NAD-mediated rescue of prenatal forebrain angiogenesis restores postnatal behavior.
Authors:
Journal: Science advances
Publication Type: Journal Article
Date: 2020
DOI: PMC7546698
ID: 33036972
Abstract
Intrinsic defects within blood vessels from the earliest developmental time points can directly contribute to psychiatric disease origin. Here, we show that nicotinamide adenine dinucleotide (NAD), administered during a critical window of prenatal development, in a mouse model with dysfunctional endothelial γ-aminobutyric acid type A (GABA) receptors ( endothelial cell knockout mice), results in a synergistic repair of impaired angiogenesis and normalization of brain development, thus preventing the acquisition of abnormal behavioral symptoms. The prenatal NAD treatment stimulated extensive cellular and molecular changes in endothelial cells and restored blood vessel formation, GABAergic neuronal development, and forebrain morphology by recruiting an alternate pathway for cellular repair, via previously unknown transcriptional mechanisms and purinergic receptor signaling. Our findings illustrate a novel and powerful role for NAD in sculpting prenatal brain development that has profound implications for rescuing brain blood flow in a permanent and irreversible manner, with long-lasting consequences for mental health outcome.
Chemical List
- Receptors, GABA-A|||NAD
Reference List
- Li S., Kumar T P., Joshee S., Kirschstein T., Subburaju S., Khalili J. S., Kloepper J., du C., Elkhal A., Szabó G., Jain R. K., Köhling R., Vasudevan A., Endothelial cell-derived GABA signaling modulates neuronal migration and postnatal behavior. Cell Res. 28, 221–248 (2018).|||Won C., Lin Z., Kumar T. P., Li S., Ding L., Elkhal A., Szabó G., Vasudevan A., Autonomous vascular networks synchronize GABA neuron migration in the embryonic forebrain. Nat. Commun. 4, 2149 (2013).|||Li S., Haigh K., Haigh J. J., Vasudevan A., Endothelial VEGF sculpts cortical cytoarchitecture. J. Neurosci. 33, 14809–14815 (2013).|||Vasudevan A., Long J. E., Crandall J. E., Rubenstein J. L., Bhide P. G., Compartment-specific transcription factors orchestrate angiogenesis gradients in the embryonic brain. Nat. Neurosci. 11, 429–439 (2008).|||Choi Y. K., Vasudevan A., Mechanistic insights into autocrine and paracrine roles of endothelial GABA signaling in the embryonic forebrain. Sci. Rep. 9, 16256 (2019).|||Tullius S. G., Biefer H. R. C., Li S., Trachtenberg A. J., Edtinger K., Quante M., Krenzien F., Uehara H., Yang X., Kissick H. T., Kuo W. P., Ghiran I., de la Fuente M. A., Arredouani M. S., Camacho V., Tigges J. C., Toxavidis V., el Fatimy R., Smith B. D., Vasudevan A., ElKhal A., NAD+ protects against EAE by regulating CD4+ T-cell differentiation. Nat. Commun. 5, 5101 (2014).|||Burton G. J., Fowden A. L., The placenta: A multifaceted, transient organ. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20140066 (2015).|||Ushio-Fukai M., Redox signaling in angiogenesis: Role of NADPH oxidase. Cardiovasc. Res. 71, 226–235 (2006).|||Das A., Huang G. X., Bonkowski M. S., Longchamp A., Li C., Schultz M. B., Kim L. J., Osborne B., Joshi S., Lu Y., Treviño-Villarreal J. H., Kang M. J., Hung T. T., Lee B., Williams E. O., Igarashi M., Mitchell J. R., Wu L. E., Turner N., Arany Z., Guarente L., Sinclair D. A., Impairment of an endothelial NAD+-H2S signaling network is a reversible cause of vascular aging. Cell 173, 74–89.e20 (2018).|||Braidy N., Grant R., Sachdev P. S., Nicotinamide adenine dinucleotide and its related precursors for the treatment of Alzheimer’s disease. Curr. Opin. Psychiatry 31, 160–166 (2018).|||Ear P. H., Chadda A., Gumusoglu S. B., Schmidt M. S., Vogeler S., Malicoat J., Kadel J., Moore M. M., Migaud M. E., Stevens H. E., Brenner C., Maternal nicotinamide riboside enhances postpartum weight loss, juvenile offspring development, and neurogenesis of adult offspring. Cell Rep. 26, 969–983.e4 (2019).|||Kumar T P., Vasudevan A., Isolation and culture of endothelial cells from the embryonic forebrain. J. Vis. Exp. , e51021 (2014).|||Anderson S. A., Marin O., Horn C., Jennings K., Rubenstein J. L., Distinct cortical migrations from the medial and lateral ganglionic eminences. Development 128, 353–363 (2001).|||Marín O., Rubenstein J. L. R., A long, remarkable journey: Tangential migration in the telencephalon. Nat. Rev. Neurosci. 2, 780–790 (2001).|||Corbin J. G., Nery S., Fishell G., Telencephalic cells take a tangent: Non-radial migration in the mammalian forebrain. Nat. Neurosci. 4, 1177–1182 (2001).|||Sussel L., Marin O., Kimura S., Rubenstein J. L., Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: Evidence for a transformation of the pallidum into the striatum. Development 126, 3359 (1999).|||Nobrega-Pereira S., Kessaris N., Du T., Kimura S., Anderson S. A., Marín O., Postmitotic Nkx2-1 controls the migration of telencephalic interneurons by direct repression of guidance receptors. Neuron 59, 733–745 (2008).