Quick Links

Mast cells regulate CD4 T-cell differentiation in the absence of antigen presentation.

Authors: Hector Rodriguez Cetina Biefer|||Timm Heinbokel|||Hirofumi Uehara|||Virginia Camacho|||Koichiro Minami|||Yeqi Nian|||Suresh Koduru|||Rachid El Fatimy|||Ionita Ghiran|||Alexander J Trachtenberg|||Miguel A de la Fuente|||Haruhito Azuma|||Omid Akbari|||Stefan G Tullius|||Anju Vasudevan|||Abdallah Elkhal

Journal: The Journal of allergy and clinical immunology

Publication Type: Journal Article

Date: 2018

DOI: NIHMS1021110

ID: 29470999

Affiliations:

Affiliations

    Division of Transplant Surgery and Transplantation Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass; Clinic for Cardiovascular Surgery, University Hospital Zurich, Zurich, Switzerland.|||Division of Transplant Surgery and Transplantation Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass; Department of Nephrology, Charite Universitaetsmedizin Berlin, Berlin, Germany.|||Department of Urology, Osaka Medical College, Osaka, Japan.|||Flow Cytometry Core Facility, Beth Israel Deaconess Medical Center, Harvard Stem Cell Institute, Boston, Mass.|||Division of Transplant Surgery and Transplantation Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass.|||Division of Transplant Surgery and Transplantation Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass.|||School of Medical Sciences, University of Hyderabad, Hyderabad, India.|||Department of Neurology, Center for Neurologic Diseases, Initiative for RNA Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass.|||Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Stem Cell Institute, Boston, Mass.|||StART Families, Boston, Mass.|||Instituto de Biología y Genética Molecular, University of Valladolid, Valladolid, Spain.|||Department of Urology, Osaka Medical College, Osaka, Japan.|||Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif.|||Division of Transplant Surgery and Transplantation Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass.|||Angiogenesis and Brain Development Laboratory, Division of Basic Neuroscience, McLean Hospital, Harvard Medical School, Belmont, Mass.|||Division of Transplant Surgery and Transplantation Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass. Electronic address: aelkhal@partners.org.

Abstract

Given their unique capacity for antigen uptake, processing, and presentation, antigen-presenting cells (APCs) are critical for initiating and regulating innate and adaptive immune responses. We have previously shown the role of nicotinamide adenine dinucleotide (NAD) in T-cell differentiation independently of the cytokine milieu, whereas the precise mechanisms remained unknown.


