Quick Links

Sodium MRI in a rat migraine model and a NEURON simulation study support a role for sodium in migraine.

Authors: Michael G Harrington|||Eduard Y Chekmenev|||Victor Schepkin|||Alfred N Fonteh|||Xianghong Arakaki

Journal: Cephalalgia : an international journal of headache

Publication Type: Journal Article

Date: 2011

DOI: NIHMS408744

ID: 21816771

Affiliations:

Affiliations

    Molecular Neurology Program, Huntington Medical Research Institutes, 99 North El Molino Avenue, Pasadena, CA 91101, USA. mghworks@hmri.org||||||||||||

Abstract

Increased lumbar cerebrospinal fluid (CSF) sodium has been reported during migraine. We used ultra-high field MRI to investigate cranial sodium in a rat migraine model, and simulated the effects of extracellular sodium on neuronal excitability.


Chemical List

    Sodium

Reference List

    Lipton RB, Scher AI, Kolodner K, et al. Migraine in the United States: epidemiology and patterns of health care use. Neurology. 2002;58:885–894.|||Lance JW, Anthony M. Some clinical aspects of migraine. A prospective survey of 500 patients. Arch Neurol. 1966;15:356–361.|||Goadsby PJ, Charbit AR, Andreou AP, et al. Neurobiology of migraine. Neuroscience. 2009;161:327–341.|||Noseda R, Kainz V, Jakubowski M, et al. A neural mechanism for exacerbation of headache by light. Nat Neurosci. 2010;13:239–245.|||Lauritzen M, Olesen J. Regional cerebral blood flow during migraine attacks by Xenon-133 inhalation and emission tomography. Brain. 1984;107(Pt 2):447–461.|||Hadjikhani N, Sanchez Del Rio M, Wu O, et al. Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proc Natl Acad Sci U S A. 2001;98:4687–4692.|||Burstein R, Yamamura H, Malick A, et al. Chemical stimulation of the intracranial dura induces enhanced responses to facial stimulation in brain stem trigeminal neurons. J Neurophysiol. 1998;79:964–982.|||Bolay H, Reuter U, Dunn AK, et al. Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat Med. 2002;8:136–142.|||Zhang X, Levy D, Noseda R, et al. Activation of meningeal nociceptors by cortical spreading depression: implications for migraine with aura. J Neurosci. 2010;30:8807–8814.|||Iadecola C. From CSD to headache: a long and winding road. Nat Med. 2002;8:110–112.|||de Vries B, Frants RR, Ferrari MD, et al. Molecular genetics of migraine. Hum Genet. 2009;126:115–132.|||Jen JC, Kim GW, Dudding KA, et al. No mutations in CACNA1A and ATP1A2 in probands with common types of migraine. Arch Neurol. 2004;61:926–928.|||Harrington MG, Fonteh AN, Cowan RP, et al. Cerebrospinal fluid sodium increases in migraine. Headache. 2006;46:1128–1135.|||Cserr HF, Depasquale M, Patlak CS, et al. Convection of cerebral interstitial fluid and its role in brain volume regulation. Ann N Y Acad Sci. 1986;481:123–134.|||Davson H, Pollay M. The turnover of 24Na in the cerebrospinal fluid and its bearing on the blood-brain barrier. J Physiol. 1963;167:247–255.|||Kirsch S, Augath M, Seiffge D, et al. In vivo chlorine-35, sodium-23 and proton magnetic resonance imaging of the rat brain. NMR Biomed. 2010;23:592–600.|||Schepkin VD, Brey WW, Gor’kov PL, et al. Initial in vivo rodent sodium and proton MR imaging at 21. 1 T. Magn Reson Imaging. 2010;28:400–407.|||Gor’kov PLQC, Beck BL, Clark M, et al. A modular MRI probe design for large rodent neuroimaging at 21. 1 T (900 MHz) Proc Intl Soc Mag Reson Med. 2009;17:2952.|||Di Clemente L, Coppola G, Magis D, et al. Nitroglycerin sensitises in healthy subjects CNS structures involved in migraine pathophysiology: evidence from a study of nociceptive blink reflexes and visual evoked potentials. Pain. 2009;144:156–161.|||Tassorelli C, Joseph SA. Systemic nitroglycerin induces Fos immunoreactivity in brainstem and forebrain structures of the rat. Brain Res. 1995;682:167–181.|||Pardutz A, Krizbai I, Multon S, et al. Systemic nitroglycerin increases nNOS levels in rat trigeminal nucleus caudalis. Neuroreport. 2000;11:3071–3075.