Altered brainstem auditory evoked potentials in a rat central sensitization model are similar to those in migraine.
Authors:
Journal: Brain research
Publication Type: Journal Article
Date: 2014
DOI: NIHMS580061
ID: 24680742
Abstract
Migraine symptoms often include auditory discomfort. Nitroglycerin (NTG)-triggered central sensitization (CS) provides a rodent model of migraine, but auditory brainstem pathways have not yet been studied in this example. Our objective was to examine brainstem auditory evoked potentials (BAEPs) in rat CS as a measure of possible auditory abnormalities. We used four subdermal electrodes to record horizontal (h) and vertical (v) dipole channel BAEPs before and after injection of NTG or saline. We measured the peak latencies (PLs), interpeak latencies (IPLs), and amplitudes for detectable waveforms evoked by 8, 16, or 32 kHz auditory stimulation. At 8 kHz stimulation, vertical channel positive PLs of waves 4, 5, and 6 (vP4, vP5, and vP6), and related IPLs from earlier negative or positive peaks (vN1-vP4, vN1-vP5, vN1-vP6; vP3-vP4, vP3-vP6) increased significantly 2h after NTG injection compared to the saline group. However, BAEP peak amplitudes at all frequencies, PLs and IPLs from the horizontal channel at all frequencies, and the vertical channel stimulated at 16 and 32 kHz showed no significant/consistent change. For the first time in the rat CS model, we show that BAEP PLs and IPLs ranging from putative bilateral medial superior olivary nuclei (P4) to the more rostral structures such as the medial geniculate body (P6) were prolonged 2h after NTG administration. These BAEP alterations could reflect changes in neurotransmitters and/or hypoperfusion in the midbrain. The similarity of our results with previous human studies further validates the rodent CS model for future migraine research.
Chemical List
- Vasodilator Agents|||Nitroglycerin
Reference List
- Acioly MA, Carvalho CH, Koerbel A, Lowenheim H, Tatagiba M, Gharabaghi A. Intraoperative brainstem auditory evoked potential observations after trigeminocardiac reflex during cerebellopontine angle surgery. J. Neurosurg. Anesthesiol. 2010;22:347–353.|||Afra J, Proietti CA, Sandor PS, Schoenen J. Comparison of visual and auditory evoked cortical potentials in migraine patients between attacks. Clin. Neurophysiol. 2000;111:1124–1129.|||Afridi SK, Matharu MS, Lee L, Kaube H, Friston KJ, Frackowiak RS, Goadsby PJ. A PET study exploring the laterality of brainstem activation in migraine using glyceryl trinitrate. Brain. 2005;128:932–939.|||Ambrosini A, De P, V, Afra J, Sandor PS, Schoenen J. Reduced gating of middle-latency auditory evoked potentials (P50) in migraine patients: another indication of abnormal sensory processing? Neurosci. Lett. 2001;306:132–134.|||Ambrosini A, Rossi P, De P, V, Pierelli F, Schoenen J. Lack of habituation causes high intensity dependence of auditory evoked cortical potentials in migraine. Brain. 2003;126:2009–2015.|||Antonelli MC, Costa LM, Mercado R, Hernandez R. Serotonin modulation of low-affinity ouabain binding in rat brain determined by quantitative autoradiography. Neurochem. Res. 1998;23:939–944.