Chemical List

    NAD

Reference List

    Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998;392:245–52.|||Zinkernagel RM, Doherty PC. The discovery of MHC restriction. Immunol Today 1997;18:14–7.|||Haskins K, Kappler J, Marrack P. The major histocompatibility complex-restricted antigen receptor on T cells. Annu Rev Immunol 1984;2:51–66.|||Exley M, Terhorst C, Wileman T. Structure, assembly and intracellular transport of the T cell receptor for antigen. Semin Immunol 1991;3:283–97.|||Zinkernagel RM, Doherty PC. Immunological surveillance against altered self components by sensitised T lymphocytes in lymphocytic choriomeningitis. Nature 1974;251:547–8.|||Zinkernagel RM, Doherty PC. Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature 1974;248:701–2.|||Lemos MP, Esquivel F, Scott P, Laufer TM. MHC class II expression restricted to CD8alpha1 and CD11b+ dendritic cells is sufficient for control of Leishmania major. J Exp Med 2004;199:725–30.|||Kambayashi T, Laufer TM. Atypical MHC class II-expressing antigen-presenting cells: can anything replace a dendritic cell? Nat Rev Immunol 2014;14:719–30.|||Jung S, Unutmaz D, Wong P, Sano G, De los Santos K, Sparwasser T, et al. In vivo depletion of CDllcl dendritic cells abrogates priming of CD81 T cells by exogenous cell-associated antigens. Immunity 2002;17:211–20.|||Tolerance Matzinger P., danger, and the extended family. Annu Rev Immunol 1994;12:991–1045.|||Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997; 388:394–7.|||Iwasaki A, Medzhitov R. Control of adaptive immunity by the innate immune system. Nat Immunol 2015;16:343–53.|||Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 1998;282:2085–8.|||Poltorak A, Smirnova I, He X, Liu MY, Van Huffel C, McNally O, et al. Genetic and physical mapping of the Lps locus: identification of the toll-4 receptor as a candidate gene in the critical region. Blood Cells Mol Dis 1998; 24:340–55.|||Sayed BA, Christy A, Quirion MR, Brown MA. The master switch: the role of mast cells in autoimmunity and tolerance. Annu Rev Immunol 2008;26:705–39.|||Abraham SN, St John AL. Mast cell-orchestrated immunity to pathogens. Nat Rev Immunol 2010;10:440–52.|||Urb M, Sheppard DC. The role of mast cells in the defence against pathogens. PLoS Pathog 2012;8:e1002619.|||Sayed BA, Walker ME, Brown MA. Cutting edge: mast cells regulate disease severity in a relapsing-remitting model of multiple sclerosis. J Immunol 2011; 186:3294–8.|||Li H, Nourbakhsh B, Safavi F, Li K, Xu H, Cullimore M, et al. Kit (W-sh) mice develop earlier and more severe experimental autoimmune encephalomyelitis due to absence of immune suppression. J Immunol 2011;187:274–82.|||Piconese S, Costanza M, Musio S, Tripodo C, Poliani PL, Gri G, et al. Exacerbated experimental autoimmune encephalomyelitis in mast-cell-deficient Kit W-sh/W-sh mice. Lab Invest 2011;91:627–41.|||Galli SJ, Nakae S, Tsai M. Mast cells in the development of adaptive immune responses. Nat Immunol 2005;6:135–42.|||Raposo G, Tenza D, Mecheri S, Peronet R, Bonnerot C, Desaymard C. Accumulation of major histocompatibility complex class II molecules in mast cell secretory granules and their release upon degranulation. Mol Biol Cell 1997;8: 2631–45.|||Tkaczyk C, Villa I, Peronet R, David B, Chouaib S, Mecheri S. In vitro and in vivo immunostimulatory potential of bone marrow-derived mast cells on Band T-lymphocyte activation. J Allergy Clin Immunol 2000;105:134–42.|||Elkhal A, Rodriguez Cetina Biefer H, Heinbokel T, Uehara H, Quante M, Seyda M, et al. NAD(+) regulates Treg cell fate and promotes allograft survival via a systemic IL-10 production that is CD4(+) CD25(+) Foxp3(+) T cells independent. Sci Rep 2016;6:22325.|||Tullius SG, Biefer HR, Li S, Trachtenberg AJ, Edtinger K, Quante M, et al. NAD(+) protects against EAE by regulating CD4(+) T-cell differentiation. Nat Commun 2014;5:5101.|||Oberhuber R, Heinbokel T, Cetina Biefer HR, Boenisch O, Hock K, Bronson RT, et al. CD11c+ dendritic cells accelerate the rejection of older cardiac transplants via interleukin-17A. Circulation 2015;132:122–31.|||Reese TA, Liang HE, Tager AM, Luster AD, Van Rooijen N, Voehringer D, et al. Chitin induces accumulation in tissue of innate immune cells associated with allergy. Nature 2007;447:92–6.|||Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013;29:15–21.|||Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics 2009;25:2078–9.|||Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol 2010;11:R106.|||Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014;30: 923–30.|||Atarashi K, Nishimura J, Shima T, Umesaki Y, Yamamoto M, Onoue M, et al. ATP drives lamina propria T(H)17 cell differentiation. Nature 2008;455:808–12.