|||Rubin A. N., Kessaris N., PROX1: A lineage tracer for cortical interneurons originating in the lateral/caudal ganglionic eminence and preoptic area. PLOS ONE 8, e77339 (2013).|||Subburaju S., Coleman A. J., Ruzicka W. B., Benes F. M., Toward dissecting the etiology of schizophrenia: HDAC1 and DAXX regulate GAD67 expression in an in vitro hippocampal GABA neuron model. Transl. Psychiatry 6, e723 (2016).|||Subburaju S., Benes F. M., Induction of the GABA cell phenotype: An in vitro model for studying neurodevelopmental disorders. PLOS ONE 7, e33352 (2012).|||Subburaju S., Coleman A. J., Cunningham M. G., Ruzicka W. B., Benes F. M., Epigenetic regulation of glutamic acid decarboxylase 67 in a hippocampal circuit. Cereb. Cortex 27, 5284–5293 (2017).|||Owens D. F., Kriegstein A. R., Patterns of intracellular calcium fluctuation in precursor cells of the neocortical ventricular zone. J. Neurosci. 18, 5374–5388 (1998).|||Yamamoto K., Sokabe T., Matsumoto T., Yoshimura K., Shibata M., Ohura N., Fukuda T., Sato T., Sekine K., Kato S., Isshiki M., Fujita T., Kobayashi M., Kawamura K., Masuda H., Kamiya A., Ando J., Impaired flow-dependent control of vascular tone and remodeling in P2X4-deficient mice. Nat. Med. 12, 133–137 (2006).|||Stokes L., Layhadi J. A., Bibic L., Dhuna K., Fountain S. J., P2X4 receptor function in the nervous system and current breakthroughs in pharmacology. Front. Pharmacol. 8, 291 (2017).|||K. A. Jacobson, P2X and P2Y Receptors (Tocris Bioscience Scientific Review No. 33, 2010).|||Jain R. K., Munn L. L., Fukumura D., Dissecting tumour pathophysiology using intravital microscopy. Nat. Rev. Cancer 2, 266–276 (2002).|||Jain R. K., Munn L. L., Fukumura D., Measuring angiogenesis and hemodynamics in mice. Cold Spring Harb. Protoc. 2013, 354–358 (2013).|||Brown E. B., Campbell R. B., Tsuzuki Y., Xu L., Carmeliet P., Fukumura D., Jain R. K., In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat. Med. 7, 864–868 (2001).|||Hoffer A., Osmond H., Nicotinamide adenine dinucleotide in the treatment of chronic schizophrenic patients. Br. J. Psychiatry 114, 915–917 (1968).|||Kline N. S., Barclay G. L., Cole J. O., Esser A. H., Lehmann H., Wittenborn J. R., Controlled evaluation of nicotinamide adenine dinucleotide in the treatment of chronic schizophrenic patients. Br. J. Psychiatry 113, 731–742 (1967).|||Kline N. S., Barclay G. L., Esser A. H., Cole J. O., Lehmann H. E., Wittenborn J. R., Diphosphopyridine nucleotide in the treatment of schizophrenia. JAMA 200, 881–882 (1967).|||Kim S. Y., Cohen B. M., Chen X., Lukas S. E., Shinn A. K., Yuksel A. C., Li T., du F., Öngür D., Redox dysregulation in schizophrenia revealed by in vivo NAD+/NADH Measurement. Schizophr. Bull. 43, 197–204 (2017).|||G. Paxinos, K. Franklin, The Mouse Brain in Stereotaxic Coordinates, 3rd edition (Academic Press, San Diego, 2007).|||Ritchie M. E., Phipson B., Wu D., Hu Y., Law C. W., Shi W., Smyth G. K., limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).|||Gautier L., Cope L., Bolstad B. M., Irizarry R. A., affy--analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20, 307–315 (2004).|||Gentleman R. C., Carey V. J., Bates D. M., Bolstad B., Dettling M., Dudoit S., Ellis B., Gautier L., Ge Y., Gentry J., Hornik K., Hothorn T., Huber W., Iacus S., Irizarry R., Leisch F., Li C., Maechler M., Rossini A. J., Sawitzki G., Smith C., Smyth G., Tierney L., Yang J. Y. H., Zhang J., Bioconductor: Open software development for computational biology and bioinformatics. Genome Biol. 5, R80 (2004).|||Livak K. J., Schmittgen T. D., Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408 (2001).|||Silverman J. L., Tolu S. S., Barkan C. L., Crawley J. N., Repetitive self-grooming behavior in the BTBR mouse model of autism is blocked by the mGluR5 antagonist MPEP. Neuropsychopharmacology 35, 976–989 (2010).|||J. N. Crawley, What’s Wrong With My Mouse? Behavioral Phenotyping of Transgenic and Knockout mice (Wiley, 2007).|||Can A., Dao D. T., Terrillion C. E., Piantadosi S. C., Bhat S., Gould T. D., The tail suspension test. J. Vis. Exp, 3769 (2012).|||Kane M. J., Angoa-Peréz M., Briggs D. I., Sykes C. E., Francescutti D. M., Rosenberg D. R., Kuhn D. M., Mice genetically depleted of brain serotonin display social impairments, communication deficits and repetitive behaviors: Possible relevance to autism. PLOS ONE 7, e48975 (2012).|||Deacon R. M. J., Assessing nest building in mice. Nat. Protoc. 1, 1117–1119 (2006).Hess S. E., Rohr S., Dufour B. D., Gaskill B. N., Pajor E. A., Garner J. P., Home improvement: C57BL/6J mice given more naturalistic nesting materials build better nests. J. Am. Assoc. Lab. Anim. Sci. 47, 25–31 (2008).|||Hess S. E., Rohr S., Dufour B. D., Gaskill B. N., Pajor E. A., Garner J. P., Home improvement: C57BL/6J mice given more naturalistic nesting materials build better nests. J. Am. Assoc. Lab. Anim. Sci. 47, 25–31 (2008).