Capillary endothelial Na(+), K(+), ATPase transporter homeostasis and a new theory for migraine pathophysiology.
Authors:
Journal: Headache
Publication Type: Journal Article
Date: 2010
DOI: NIHMS1685312
ID: 19845787
Abstract
Cerebrospinal fluid sodium concentration ([Na(+)](csf)) increases during migraine, but the cause of the increase is not known.
Chemical List
- Sodium|||Sodium-Potassium-Exchanging ATPase|||Potassium
Reference List
- May A, Goadsby PJ. The trigeminovascular system in humans: Pathophysiologic implications for primary headache syndromes of the neural influences on the cerebral circulation. J Cereb Blood Flow Metab. 1999;19:115–127.|||Lance JW, Adams RW, Lambert GA. Bulbo-cortical pathways and their possible relevance to migraine and epilepsy. Funct Neurol. 1986;1:357–361.|||Adams RW, Lambert GA, Lance JW. Stimulation of brainstem nuclei in the cat: Effect on neuronal activity in the primary visual cortex of relevance to cerebral blood flow and migraine. Cephalalgia. 1989;9:107–118.|||Bartsch T, Levy MJ, Knight YE, Goadsby PJ. Inhibition of nociceptive dural input in the trigeminal nucleus caudalis by somatostatin receptor blockade in the posterior hypothalamus.Pain.2005;117:30–39.|||Burstein R, Yamamura H, Malick A, Strassman AM. Chemical stimulation of the intracranial dura induces enhanced responses to facial stimulation in brain stem trigeminal neurons. J Neurophysiol. 1998;79:964–982.|||Drummond PD, Lance JW. Extracranial vascular changes and the source of pain in migraine headache. Ann Neurol. 1983;13:32–37.|||Knight YE, Bartsch T, Kaube H, Goadsby PJ. P/Q-type calcium-channel blockade in the periaqueductal gray facilitates trigeminal nociception: A functional genetic link for migraine? J Neurosci. 2002;22:RC213.|||Malick A, Strassman RM, Burstein R. Trigemino-hypothalamic and reticulohypothalamic tract neurons in the upper cervical spinal cord and caudal medulla of the rat. J Neurophysiol. 2000; 84:2078–2112.|||Strassman AM, Raymond SA, Burstein R. Sensitization of meningeal sensory neurons and the origin of headaches. Nature. 1996;384:560–564.|||Moskowitz MA. Defining a pathway to discovery from bench to bedside: The trigeminovascular system and sensitization. Headache. 2008;48:688–690.|||Hadjikhani N, Sanchez Del Rio M, Wu O, et al. Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proc Natl Acad Sci USA. 2001;98:4687–4692.|||Lauritzen M Cortical spreading depression in migraine. Cephalalgia. 2001;21:757–760.|||Bolay H, Reuter U, Dunn AK, Huang Z, Boas DA, Moskowitz MA. Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat Med. 2002;8:136–142.|||Silberstein SD. Topiramate in migraine prevention: Evidence-based medicine from clinical trials. Neurol Sci. 2004;25(Suppl. 3):S244–S245.|||Leith JL, Wilson AW, Donaldson LF, Lumb BM. Cyclooxygenase-1-derived prostaglandins in the periaqueductal gray differentially control C-versus A-fiber-evoked spinal nociception. J Neurosci. 2007;27:11296–11305.|||Lipton RB, Baggish JS, Stewart WF, Codispoti JR, Fu M. Efficacy and safety of acetaminophen in the treatment of migraine: Results of a randomized, double-blind, placebo-controlled, population-based study. Arch Intern Med. 2000;160:3486–3492.|||May A, Goadsby PJ. Pharmacological opportunities and pitfalls in the therapy of migraine. Curr Opin Neurol. 2001;14:341–345.|||Olesen J, Diener HC, Husstedt IW, et al. Calcitonin gene-related peptide receptor antagonist BIBN 4096 BS for the acute treatment of migraine. N Engl J Med. 2004;350:1104–1110.|||Humphrey PP. The discovery and development of the triptans, a major therapeutic breakthrough. Headache. 2008;48:685–687.|||Hansen AJ, Zeuthen T. Extracellular ion concentrations during spreading depression and ischemia in the rat brain cortex. Acta Physiol Scand. 1981;113:437–445.|||Kraig RP, Nicholson C. Extracellular ionic variations during spreading depression. Neuroscience. 1978;3:1045–1059.|||De Fusco M, Marconi R, Silvestri L, et al. Haplo-insufficiency of ATP1A2 encoding the Na+/K+ pump alpha2 subunit associated with familial hemiplegic migraine type 2. Nat Genet. 2003;33:192–196.