|||Nomura F, Akashi S, Sakao Y, Sato S, Kawai T, Matsumoto M, et al. Cutting edge: endotoxin tolerance in mouse peritoneal macrophages correlates with down-regulation of surface toll-like receptor 4 expression. J Immunol 2000; 164:3476–9.|||Roses RE, Xu S, Xu M, Koldovsky U, Koski G, Czerniecki BJ. Differential production of IL-23 and IL-12 by myeloid-derived dendritic cells in response to TLR agonists. J Immunol 2008;181:5120–7.|||Van Gool F, Galli M, Gueydan C, Kruys V, Prevot PP, Bedalov A, et al. Intracellular NAD levels regulate tumor necrosis factor protein synthesis in a sirtuin-dependent manner. Nat Med 2009;15:206–10.|||Maurer M, Lopez Kostka S, Siebenhaar F, Moelle K, Metz M, Knop J, et al. Skin mast cells control T cell-dependent host defense in Leishmania major infections. FASEB J 2006;20:2460–7.|||Gregory GD, Robbie-Ryan M, Secor VH, Sabatino JJ Jr, Brown MA. Mast cells are required for optimal autoreactive T cell responses in a murine model of multiple sclerosis. Eur J Immunol 2005;35:3478–86.|||Lam LT, Pham YC, Nguyen TM, Morris GE. Characterization of a monoclonal antibody panel shows that the myotonic dystrophy protein kinase, DMPK, is expressed almost exclusively in muscle and heart. Hum Mol Genet 2000;9:2167–73.|||Kaliman P, Catalucci D, Lam JT, Kondo R, Gutierrez JC, Reddy S, et al. Myotonic dystrophy protein kinase phosphorylates phospholamban and regulates calcium uptake in cardiomyocyte sarcoplasmic reticulum. J Biol Chem 2005;280: 8016–21.|||Hu J, Niu M, Li X, Lu D, Cui J, Xu W, et al. FERM domain-containing protein FRMD5 regulates cell motility via binding to integrin beta5 subunit and ROCK1. FEBS Lett 2014;588:4348–56.|||Knowlden S, Georas SN. The autotaxin-LPA axis emerges as a novel regulator of lymphocyte homing and inflammation. J Immunol 2014;192:851–7.|||Knowlden SA, Capece T, Popovic M, Chapman TJ, Rezaee F, Kim M, et al. Regulation of T cell motility in vitro and in vivo by LPA and LPA2. PLoS One 2014;9:e101655.|||Mori K, Kitayama J, Aoki J, Kishi Y, Shida D, Yamashita H, et al. Submucosal connective tissue-type mast cells contribute to the production of lysophosphatidic acid (LPA) in the gastrointestinal tract through the secretion of autotaxin (ATX)/ lysophospholipase D (lysoPLD). Virchows Arch 2007;451:47–56.|||Park GY, Lee YG, Berdyshev E, Nyenhuis S, Du J, Fu P, et al. Autotaxin production of lysophosphatidic acid mediates allergic asthmatic inflammation. Am J Respir Crit Care Med 2013;188:928–40.|||Kotarsky K, Boketoft A, Bristulf J, Nilsson NE, Norberg A, Hansson S, et al. Lysophosphatidic acid binds to and activates GPR92, a G protein-coupled receptor highly expressed in gastrointestinal lymphocytes. J Pharmacol Exp Ther 2006;318:619–28.|||Goetzl EJ, Kong Y, Voice JK. Cutting edge: differential constitutive expression of functional receptors for lysophosphatidic acid by human blood lymphocytes. J Immunol 2000;164:4996–9.|||Oda SK, Strauch P, Fujiwara Y, Al-Shami A, Oravecz T, Tigyi G, et al. Lysophosphatidic acid inhibits CD8 T cell activation and control of tumor progression. Cancer Immunol Res 2013;1:245–55.|||Snapper SB, Rosen FS, Mizoguchi E, Cohen P, Khan W, Liu CH, et al. Wiskott Aldrich syndrome protein-deficient mice reveal a role for WASP in T but not B cell activation. Immunity 1998;9:81–91.|||Lemos MP, Fan L, Lo D, Laufer TM. CD8alpha+ and CD11b+ dendritic cell-restricted MHC class II controls Th1 CD4+ T cell immunity. J Immunol 2003; 171:5077–84.|||Hambleton S, Salem S, Bustamante J, Bigley V, Boisson-Dupuis S, Azevedo J, et al. IRF8 mutations and human dendritic-cell immunodeficiency. N Engl J Med 2011;365:127–38.|||Steinman RM, Banchereau J. Taking dendritic cells into medicine. Nature 2007; 449:419–26.|||Mills KH. TLR-dependent T cell activation in autoimmunity. Nat Rev Immunol 2011;11:807–22.|||Schenk U, Frascoli M, Proietti M, Geffers R, Traggiai E, Buer J, et al. ATP inhibits the generation and function of regulatory T cells through the activation of purinergic P2X receptors. Sci Signal 2011;4:ra12.|||Anderson RM, Bitterman KJ, Wood JG, Medvedik O, Cohen H, Lin SS, et al. Manipulation of a nuclear NAD+ salvage pathway delays aging without altering steady-state NAD+ levels. J Biol Chem 2002;277: 18881–90.|||Bonkowski MS, Sinclair DA. Slowing ageing by design: the rise of NAD+ and sirtuin-activating compounds. Nat Rev Mol Cell Biol 2016; 17:679–90.|||Gomes AP, Price NL, Ling AJ, Moslehi JJ, Montgomery MK, Rajman L, et al. Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 2013;155:1624–38.|||Andersson A, Dai WJ, Di Santo JP, Brombacher F. Early IFN-gamma production and innate immunity during Listeria monocytogenes infection in the absence of NK cells. J Immunol 1998;161:5600–6.|||Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations (*). Annu Rev Immunol 2010;28:445–89.