|||Arakaki X, McCleary P, Techy M, Chiang J, Kuo L, Fonteh AN, Armstrong B, Levy D, Harrington MG. Na,K-ATPase alpha isoforms at the blood-cerebrospinal fluid-trigeminal nerve and blood-retina interfaces in the rat. Fluids Barriers. CNS. 2013;10:14.|||Ashkenazi A, Mushtaq A, Yang I, Oshinsky ML. Ictal and interictal phonophobia in migraine-a quantitative controlled study. Cephalalgia. 2009;29:1042–1048.|||Balogh A, Wedekind C, Klug N. Does wave VI of BAEP pertain to the prognosis of coma? Neurophysiol. Clin. 2001;31:406–411.|||Bank J. Brainstem auditory evoked potentials in migraine after Rausedyl provocation. Cephalalgia. 1991;11:277–279.|||Bates EA, Nikai T, Brennan KC, Fu YH, Charles AC, Basbaum AI, Ptacek LJ, Ahn AH. Sumatriptan alleviates nitroglycerin-induced mechanical and thermal allodynia in mice. Cephalalgia. 2010;30:170–178.|||Bender R, Lange S. Adjusting for multiple testing--when and how? J. Clin. Epidemiol. 2001;54:343–349.|||Bhargava VK, McKean CM. Role of 5-hydroxytryptamine in the modulation of acoustic brainstem (far-field) potentials. Neuropharmacology. 1977;16:447–449.|||Bhargava VK, Salamy A, Mckean CM. Effect of cholinergic drugs on the brainstem auditory evoked responses (far-field) in rats. Neuroscience. 1978;3:821–826.|||Bjork M, Sand T. Quantitative EEG power and asymmetry increase 36 h before a migraine attack. Cephalalgia. 2008;28:960–968.|||Buse D, Manack A, Serrano D, Reed M, Varon S, Turkel C, Lipton R. Headache impact of chronic and episodic migraine: results from the American Migraine Prevalence and Prevention study. Headache. 2012;52:3–17.|||Bussone G, Sinatra MG, Boiardi A, La ML, Frediani F, Cocchini F. Brainstem auditory evoked potentials in migraine patients in basal conditions and after chronic flunarizine treatment. Cephalalgia. 1985;5(Suppl 2):177–180.|||Charles A, Brennan KC. The neurobiology of migraine. Handb. Clin. Neurol. 2010;97:99–108.|||Christiansen I, Thomsen LL, Daugaard D, Ulrich V, Olesen J. Glyceryl trinitrate induces attacks of migraine without aura in sufferers of migraine with aura. Cephalalgia. 1999;19:660–667.|||Church MW, Gritzke R. Effects of ketamine anesthesia on the rat brain-stem auditory evoked potential as a function of dose and stimulus intensity. Electroencephalogr. Clin. Neurophysiol. 1987;67:570–583.|||Coppola G, Ambrosini A, Di CL, Magis D, Fumal A, Gerard P, Pierelli F, Schoenen J. Interictal abnormalities of gamma band activity in visual evoked responses in migraine: an indication of thalamocortical dysrhythmia? Cephalalgia. 2007;27:1360–1367.|||Coppola G, Parisi V, Di LC, Serrao M, Magis D, Schoenen J, Pierelli F. Lateral inhibition in visual cortex of migraine patients between attacks. J. Headache Pain. 2013;14:20.|||Coppola G, Pierelli F, Schoenen J. Habituation and migraine. Neurobiol. Learn. Mem. 2009;92:249–259.|||Coppola G, Vandenheede M, Di CL, Ambrosini A, Fumal A, De P, V, Schoenen J. Somatosensory evoked high-frequency oscillations reflecting thalamo-cortical activity are decreased in migraine patients between attacks. Brain. 2005;128:98–103.|||Dash AK, Panda N, Khandelwal G, Lal V, Mann SS. Migraine and audiovestibular dysfunction: is there a correlation? Am. J. Otolaryngol. 2008;29:295–299.|||Davis SL, Aminoff MJ, Berg BO. Brain-stem auditory evoked potentials in children with brain-stem or cerebellar dysfunction. Arch. Neurol. 