|||Vanmolkot KR, Kors EE, Hottenga JJ, et al. Novel mutations in the Na+, K+-ATPase pump gene ATP1A2 associated with familial hemiplegic migraine and benign familial infantile convulsions. Ann Neurol. 2003;54:360–366.|||Terwindt GM, Ophoff RA, Haan J, Sandkuijl LA, Frants RR, Ferrari MD. Migraine, ataxia and epilepsy: A challenging spectrum of genetically determined calcium channelopathies. Dutch Migraine Genetics Research Group. Eur J Hum Genet. 1998;6:297–307.|||Dichgans M, Freilinger T, Eckstein G, et al. Mutation in the neuronal voltage-gated sodium channel SCN1A in familial hemiplegic migraine. Lancet. 2005;366:371–377.|||Ducros A, Denier C, Joutel A, et al. The clinical spectrum of familial hemiplegic migraine associated with mutations in a neuronal calcium channel. N Engl J Med. 2001;345:17–24.|||Moskowitz MA, Bolay H, Dalkara T. Deciphering migraine mechanisms: Clues from familial hemiplegic migraine genotypes. Ann Neurol. 2004;55:276–280.|||de Vries B, Freilinger T, Vanmolkot KR, et al. Systematic analysis of three FHM genes in 39 sporadic patients with hemiplegic migraine. Neurology. 2007;69:2170–2176.|||Harrington MG, Fonteh AN, Cowan RP, et al. Cerebrospinal fluid sodium increases in migraine. Headache. 2006;46:1128–1135.|||Sweet WH, Brownell GL, Scholl JA, Bowsher DR, Benda P, Stickley EE. The formation, flow and absorption of cerebrospinal fluid; newer concepts based on studies with isotopes. Res Publ Assoc Res Nerv Ment Dis. 1955;34:101–159.|||Somjen GG. Neuroglia and spinal fluids. J Exp Biol. 1981;95:129–133.|||Bito LZ, Davson H. Local variations in cerebrospinal fluid composition and its relationship to the composition of the extracellular fluid of the cortex. Exp Neurol. 1966;14:264–280.|||Olsen NS, Rudolph GG. Transfer of sodium and bromide ions between blood, cerebrospinal fluid and brain tissue. Am J Physiol. 1955;183:427–432.|||Hodgkin AL, Katz B. The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol. 1949;108:37–77.|||Kuo CC, Liao SY. Facilitation of recovery from inactivation by external Na+ and location of the activation gate in neuronal Na+ channels. J Neurosci. 2000;20:5639–5646.|||Van Huysse JW, Hou X. Pressor response to CSF sodium in mice: Mediation by a ouabain-like substance and renin-angiotensin system in the brain. Brain Res. 2004;1021:219–231.|||Huang BS, Amin MS, Leenen FH. The central role of the brain in salt-sensitive hypertension. Curr Opin Cardiol. 2006;21:295–304.|||Catterall WA, Dib-Hajj S, Meisler MH, Pietrobon D. Inherited neuronal ion channelopathies: New windows on complex neurological diseases. J Neurosci. 2008;28:11768–11777.|||Hains BC, Klein JP, Saab CY, Craner MJ, Black JA, Waxman SG. Upregulation of sodium channel Nav1.3 and functional involvement in neuronal hyperexcitability associated with central neuropathic pain after spinal cord injury. J Neurosci. 2003;23:8881–8892.|||Iwamoto T, Watanabe Y, Kita S, Blaustein MP. Na+/Ca2+ exchange inhibitors: A new class of calcium regulators. Cardiovasc Hematol Disord Drug Targets. 2007;7:188–198.|||Martinez F, Castillo J, Rodriguez JR, Leira R, Noya M. Neuroexcitatory amino acid levels in plasma and cerebrospinal fluid during migraine attacks. Cephalalgia. 1993;13:89–93.|||Whittam R The dependence of the respiration of brain cortex on active cation transport. Biochem J. 1962;82:205–212.|||Astrup J, Sorensen PM, Sorensen HR. Oxygen and glucose consumption related to Na+-K+ transport in canine brain. Stroke. 1981;12:726–730.|||Menna G, Tong CK, Chesler M. Extracellular pH changes and accompanying cation shifts during ouabain-induced spreading depression. J Neurophysiol. 2000;83:1338–1345.|||Hertz L An intense potassium uptake into astrocytes, its further enhancement by high concentrations of potassium, and its possible involvement in potassium homeostasis at the cellular level. Brain Res. 1978;145:202–208.|||Geering K Functional roles of Na,K-ATPase subunits. Curr Opin Nephrol Hypertens. 2008;17:526–532.|||Betz AL, Firth JA, Goldstein GW. Polarity of the blood-brain barrier: Distribution of enzymes between the luminal and antiluminal membranes of brain capillary endothelial cells. Brain Res. 1980;192:17–28.