-cell receptor and costimulatory signals determine TGF-β-dependent differentiation and maintenance of Foxp3+ regulatory T cells. Eur. J. Immunol. 2011;41(5):1242–1248. doi:10.1002/eji.201041073.|||Wang Y, Sparwasser T, Figlin R, Kim HL. Foxp3+ T cells inhibit antitumor immune memory modulated by mTOR inhibition. Cancer Res. 2014;74(8):2217–2228. doi:10.1158/0008-5472.CAN-13-2928.|||Charpentier B, Medina Pestana JO, Del C Rial M, et al. Long-term exposure to belatacept in recipients of extended criteria donor kidneys. Am. J. Transplant. 2013;13(11):2884–2891. doi:10.1111/ajt.12459.|||Andrés A, Budde K, Clavien P, et al. A randomized trial comparing renal function in older kidney transplant patients following delayed versus immediate tacrolimus administration. Transplantation. 2009;88(9):1101–1108. doi:10.1097/TP.0b013e3181ba06ee.|||Woodle ES, First MR, Pirsch J, Shihab F, Gaber AO, van Veldhuisen P. A prospective, randomized, double-blind, placebo-controlled multicenter trial comparing early (7 day) corticosteroid cessation versus long-term, low-dose corticosteroid therapy. Ann. Surg. 2008;248(4):564–577. doi:10.1097/SLA.0b013e318187d1da.|||Badowski M, Gurk-Turner C, Cangro C, et al. The impact of reduced immunosuppression on graft outcomes in elderly renal transplant recipients. Clin Transplant. 2009;23(6):930–937. doi:10.1111/j.1399-0012.2009.01028.x.|||Hourmant M, Cesbron-Gautier A, Terasaki PI, et al. Frequency and clinical implications of development of donor-specific and non-donor-specific HLA antibodies after kidney transplantation. Journal of the American Society of Nephrology : JASN. 2005;16(9):2804–2812. doi:10.1681/ASN.2004121130.|||Seveso M, Bosio E, Ancona E, Cozzi E. De novo anti-HLA antibody responses after renal transplantation: detection and clinical impact. Contributions to nephrology. 2009;162:87–98. doi:10.1159/000170841.|||Wiebe C, Gibson IW, Blydt-Hansen TD, et al. Evolution and clinical pathologic correlations of de novo donor-specific HLA antibody post kidney transplant. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons. 2012;12(5):1157–1167. doi:10.1111/j.1600-6143.2012.04013.x.|||Everly MJ, Rebellato LM, Haisch CE, et al. Incidence and impact of de novo donor-specific alloantibody in primary renal allografts. Transplantation. 2013;95(3):410–417. doi:10.1097/TP.0b013e31827d62e3.|||Roberts DM, Jiang SH, Chadban SJ. The treatment of acute antibody-mediated rejection in kidney transplant recipients-a systematic review. Transplantation. 2012;94(8):775–783. doi:10.1097/TP.0b013e31825d1587.|||Tait BD, Süsal C, Gebel HM, et al. Consensus guidelines on the testing and clinical management issues associated with HLA and non-HLA antibodies in transplantation. Transplantation. 2013;95(1):19–47. doi:10.1097/TP.0b013e31827a19cc.|||Chen H, Chen B. Clinical mycophenolic acid monitoring in liver transplant recipients. World journal of gastroenterology : WJG. 2014;20(31):10715–10728. doi:10.3748/wjg.v20.i31.10715.|||Süsal C, Döhler B, Opelz G. Presensitized kidney graft recipients with HLA class I and II antibodies are at increased risk for graft failure: a Collaborative Transplant Study report. Human immunology. 2009;70(8):569–573. doi:10.1016/j.humimm.2009.04.013.|||Koefoed-Nielsen PB, Gesualdo MB, Poulsen JH, Jørgensen KA. Blood tacrolimus levels and calcineurin phosphatase activity early after renal transplantation. Am. J. Transplant. 2002;2(2):173–178.|||Millán O, Brunet M, Campistol JM, et al. Pharmacodynamic approach to immunosuppressive therapies using calcineurin inhibitors and mycophenolate mofetil. Clinical chemistry. 2003;49(11):1891–1899.|||Hoerning A, Wilde B, Wang J, et al. Pharmacodynamic Monitoring of Mammalian Target of Rapamycin Inhibition by Phosphoflow Cytometric Determination of p70S6 Kinase Activity. Transplantation. 2014 doi:10.1097/TP.0000000000000273.|||Sanquer S, Breil M, Baron C, Dhamane D, Astier A, Lang P. Induction of inosine monophosphate dehydrogenase activity after long-term treatment with mycophenolate mofetil. Clinical pharmacology and therapeutics. 1999;65(6):640–648. doi:10.1016/S0009-9236(99)90085-1.|||Vafadari R, Quaedackers ME, Kho MM, et al. Pharmacodynamic analysis of tofacitinib and basiliximab in kidney allograft recipients. Transplantation. 2012;94(5):465–472. doi:10.1097/TP.0b013e3182626b5a.