1985;42:156–160.|||Demarquay G, Lothe A, Royet JP, Costes N, Mick G, Mauguiere F, Ryvlin P. Brainstem changes in 5-HT1A receptor availability during migraine attack. Cephalalgia. 2011;31:84–94.|||Drake ME, Jr., Pakalnis A, Padamadan H, Hietter SA. Auditory evoked potentials in vertebrobasilar transient ischemic attacks. Clin. Electroencephalogr. 1990;21:96–100.|||Firat Y, Ozturan O, Bicak U, Yakinci C, Akarcay M. Auditory brainstem response in pediatric migraine: during the attack and asymptomatic period. Int. J. Pediatr. Otorhinolaryngol. 2006;70:1431–1438.|||Galbraith G, Waschek J, Armstrong B, Edmond J, Lopez I, Liu W, Kurtz I. Murine auditory brainstem evoked response: putative two-channel differentiation of peripheral and central neural pathways. J. Neurosci. Methods. 2006;153:214–220.|||Goadsby PJ, Charbit AR, Andreou AP, Akerman S, Holland PR. Neurobiology of migraine. Neuroscience. 2009;161:327–341.|||Hamed SA, Youssef AH, Elattar AM. Assessment of cochlear and auditory pathways in patients with migraine. Am. J. Otolaryngol. 2012;33:385–394.|||Harrington MG, Chekmenev EY, Schepkin V, Fonteh AN, Arakaki X. Sodium MRI in a rat migraine model and a NEURON simulation study support a role for sodium in migraine. Cephalalgia. 2011;31:1254–1265.|||Harrington MG, Fonteh AN, Arakaki X, Cowan RP, Ecke LE, Foster H, Huhmer AF, Biringer RG. Capillary endothelial Na(+), K(+), ATPase transporter homeostasis and a new theory for migraine pathophysiology. Headache. 2010;50:459–478.|||Henry KR. Auditory brainstem volume-conducted responses: origins in the laboratory mouse. J. Am. Aud. Soc. 1979;4:173–178.|||Janssen R, Hetzler BE, Creason JP, Dyer RS. Differential impact of hypothermia and pentobarbital on brain-stem auditory evoked responses. Electroencephalogr. Clin. Neurophysiol. 1991;80:412–421.|||Jirka JH, Duckrow RB, Kendig JW, Maisels MJ. Effect of bilirubin on brainstem auditory evoked potentials in the asphyxiated rat. Pediatr. Res. 1985;19:556–560.|||Kochar K, Srivastava T, Maurya RK, Jain R, Aggarwal P. Visual evoked potential & brainstem auditory evoked potentials in acute attack & after the attack of migraine. Electromyogr. Clin. Neurophysiol. 2002;42:175–179.|||Kropp P, Gerber WD. Is increased amplitude of contingent negative variation in migraine due to cortical hyperactivity or to reduced habituation? Cephalalgia. 1993;13:37–41.|||Liu DS, Gao W, Lin WW, Hao YY, Zhong LH, Li W, Inoguchi T, Takayanagi R. Effects of the Chinese Yi-Qi-Bu-Shen Recipe extract on brainstem auditory evoked potential in rats with diabetes. J. Ethnopharmacol. 2011;137:414–420.|||Llinas RR, Steriade M. Bursting of thalamic neurons and states of vigilance. J. Neurophysiol. 2006;95:3297–3308.|||Ma Z, Wang SJ, Li CF, Ma XX, Gu T. Increased metabolite concentration in migraine rat model by proton MR spectroscopy in vivo and ex vivo. Neurol. Sci. 2008;29:337–342.|||Markovics A, Kormos V, Gaszner B, Lashgarara A, Szoke E, Sandor K, Szabadfi K, Tuka B, Tajti J, Szolcsanyi J, Pinter E, Hashimoto H, Kun J, Reglodi D, Helyes Z. Pituitary adenylate cyclase-activating polypeptide plays a key role in nitroglycerol-induced trigeminovascular activation in mice. Neurobiol. Dis. 2012;45:633–644.