|||Eisenberg HM, Suddith RL. Cerebral vessels have the capacity to transport sodium and potassium. Science. 1979;206:1083–1085.|||Praetorius J, Nielsen S. Distribution of sodium transporters and aquaporin-1 in the human choroid plexus. Am J Physiol Cell Physiol. 2006;291:C59–C67.|||Abbott NJ. Evidence for bulk flow of brain interstitial fluid: Significance for physiology and pathology. Neurochem Int. 2004;45:545–552.|||Cserr HF. Physiology of the choroid plexus. Physiol Rev. 1971;51:273–311.|||Go KG. The normal and pathological physiology of brain water. Adv Tech Stand Neurosurg. 1997;23:47–142.|||Kimelberg HK. Water homeostasis in the brain: Basic concepts. Neuroscience. 2004;129:851–860.|||Razmara A, Sunday L, Stirone C, et al. Mitochondrial effects of estrogen are mediated by estrogen receptor alpha in brain endothelial cells. J Pharmacol Exp Ther. 2008;325:782–790.|||Brust P, Friedrich A, Krizbai IA, et al. Functional expression of the serotonin transporter in immortalized rat brain microvessel endothelial cells. J Neurochem. 2000;74:1241–1248.|||Takuwa Y, Takuwa N, Sugimoto N. The Edg family G protein-coupled receptors for lysophospholipids: Their signaling properties and biological activities. J Biochem. 2002;131:767–771.|||Pietrobon D, Striessnig J. Neurobiology of migraine. Nat Rev Neurosci. 2003;4:386–398.|||Somjen GG, Muller M. Potassium-induced enhancement of persistent inward current in hippocampal neurons in isolation and in tissue slices. Brain Res. 2000;885:102–110.|||Kager H, Wadman WJ, Somjen GG. Simulated seizures and spreading depression in a neuron model incorporating interstitial space and ion concentrations. J Neurophysiol. 2000;84:495–512.|||Kiedrowski L High activity of K+-dependent plasmalemmal Na+/Ca2+ exchangers in hippocampal CA1 neurons. Neuroreport. 2004;15:2113–2116.|||Azin AL. Role of extracellular pO2 and pCO2 in membrane mechanisms regulating cerebral artery smooth muscle. Fiziol Zh SSSR Im I M Sechenova. 1981;67:1652–1660.|||Ko EA, Han J, Jung ID, Park WS. Physiological roles of K+ channels in vascular smooth muscle cells. J Smooth Muscle Res. 2008;44:65–81.|||Olesen SP, Munch E, Moldt P, Drejer J. Selective activation of Ca(2+)-dependent K+ channels by novel benzimidazolone. Eur J Pharmacol. 1994; 251:53–59|||Hosoi R, Matsuda T, Asano S, et al. Isoform-specific up-regulation by ouabain of Na+,K+-ATPase in cultured rat astrocytes. J Neurochem. 1997;69:2189–2196.|||Senatorov VV, Stys PK, Hu B. Regulation of Na+,K+-ATPase by persistent sodium accumulation in adult rat thalamic neurones. J Physiol. 2000;525(Pt 2):343–353.|||Lauritzen M Pathophysiology of the migraine aura. The spreading depression theory. Brain. 1994;117:199–210.|||Leão A Pial circulation and spreading depression of activity in the cerebral cortex. J Neurophysiol. 1944;7:391–396.|||Brennan KC, Beltran-Parrazal L, Lopez-Valdes HE, Theriot J, Toga AW, Charles AC. Distinct vascular conduction with cortical spreading depression. J Neurophysiol. 2007;97:4143–4151.|||Iadecola C From CSD to headache: A long and winding road. Nat Med. 2002;8:110–112.|||Barrett CF, van den Maagdenberg AM, Frants RR, Ferrari MD. Familial hemiplegic migraine. Adv Genet. 2008;63:57–83.|||Gulbenkian S, Uddman R, Edvinsson L. Neuronal messengers in the human cerebral circulation. Peptides. 2001;22:995–1007.|||van den Maagdenberg AM, Pietrobon D, Pizzorusso T, et al. A Cacna1a knockin migraine mouse model with increased susceptibility to cortical spreading depression. Neuron. 2004;41:701–710.|||Taormino JP, Fambrough DM. Pre-translational regulation of the (Na+ + K+)-ATPase in response to demand for ion transport in cultured chicken skeletal muscle. J Biol Chem. 1990;265:4116–4123.|||Smith LC, Harrington MG, Britten RJ, Davidson EH. The sea urchin profilin gene is specifically expressed in mesenchyme cells during gastrulation. Dev Biol. 1994;164:463–474.|||Tanaka Y, Ando S. Synaptic aging as revealed by changes in membrane potential and decreased activity of Na+,K(+)-ATPase. Brain Res. 1990; 506:46–52.