|||de Tommaso M, Libro G, Guido M, et al. Nitroglycerin induces migraine headache and central sensitization phenomena in patients with migraine without aura: a study of laser evoked potentials. Neurosci Lett. 2004;363:272–275.|||Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. London: Academic Press; 2007.|||Fu R, Brey WW, Shetty K, et al. Ultra-wide bore 900 MHz high-resolution NMR at the National High Magnetic Field Laboratory. J Magn Reson. 2005;177:1–8.|||Hines ML, Carnevale NT. The NEURON simulation environment. Neural Comput. 1997;9:1179–1209.|||Migliore M, Hoffman DA, Magee JC, et al. Role of an A-type K+ conductance in the back-propagation of action potentials in the dendrites of hippocampal pyramidal neurons. J Comput Neurosci. 1999;7:5–15.|||Canavier CC, Landry RS. An increase in AMPA and a decrease in SK conductance increase burst firing by different mechanisms in a model of a dopamine neuron in vivo. J Neurophysiol. 2006;96:2549–2563.|||Christensen JD, Barrere BJ, Boada FE, et al. Quantitative tissue sodium concentration mapping of normal rat brain. Magn Reson Med. 1996;36:83–89.|||Ouwerkerk R, Bleich KB, Gillen JS, et al. Tissue sodium concentration in human brain tumors as measured with 23Na MR imaging. Radiology. 2003;227:529–537.|||Arakaki X, Foster H, Su L, et al. Extracellular sodium modulates the excitability of cultured hippocampal pyramidal cells. Brain Res. In press.|||Shen KZ, Johnson SW. Sodium pump evokes high density pump currents in rat midbrain dopamine neurons. J Physiol. 1998;512(Pt 2):449–457.|||Wang HY, Huang RC. Diurnal modulation of the Na+/K+-ATPase and spontaneous firing in the rat retinorecipient clock neurons. J Neurophysiol. 2004;92:2295–2301.|||Despa S, Bers DM. Functional analysis of Na+/K+-ATPase isoform distribution in rat ventricular myocytes. Am J Physiol Cell Physiol. 2007;293:C321–C327.|||Dobretsov M, Hastings SL, Stimers JR. Functional Na+/K+ pump in rat dorsal root ganglia neurons. Neuroscience. 1999;93:723–729.|||Mogil JS. Animal models of pain: progress and challenges. Nat Rev Neurosci. 2009;10:283–294.|||Tassorelli C, Blandini F, Greco R, et al. Nitroglycerin enhances cGMP expression in specific neuronal and cerebrovascular structures of the rat brain. J Chem Neuroanat. 2004;27:23–32.|||Levy D, Burstein R, Kainz V, et al. Mast cell degranulation activates a pain pathway underlying migraine headache. Pain. 2007;130:166–176.|||Lance JW. Fifty years of migraine research. Aust N Z J Med. 1988;18:311–317.|||Harrington MG, Fonteh AN, Arakaki X, et al. Capillary endothelial Na(+), K(+), ATPase transporter homeostasis and a new theory for migraine pathophysiology. Headache. 2010;50:459–478.|||Wetzel RK, Sweadner KJ. Immunocytochemical localization of NaK-ATPase isoforms in the rat and mouse ocular ciliary epithelium. Invest Ophthalmol Vis Sci. 2001;42:763–769.|||Greco R, Meazza C, Mangione AS, et al. Temporal profile of vascular changes induced by systemic nitroglycerin in the meningeal and cortical districts. Cephalalgia. 2011;31:190–198.|||Christiansen I, Iversen HK, Olesen J, et al. Nitric oxideinduced headache may arise from extracerebral arteries as judged from tolerance to isosorbide-5-mononitrate. J Headache Pain. 2008;9:215–220.|||Behrends S, Knyihar-Csillik E, Kempfert J, et al. Glyceryl trinitrate treatment up-regulates soluble guanylyl cyclase in rat dura mater. Neuroreport. 2001;12:3993–3996.|||Pontiggia L, Winterhalter K, Gloor SM. Inhibition of Na,K-ATPase activity by cGMP is isoform-specific in brain endothelial cells. FEBS Lett. 1998;436:466–470.|||McKee M, Scavone C, Nathanson JA. Nitric oxide, cGMP, and hormone regulation of active odium transport. Proc Natl Acad Sci U S A. 1994;91:12056–12060.|||Atkinson IC, Sonstegaard R, Pliskin NH, et al. Vital signs and cognitive function are not affected by 23- sodium and 17-oxygen magnetic resonance imaging of the human brain at 9. 4 T. J Magn Reson Imaging. 2010;32:82–87.|||Inglese M, Madelin G, Oesingmann N, et al. Brain tissue sodium concentration in multiple sclerosis: a sodium imaging study at 3 tesla. Brain. 2010;133:847–857.