|||Martin LA, Goldowitz D, Mittleman G. Sustained attention in the mouse: a study of the relationship with the cerebellum. Behav. Neurosci. 2006;120:477–481.|||Miyazato H, Skinner RD, Crews T, Williams K, Garcia-Rill E. Serotonergic modulation of the P13 midlatency auditory evoked potential in the rat. Brain Res. Bull. 2000;51:387–391.|||Morales-Martinez JJ, Gonzalez-Pina R, Alfaro-Rodriguez A. Brainstem auditory response in the reserpinized rat. Proc. West Pharmacol. Soc. 2002;45:68–70.|||Mueller LL. Diagnosing and managing migraine headache. J. Am. Osteopath. Assoc. 2007;107:ES10–ES16.|||Noseda R, Burstein R. Migraine pathophysiology: anatomy of the trigeminovascular pathway and associated neurological symptoms, CSD, sensitization and modulation of pain. Pain. 2013|||Olesen J. Nitric oxide-related drug targets in headache. Neurotherapeutics. 2010;7:183–190.|||Oshinsky ML, Luo J. Neurochemistry of trigeminal activation in an animal model of migraine. Headache. 2006;46(Suppl 1):S39–S44.|||Parham K, Sun X-M, Kim DO. Noninvasive assessment of auditory function in mice: auditory brainstem response and distortion product otoacoustic emission. In: Willott JF, editor. Handbook of mouse auditory research: from behavior to molecular biology. CRC Press; Boca Raton, FL: 2001. pp. 37–58.|||Quian QR. evoked potentials. In: Webster John G., editor. Encyclopedia of Medical devices and implementation. John Wiley & Sons, Inc.; 2006. pp. 233–246.|||Ramachandran R, Bhatt DK, Ploug KB, Olesen J, Jansen-Olesen I, Hay-Schmidt A, Gupta S. A naturalistic glyceryl trinitrate infusion migraine model in the rat. Cephalalgia. 2012;32:73–84.|||Read SJ, Manning P, McNeil CJ, Hunter AJ, Parsons AA. Effects of sumatriptan on nitric oxide and superoxide balance during glyceryl trinitrate infusion in the rat. Implications for antimigraine mechanisms. Brain Res. 1999;847:1–8.|||Restuccia D, Vollono C, Piero ID, Martucci L, Zanini S. Different levels of cortical excitability reflect clinical fluctuations in migraine. Cephalalgia. 2013;33:1035–1047.|||Rice AC, Chiou VL, Zuckoff SB, Shapiro SM. Profile of minocycline neuroprotection in bilirubin-induced auditory system dysfunction. Brain Res. 2011;1368:290–298.|||Sanchez del Rio M, Reuter U, Moskowitz MA. Central and peripheral mechanisms of migraine. Funct. Neurol. 2000;15(Suppl 3):157–162.|||Sand T, Vingen JV. Visual, long-latency auditory and brainstem auditory evoked potentials in migraine: relation to pattern size, stimulus intensity, sound and light discomfort thresholds and pre-attack state. Cephalalgia. 2000;20:804–820.|||Sand T, Zhitniy N, White LR, Stovner LJ. Brainstem auditory-evoked potential habituation and intensity-dependence related to serotonin metabolism in migraine: a longitudinal study. Clin. Neurophysiol. 2008;119:1190–1200.|||Santarelli R, Arslan E, Carraro L, Conti G, Capello M, Plourde G. Effects of isoflurane on the auditory brainstem responses and middle latency responses of rats. Acta Otolaryngol. 2003;123:176–181.|||Scruggs JL, Patel S, Bubser M, Deutch AY. DOI-Induced activation of the cortex: dependence on 5-HT2A heteroceptors on thalamocortical glutamatergic neurons. J. Neurosci. 2000;20:8846–8852.