|||Tanaka Y, Ando S. Age-related changes in [3H] ouabain binding to synaptic plasma membranes isolated from mouse brains. J Biochem. 1992; 112:117–121.|||Chauhan NB, Siegel GJ. In situ analysis of Na, K-ATPase alpha1- and alpha3-isoform mRNAs in aging rat hippocampus. J Neurochem. 1996;66:1742–1751.|||Chauhan N, Siegel G. Na,K-ATPase: Increases in alpha1-messenger RNA and decreases in alpha3-messenger RNA levels in aging rat cerebral cortex. Neuroscience. 1997;78:7–11.|||Chauhan N, Siegel G. Differential expression of Na,K-ATPase alpha-isoform mRNAs in aging rat cerebellum. J Neurosci Res. 1997;47:287–299.|||Chauhan NB, Lee JM, Siegel GJ. Na,K-ATPase mRNA levels and plaque load in Alzheimer’s disease. J Mol Neurosci. 1997;9:151–166.|||Fraser CL, Arieff AI. Na-K-ATPase activity decreases with aging in female rat brain synaptosomes. Am J Physiol Renal Physiol. 2001;281:F674–F678.|||Fu YJ, Xiong S, Lovell MA, Lynn BC. Quantitative proteomic analysis of mitochondria in aging PS-1 transgenic mice. Cell Mol Neurobiol. 2009;29:649–664.|||Alstadhaug KB. Periodicity of migraine. Headache. 2006;46:532–533.|||Alstadhaug KB, Bekkelund S, Salvesen R. Circannual periodicity of migraine? Eur J Neurol. 2007;14:983–988.|||Solomon GD. Circadian rhythms and migraine. Cleve Clin J Med. 1992;59:326–329.|||Fox AW, Davis RL. Migraine chronobiology. Headache. 1998;38:436–441.|||van Oosterhout F, Michel S, Deboer T, et al. Enhanced circadian phase resetting in R192Q Cav2.1 calcium channel migraine mice. Ann Neurol. 2008;64:315–324.|||Wang HY, Huang RC. Diurnal modulation of the Na+/K+-ATPase and spontaneous firing in the rat retinorecipient clock neurons. J Neurophysiol. 2004;92:2295–2301.|||Harrington MG, Oborina E, Pogoda JM, et al. Circadian sodium rhythms in human cerebrospinal fluid. American Academy of Neurology Annual Meeting. 2008.|||Denny PC, Ball WD, Redman RS. Salivary glands: A paradigm for diversity of gland development. Crit Rev Oral Biol Med. 1997;8:51–75.|||Kurlansky M Salt: A World History. New York: Penguin Books; 2002.|||Majumdar S, Faisal M, Madan V, Mallick BN. Increased turnover of Na-K ATPase molecules in rat brain after rapid eye movement sleep deprivation. J Neurosci Res. 2003;73:870–875.|||Bignotto M, de Andrade UJ, de Carvalho JG, Benedito MA. Rapid eye movement sleep deprivation induces changes in the high-affinity binding of [3H]-ouabain to the rat cortical membranes. Neurosci Lett. 2006;396:143–147.|||Wagner W, Nootbaar-Wagner U. Prophylactic treatment of migraine with gamma-linolenic and alpha-linolenic acids. Cephalalgia. 1997;17:127–130;discussion 102.|||Harel Z, Gascon G, Riggs S, Vaz R, Brown W, Exil G. Supplementation with omega-3 polyunsaturated fatty acids in the management of recurrent migraines in adolescents. J Adolesc Health. 2002; 31:154–161.|||Pradalier A, Bakouche P, Baudesson G, et al. Failure of omega-3 polyunsaturated fatty acids in prevention of migraine: A double-blind study versus placebo. Cephalalgia. 2001;21:818–822.|||Cohen GL. Migraine prophylactic drugs work via ion channels. Med Hypotheses. 2005;65:114–122.|||Scarrone S, Podesta M, Cupello A, et al. Abnormalities of Na/K ATPase in migraine with aura. Cephalalgia. 2007;27:128–132.|||Wu H, Riha GM, Yang H, Li M, Yao Q, Chen C. Differentiation and proliferation of endothelial progenitor cells from canine peripheral blood mononuclear cells. J Surg Res. 2005;126:193–198.|||Horisberger JD, Lemas V, Kraehenbuhl JP, Rossier BC. Structure-function relationship of Na,K-ATPase. Annu Rev Physiol. 1991;53:565–584.|||Trachtenberg MC, Packey DJ, Sweeney T. In vivo functioning of the Na+, K+-activated ATPase. Curr Top Cell Regul. 1981;19:159–217.|||Blaustein MP, Zhang J, Chen L, Hamilton BP. How does salt retention raise blood pressure? Am J Physiol Regul Integr Comp Physiol. 2006;290:R514–R523.|||Lebel CP, Schatz RA. Altered synaptosomal phospholipid metabolism after toluene: Possible relationship with membrane fluidity, Na+,K(+)-adenosine triphosphatase and phospholipid methylation. J Pharmacol Exp Ther. 1990;253:1189–1197.|||Liu XL, Miyakawa A, Aperia A, Krieger P. Na,K-ATPase generates calcium oscillations in hippocampal astrocytes. Neuroreport. 2007;18:597–600.|||Xie Z Molecular mechanisms of Na/K-ATPase-mediated signal transduction. Ann N Y Acad Sci. 2003;986:497–503.|||Berrebi-Bertrand I, Maixent JM, Christe G, Lelievre LG. Two active Na+/K+-ATPases of high affinity for ouabain in adult rat brain membranes. Biochim Biophys Acta. 1990;1021:148–156.|||Blanco G, Mercer RW. Isozymes of the Na-K-ATPase: Heterogeneity in structure, diversity in function. Am J Physiol. 1998;275:F633–F650.|||Jewell EA, Lingrel JB. Comparison of the substrate dependence properties of the rat Na,K-ATPase alpha 1, alpha 2, and alpha 3 isoforms expressed in HeLa cells. J Biol Chem. 1991;266:16925–16930.|||Lingrel JB, Williams MT, Vorhees CV, Moseley AE. Na,K-ATPase and the role of alpha isoforms in behavior. J Bioenerg Biomembr. 2007;39:385–389.|||McGrail KM, Phillips JM, Sweadner KJ. Immuno-fluorescent localization of three Na,K-ATPase isozymes in the rat central nervous system: Both neurons and glia can express more than one Na,K-ATPase. J Neurosci. 1991;11:381–391.|||Segall L, Daly SE, Blostein R. Mechanistic basis for kinetic differences between the rat alpha 1, alpha 2, and alpha 3 isoforms of the Na,K-ATPase. J Biol Chem. 2001;276:31535–31541.|||Peng L, Martin-Vasallo P, Sweadner KJ. Isoforms of Na,K-ATPase alpha and beta subunits in the rat cerebellum and in granule cell cultures. J Neurosci. 1997;17:3488–3502.|||Watts AG, Sanchez-Watts G, Emanuel JR, Levenson R. Cell-specific expression of mRNAs encoding Na+,K(+)-ATPase alpha- and beta-subunit isoforms within the rat central nervous system. Proc Natl Acad Sci USA. 1991;88:7425–7429.|||Magyar JP, Bartsch U, Wang ZQ, et al. Degeneration of neural cells in the central nervous system of mice deficient in the gene for the adhesion molecule on glia, the beta 2 subunit of murine Na,K-ATPase. J Cell Biol. 1994;127:835–845.|||Martin-Vasallo P, Wetzel RK, Garcia-Segura LM, Molina-Holgado E, Arystarkhova E, Sweadner KJ. Oligodendrocytes in brain and optic nerve express the beta3 subunit isoform of Na,K-ATPase. Glia. 2000;31:206–218.|||Feschenko MS, Donnet C, Wetzel RK, Asinovski NK, Jones LR, Sweadner KJ. Phospholemman, a single-span membrane protein, is an accessory protein of Na,K-ATPase in cerebellum and choroid plexus. J Neurosci. 2003;23:2161–2169.|||Arystarkhova E, Sweadner KJ. Splice variants of the gamma subunit (FXYD2) and their significance in regulation of the Na, K-ATPase in kidney. J Bioenerg Biomembr. 2005;37:381–386.|||Bell JR, Kennington E, Fuller W, et al. Characterization of the phospholemman knockout mouse heart: Depressed left ventricular function with increased Na-K-ATPase activity. Am J Physiol Heart Circ Physiol. 2008;294:H613–H621.|||Cairo ER, Friedrich T, Swarts HG, et al. Impaired routing of wild type FXYD2 after oligomerisation with FXYD2-G41R might explain the dominant nature of renal hypomagnesemia. Biochim Biophys Acta. 2008;1778:398–404.|||Meij IC, Koenderink JB, van Bokhoven H, et al. Dominant isolated renal magnesium loss is caused by misrouting of the Na(+),K(+)-ATPase gamma-subunit. Nat Genet. 2000;26:265–266.|||Jones DH, Li TY, Arystarkhova E, et al. Na,K-ATPase from mice lacking the gamma subunit (FXYD2) exhibits altered Na+ affinity and decreased thermal stability. J Biol Chem. 2005; 280:19003–19011.|||Yamaguchi F, Yamaguchi K, Tai Y, Sugimoto K, Tokuda M. Molecular cloning and characterization of a novel phospholemman-like protein from rat hippocampus. Brain Res Mol Brain Res. 2001; 86:189–192.|||Crambert G, Beguin P, Uldry M, et al. FXYD7, the first brain- and isoform-specific regulator of Na,K-ATPase: Biosynthesis and function of its posttranslational modifications. Ann N Y Acad Sci. 2003; 986:444–448.|||Sweadner KJ, Rael E. The FXYD gene family of small ion transport regulators or channels: cDNA sequence, protein signature sequence, and expression. Genomics. 2000;68:41–56.|||Ophoff RA, Terwindt GM, Vergouwe MN, et al. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell. 1996;87:543–552.|||Therien AG, Blostein R. Mechanisms of sodium pump regulation. Am J Physiol Cell Physiol. 2000;279:C541–C566.