|||Seidl R, Hauser E, Bernert G, Marx M, Freilinger M, Lubec G. Auditory evoked potentials in young patients with Down syndrome. Event-related potentials (P3) and histaminergic system. Brain Res. Cogn Brain Res. 1997;5:301–309.|||Shapiro SM, Moller AR, Shiu GK. Brain-stem auditory evoked potentials in rats with high-dose pentobarbital. Electroencephalogr. Clin. Neurophysiol. 1984;58:266–276.|||Shaw NA. The auditory evoked potential in the rat--a review. Prog. Neurobiol. 1988;31:19–45.|||Stienen PJ, van OH, van den Bos R, de Groot HN, Hellebrekers LJ. Vertex-recorded, rather than primary somatosensory cortex-recorded, somatosensory-evoked potentials signal unpleasantness of noxious stimuli in the rat. Brain Res. Bull. 2006;70:203–212.|||Stone JL, Calderon-Arnulphi M, Watson KS, Patel K, Mander NS, Suss N, Fino J, Hughes JR. Brainstem auditory evoked potentials--a review and modified studies in healthy subjects. J. Clin. Neurophysiol. 2009;26:167–175.|||Stone JL, Fino J, Patel K, Calderon-Arnulphi M, Suss N, Hughes JR. Modified brain stem auditory evoked potentials in patients with intracranial mass lesions. Clin. EEG. Neurosci. 2012;43:291–302.|||Tasman A, Hahn T, Maiste A. Menstrual cycle synchronized changes in brain stem auditory evoked potentials and visual evoked potentials. Biol. Psychiatry. 1999;45:1516–1519.|||Tassorelli C, Blandini F, Costa A, Preza E, Nappi G. Nitroglycerin-induced activation of monoaminergic transmission in the rat. Cephalalgia. 2002;22:226–232.|||Tassorelli C, Greco R, Morazzoni P, Riva A, Sandrini G, Nappi G. Parthenolide is the component of tanacetum parthenium that inhibits nitroglycerin-induced Fos activation: studies in an animal model of migraine. Cephalalgia. 2005;25:612–621.|||Tassorelli C, Greco R, Wang D, Sandrini M, Sandrini G, Nappi G. Nitroglycerin induces hyperalgesia in rats--a time-course study. Eur. J. Pharmacol. 2003;464:159–162.|||Tassorelli C, Joseph SA, Nappi G. Central effects of nitroglycerin in the rat: new perspectives in migraine research. Funct. Neurol. 1996;11:219–235.|||Torres-Escalante JL, Barral JA, Ibarra-Villa MD, Perez-Burgos A, Gongora-Alfaro JL, Pineda JC. 5-HT1A, 5-HT2, and GABAB receptors interact to modulate neurotransmitter release probability in layer 2/3 somatosensory rat cortex as evaluated by the paired pulse protocol. J. Neurosci. Res. 2004;78:268–278.|||Unay B, Ulas UH, Karaoglu B, Eroglu E, Akin R, Gokcay E. Visual and brainstem auditory evoked potentials in children with headache. Pediatr. Int. 2008;50:620–623.|||Vingen JV, Pareja JA, Storen O, White LR, Stovner LJ. Phonophobia in migraine. Cephalalgia. 1998;18:243–249.|||Wang W, Schoenen J. Interictal potentiation of passive “oddball” auditory event-related potentials in migraine. Cephalalgia. 1998;18:261–265.|||Weiller C, May A, Limmroth V, Juptner M, Kaube H, Schayck RV, Coenen HH, Diener HC. Brain stem activation in spontaneous human migraine attacks. Nat. Med. 1995;1:658–660.|||Woodhouse A, Drummond PD. Mechanisms of increased sensitivity to noise and light in migraine headache. Cephalalgia. 1993;13:417–421.|||Yang Y, DeWeese MR, Otazu GH, Zador AM. Millisecond-scale differences in neural activity in auditory cortex can drive decisions. Nat. Neurosci. 2008;11:1262–1263.|||Yang Y, Zador AM. Differences in sensitivity to neural timing among cortical areas. J. Neurosci. 2012;32:15142–15147.