|||Kassardjian A, Kreydiyyeh SI. JNK modulates the effect of caspases and NF-kappaB in the TNF-alpha-induced down-regulation of Na+/K+ATPase in HepG2 cells. J Cell Physiol. 2008;216:615–620.|||Namekata K, Harada C, Kohyama K, Matsumoto Y, Harada T. Interleukin-1 stimulates glutamate uptake in glial cells by accelerating membrane trafficking of Na+/K+-ATPase via actin depolymerization. Mol Cell Biol. 2008;28:3273–3280.|||Banerjee B, Chaudhury S. Thyroidal regulation of different isoforms of NaKATPase in the primary cultures of neurons derived from fetal rat brain. Life Sci. 2002;71:1643–1654.|||Phakdeekitcharoen B, Phudhichareonrat S, Pookarnjanamorakot C, et al. Thyroid hormone increases mRNA and protein expression of Na+-K+-ATPase alpha2 and beta1 subunits in human skeletal muscles. J Clin Endocrinol Metab. 2007;92:353–358.|||Thompson SM, Prince DA. Activation of electrogenic sodium pump in hippocampal CA1 neurons following glutamate-induced depolarization. J Neurophysiol. 1986;56:507–522.|||Dunham ET, Glynn IM. Adenosinetriphosphatase activity and the active movements of alkali metal ions. J Physiol. 1961;156:274–293.|||Lingrel JB, Kuntzweiler T. Na+,K(+)-ATPase. J Biol Chem. 1994;269:19659–19662.|||Donnet C, Sweadner KJ. The mechanism of Na-K interaction on Na,K-ATPase. Ann N Y Acad Sci. 2003;986:249–251.|||Morth JP, Pedersen BP, Toustrup-Jensen MS, et al. Crystal structure of the sodium-potassium pump. Nature. 2007;450:1043–1049.|||Fleidervish IA, Friedman A, Gutnick MJ. Slow inactivation of Na+ current and slow cumulative spike adaptation in mouse and guinea-pig neocortical neurones in slices. J Physiol. 1996;493:83–97.|||Johnson SW, Seutin V, North RA. Burst firing in dopamine neurons induced by N-methyl-D-aspartate: Role of electrogenic sodium pump. Science. 1992;258:665–667.|||Flashner MS, Robinson JD. Effects of Mg(2+) on activation of the (Na(+) + K(+)-dependent ATPase by Na(+1). Arch Biochem Biophys. 1979;192:584–591.|||Strugatsky D, Gottschalk KE, Goldshleger R, Karlish SJ. D443 of the N domain of Na+,K+-ATPase interacts with the ATP-Mg2+ complex, possibly via a second Mg2+ ion. Biochemistry (Mosc). 2005;44:15961–15969.|||Jacobsen MD, Pedersen PA, Jorgensen PL. Importance of Na,K-ATPase residue alpha 1-Arg544 in the segment Arg544-Asp567 for high-affinity binding of ATP, ADP, or MgATP. Biochemistry (Mosc). 2002;41:1451–1456.|||Meij IC, Koenderink JB, De Jong JC, et al. Dominant isolated renal magnesium loss is caused by misrouting of the Na+,K+-ATPase gamma-subunit. Ann N A Acad Sci. 2003;986:437–443.|||Dietz RM, Weiss JH, Shuttleworth CW. Zn2+ influx is critical for some forms of spreading depression in brain slices. J Neurosci. 2008;28:8014–8024.|||Hiatt A, McDonough AA, Edelman IS. Assembly of the (Na+ + K+)-adenosine triphosphatase. Post-translational membrane integration of the alpha subunit. J Biol Chem. 1984;259:2629–2635.|||Palasis M, Kuntzweiler TA, Arguello JM, Lingrel JB. Ouabain interactions with the H5-H6 hairpin of the Na,K-ATPase reveal a possible inhibition mechanism via the cation binding domain. J Biol Chem. 1996;271:14176–14182.|||Kyte J Molecular considerations relevant to the mechanism of active transport. Nature. 1981; 292:201–204.|||Yoda A, Yoda S. Interaction between ouabain and the phosphorylated intermediate of Na,K-ATPase. Mol Pharmacol. 1982;22:700–705.|||Greef K, Schadewaldt H. Introduction and Remarks on the History of Cardiac Glycosides. New York: Springer-Verlag; 1981.|||Sole MJ, Benedict CR, Versteeg DH, de Kloet ER. Digitoxin therapy partially restores cardiac catecholamine and brain serotonin metabolism in congestive heart failure. J Mol Cell Cardiol. 1985;17:1055–1063.|||Balestrino M, Young J, Aitken P. Block of (Na+,K+)ATPase with ouabain induces spreading depression-like depolarization in hippocampal slices. Brain Res. 1999;838:37–44.|||Haglund MM, Schwartzkroin PA. Role of Na-K pump potassium regulation and IPSPs in seizures and spreading depression in immature rabbit hippocampal slices. J Neurophysiol. 1990;63:225–239.|||Durakovic Z, Plavsic F, Smalcelj A, Grgic V. [Blue color vision as a sign of digitalis poisoning]. Lijec Vjesn. 1992;114:132–134.|||Beller GA, Smith TW, Abelmann WH, Haber E, Hood WB Jr. Digitalis intoxication. A prospective clinical study with serum level correlations. N Engl J Med. 1971;284:989–997.|||Johansson BW. Migraine: Effect of digoxin. J R Soc Med. 1982;75:215–216.|||Tanaka R, Strickland KP. Role of phospholipid in the activation of Na+, Ka+-activated adenosine triphosphatase of beef brain. Arch Biochem Biophys. 1965;111:583–592.|||Goldman SS, Albers RW. Sodium-potassium-activated adenosine triphosphatase. IX. The role of phospholipids. J Biol Chem. 1973;248:867–874.|||Plataras C, Tsakiris S, Angelogianni P. Effect of CDP-choline on brain acetylcholinesterase and Na(+), K(+)-ATPase in adult rats. Clin Biochem. 2000;33:351–357.|||Hanson MA, Cherezov V, Griffith MT, et al. A specific cholesterol binding site is established by the 2.8: A structure of the human beta2-adrenergic receptor. Structure. 2008;16:897–905.|||Maier GA, Robinson JD. Effects of local anesthetics and cholesterol on the (Na+ +K+)-dependent ATPase. Biochem Pharmacol. 1977;26:791–793.|||Tian D, Dmitrieva RI, Doris PA, et al. Protein kinase M zeta regulation of Na/K ATPase: A persistent neuroprotective mechanism of ischemic preconditioning in hippocampal slice cultures. Brain Res. 2008;1213:127–139.|||Fisone G, Snyder GL, Aperia A, Greengard P. Na+,K(+)-ATPase phosphorylation in the choroid plexus: Synergistic regulation by serotonin/protein kinase C and isoproterenol/cAMP-PK/PP-1 pathways. Mol Med. 1998;4:258–265.|||Das G, Gopalakrishnan A, Faisal M, Mallick BN. Stimulatory role of calcium in rapid eye movement sleep deprivation-induced noradrenaline-mediated increase in Na-K-ATPase activity in rat brain. Neuroscience. 2008;155:76–89.|||Fienberg AA, Hiroi N, Mermelstein PG, et al. DARPP-32: Regulator of the efficacy of dopaminergic neurotransmission. Science. 1998;281:838–842.|||Hazelwood LA, Free RB, Cabrera DM, Skinbjerg M, Sibley DR. Reciprocal modulation of function between the D1 and D2 dopamine receptors and the Na+,K+-ATPase. J Biol Chem. 2008;283:36441–36453.|||Nishi A, Fisone G, Snyder GL, et al. Regulation of Na+, K+-ATPase isoforms in rat neostriatum by dopamine and protein kinase C. J Neurochem. 1999;73:1492–1501.|||Das G, Mallick BN. Noradrenaline acting on alpha1-adrenoceptor mediates REM sleep deprivation-induced increased membrane potential in rat brain synaptosomes. Neurochem Int. 2008;52:734–740.|||Mallick BN, Adya HV. Norepinephrine induced alpha-adrenoceptor mediated increase in rat brain Na-K ATPase activity is dependent on calcium ion. Neurochem Int. 1999;34:499–507.|||Mallick BN, Adya HV, Faisal M. Norepinephrine-stimulated increase in Na+, K+-ATPase activity in the rat brain is mediated through alpha1A-adrenoceptor possibly by dephosphorylation of the enzyme. J Neurochem. 2000;74:1574–1578.|||Aperia A, Ibarra F, Svensson LB, Klee C, Greengard P. Calcineurin mediates alpha-adrenergic stimulation of Na+,K(+)-ATPase activity in renal tubule cells. Proc Natl Acad Sci USA. 1992; 89:7394–7397.|||Antonelli MC, Costa Lieste M, Mercado R, Hernandez RJ. Serotonin modulation of low-affinity ouabain binding in rat brain determined by quantitative autoradiography. Neurochem Res. 1998; 23:939–944.|||Pena-Rangel MT, Mercado R, Hernandez-Rodriguez J. Regulation of glial Na+/K+-ATPase by serotonin: Identification of participating receptors. Neurochem Res. 1999;24:643–649.|||Matlhagela K, Taub M. Regulation of the Na-K-ATPase beta(1)-subunit promoter by multiple prostaglandin-responsive elements. Am J Physiol Renal Physiol. 2006;291:F635–F646.|||Pascual J, Sterin-Borda L, Wald M, Borda ES. TXB2: Cardiostimulant effect that involves beta-adrenoceptor and Na+ + K+-ATPase activity. Prostaglandins Leukot Essent Fatty Acids. 1988;33: 53–59.|||Foley TD. 5-HPETE is a potent inhibitor of neuronal Na+, K(+)-ATPase activity. Biochem Biophys Res Commun. 1997;235:374–376.|||Olesen J The role of nitric oxide (NO) in migraine, tension-type headache and cluster headache. Pharmacol Ther. 2008;120:157–171.|||McQueen JK, Wilson H, Sumner BE, Fink G. Serotonin transporter (SERT) mRNA and binding site densities in male rat brain affected by sex steroids. Brain Res Mol Brain Res. 1999;63:241–247.|||Fink G, Sumner B, Rosie R, Wilson H, McQueen J. Androgen actions on central serotonin neurotransmission: Relevance for mood, mental state and memory. Behav Brain Res. 1999;105:53–68.|||Chang HH, Michaelis EK. Effects of L-glutamic acid on synaptosomal and synaptic membrane Na+ fluxes and (Na+-K+)-ATPase. J Biol Chem. 1980;255:2411–2417.|||Chang HH, Michaelis EK. L-glutamate stimulation of Na+ efflux from brain synaptic membrane vesicles. J Biol Chem. 1981;256:10084–10087.|||Nathanson JA, Scavone C, Scanlon C, McKee M. The cellular Na+ pump as a site of action for carbon monoxide and glutamate: A mechanism for long-term modulation of cellular activity. Neuron. 1995;14:781–794.|||Araya KA, David Pessoa Mahana C, Gonzalez LG. Role of cannabinoid CB1 receptors and Gi/o protein activation in the modulation of synaptosomal Na+,K+-ATPase activity by WIN55,212–2 and delta(9)-THC. Eur J Pharmacol. 2007;572:32–39.|||Steffens M, Feuerstein TJ. Receptor-independent depression of DA and 5-HT uptake by cannabinoids in rat neocortex—Involvement of Na(+)/K(+)-ATPase. Neurochem Int. 2004;44:529–538.|||Mahadik SP, Hawver DB, Hungund BL, Li YS, Karpiak SE. GM1 ganglioside treatment after global ischemia protects changes in membrane fatty acids and properties of Na+, K+-ATPase and Mg2+-ATPase. J Neurosci Res. 1989;24:402–412.|||Zhou G, Dada LA, Chandel NS, et al. Hypoxia-mediated Na-K-ATPase degradation requires von Hippel Lindau protein. FASEB J. 2008;22:1335–1342.|||Malfatti CR, Royes LF, Francescato L, et al. Intra-striatal methylmalonic acid administration induces convulsions and TBARS production, and alters Na+,K+-ATPase activity in the rat striatum and cerebral cortex. Epilepsia. 2003;44:761–767.|||Morel P, Tallineau C, Pontcharraud R, Piriou A, Huguet F. Effects of 4-hydroxynonenal, a lipid peroxidation product, on dopamine transport and Na+/K+ ATPase in rat striatal synaptosomes. Neurochem Int. 1998;33:531–540.|||Lu C, Chan SL, Fu W, Mattson MP. The lipid peroxidation product 4-hydroxynonenal facilitates opening of voltage-dependent Ca2+ channels in neurons by increasing protein tyrosine phosphorylation. J Biol Chem. 2002;277:24368–24375.|||Lu C, Chan SL, Haughey N, Lee WT, Mattson MP. Selective and biphasic effect of the membrane lipid peroxidation product 4-hydroxy-2,3-nonenal on N-methyl-D-aspartate channels. J Neurochem. 2001;78:577–589.|||Matsuda T, Murata Y, Kawamura N, et al. Selective induction of alpha 1 isoform of (Na+ + K+)-ATPase by insulin/insulin-like growth factor-I in cultured rat astrocytes. Arch Biochem Biophys. 1993;307:175–182.|||Sweeney G, Klip A. Regulation of the Na+/K+-ATPase by insulin: Why and how? Mol Cell Biochem. 1998;182:121–133.|||Kawai N, Yamamoto T, Yamamoto H, McCarron RM, Spatz M. Endothelin 1 stimulates Na+,K(+)-ATPase and Na(+)-K(+)-Cl-cotransport through ETA receptors and protein kinase C-dependent pathway in cerebral capillary endothelium. J Neurochem. 1995;65:1588–1596.|||Krishnamoorthy RR, Prasanna G, Dauphin R, et al. Regulation of Na,K-ATPase expression by endothelin-1 in transformed human ciliary non-pigmented epithelial (HNPE) cells. J Ocul Pharmacol Ther. 2003;19:465–481.|||Spatz M, Kawai N, Merkel N, Bembry J, McCarron RM. Functional properties of cultured endothelial cells derived from large microvessels of human brain. Am J Physiol. 1997;272:C231–C239.|||Amann R, Donnerer J, Lembeck F. Ruthenium red selectively inhibits capsaicin-induced release of calcitonin gene-related peptide from the isolated perfused guinea pig lung. Neurosci Lett. 1989;101: 311–315.|||Andersen SL, Clausen T. Calcitonin gene-related peptide stimulates active Na(+)-K+ transport in rat soleus muscle. Am J Physiol. 1993;264:C419–C429.|||Mahmmoud YA. Capsazepine, a synthetic vanilloid that converts the Na,K-ATPase to Na-ATPase. Proc Natl Acad Sci USA. 2008; 105:1757–1761.|||Tria E, Luly P, Tomasi V, Trevisani A, Barnabei O. Modulation by cyclic AMP in vitro of liver plasma membrane (Na+–K+)-ATPase and protein kinases. Biochim Biophys Acta. 1974;343:297–306.