Human cerebrospinal fluid fatty acid levels differ between supernatant fluid and brain-derived nanoparticle fractions, and are a
Authors:
Journal: PloS one
Publication Type: Comparative Study
Date: 2014
DOI: PMC4067345
ID: 24956173
Abstract
Although saturated (SAFA), monounsaturated (MUFA), and polyunsaturated (PUFA) fatty acids are important structural components of neuronal membranes and precursors of signaling molecules, knowledge of their metabolism in Alzheimer's disease (AD) is limited. Based on recent discovery that lipids in cerebrospinal fluid (CSF) are distributed in both brain-derived nanoparticles (NP) and supernatant fluid (SF), we hypothesized that fatty acid (FA) abundance and distribution into these compartments is altered in early AD pathology.
Chemical List
- Fatty Acids
Reference List
- Tanzi RE (2012) The genetics of Alzheimer disease. Cold Spring Harb Perspect Med 2. cshperspect.a006296 [pii];10.1101/cshperspect.a006296 [doi].|||Anstey KJ, Cherbuin N, Herath PM, Qiu C, Kuller LH, et al. (2014) A Self-Report Risk Index to Predict Occurrence of Dementia in Three Independent Cohorts of Older Adults: The ANU-ADRI. PLoS One 9: e86141 10.1371/journal.pone.0086141 [doi];PONE-D-13-23392 [pii].|||Selkoe DJ (2000) Toward a comprehensive theory for Alzheimer's disease. Hypothesis: Alzheimer's disease is caused by the cerebral accumulation and cytotoxicity of amyloid beta-protein. Ann N Y Acad Sci 924: 17–25.|||Musiek ES, Holtzman DM (2012) Origins of Alzheimer's disease: reconciling cerebrospinal fluid biomarker and neuropathology data regarding the temporal sequence of amyloid-beta and tau involvement. Curr Opin Neurol 25: 715–720.|||Poojari C, Strodel B (2013) Stability of transmembrane amyloid beta-peptide and membrane integrity tested by molecular modeling of site-specific Abeta42 mutations. PLoS One 8: e78399 10.1371/journal.pone.0078399 [doi];PONE-D-13-18379 [pii].|||Than ME, Coburger I, Hoefgen S (2014) The structural biology of the amyloid precursor protein. Biol Chem. 10.1515/hsz-2013-0280 [doi];/j/bchm.just-accepted/hsz-2013-0280/hsz-2013–0280.xml [pii].|||Hulbert AJ (2010) Metabolism and longevity: is there a role for membrane fatty acids? Integr Comp Biol 50: 808–817.|||O'Brien JS, Sampson EL (1965) Lipid composition of the normal human brain: gray matter, white matter, and myelin. J Lipid Res 6: 537–544.|||Sastry PS (1985) Lipids of nervous tissue: composition and metabolism. Prog Lipid Res 24: 69–176.|||Harrington MG, Fonteh AN, Oborina E, Liao P, Cowan RP, et al. (2009) The morphology and biochemistry of nanostructures provide evidence for synthesis and signaling functions in human cerebrospinal fluid. Cerebrospinal Fluid Res 6: 10 1743-8454-6-10 [pii];10.1186/1743-8454-6-10 [doi].|||Fonteh AN, Chiang J, Cipolla M, Hale J, Diallo F, et al. (2013) Alterations in cerebrospinal fluid glycerophospholipids and phospholipase A2 activity in Alzheimer's disease. J Lipid Res 54: 2884–2897.|||Akers JC, Ramakrishnan V, Kim R, Skog J, Nakano I, et al. (2013) MiR-21 in the extracellular vesicles (EVs) of cerebrospinal fluid (CSF): a platform for glioblastoma biomarker development. PLoS One 8: e78115 10.1371/journal.pone.0078115 [doi];PONE-D-13-18843 [pii].|||Innis SM (2007) Fatty acids and early human development. Early Hum Dev 83: 761–766.|||Fonteh AN, Harrington RJ, Huhmer AF, Biringer RG, Riggins JN, et al. (2006) Identification of disease markers in human cerebrospinal fluid using lipidomic and proteomic methods. Dis Markers 22: 39–64.|||Piomelli D, Astarita G, Rapaka R (2007) A neuroscientist's guide to lipidomics. Nat Rev Neurosci 8: 743–754.|||Bauer I, Hughes M, Rowsell R, Cockerell R, Pipingas A, et al... (2014) Omega-3 supplementation improves cognition and modifies brain activation in young adults. Hum Psychopharmacol. 10.1002/hup.2379 [doi].|||Cederholm T, Salem N Jr, Palmblad J (2013) omega-3 fatty acids in the prevention of cognitive decline in humans. Adv Nutr 4: 672–676.|||Dacks PA, Shineman DW, Fillit HM (2013) Current evidence for the clinical use of long-chain polyunsaturated n-3 fatty acids to prevent age-related cognitive decline and Alzheimer's disease. J Nutr Health Aging 17: 240–251.|||Sonnino S, Aureli M, Grassi S, Mauri L, Prioni S, et al... (2013) Lipid Rafts in Neurodegeneration and Neuroprotection. Mol Neurobiol. 10.1007/s12035-013-8614-4 [doi].|||Marin R, Rojo JA, Fabelo N, Fernandez CE, Diaz M (2013) Lipid raft disarrangement as a result of neuropathological progresses: a novel strategy for early diagnosis? Neuroscience 245: 26–39.|||Martin V, Fabelo N, Santpere G, Puig B, Marin R, et al. (2010) Lipid alterations in lipid rafts from Alzheimer's disease human brain cortex. J Alzheimers Dis 19: 489–502.|||Yang X, Sheng W, Sun GY, Lee JC (2011) Effects of fatty acid unsaturation numbers on membrane fluidity and alpha-secretase-dependent amyloid precursor protein processing. Neurochem Int 58: 321–329.|||Zhao Y, Calon F, Julien C, Winkler JW, Petasis NA, et al. (2011) Docosahexaenoic acid-derived neuroprotectin D1 induces neuronal survival via secretase- and PPARgamma-mediated mechanisms in Alzheimer's disease models. PLoS One 6: e15816 10.1371/journal.pone.0015816 [doi].|||Serhan CN, Chiang N (2013) Resolution phase lipid mediators of inflammation: agonists of resolution. Curr Opin Pharmacol 13: 632–640.|||Cudaback E, Jorstad NL, Yang Y, Montine TJ, Keene CD (2014) Therapeutic implications of the prostaglandin pathway in Alzheimer's disease. Biochem Pharmacol. S0006-2952(13)00798-3 [pii];10.1016/j.bcp.2013.12.014 [doi].|||Galasko D, Montine TJ (2010) Biomarkers of oxidative damage and inflammation in Alzheimer's disease. Biomark Med 4: 27–36.|||Bazan NG (2009) Neuroprotectin D1-mediated anti-inflammatory and survival signaling in stroke, retinal degenerations, and Alzheimer's disease. J Lipid Res 50 Suppl: S400–S405|||Bhattacharyya R, Barren C, Kovacs DM (2013) Palmitoylation of amyloid precursor protein regulates amyloidogenic processing in lipid rafts. J Neurosci 33: 11169–11183.|||Harrington MG, Chiang J, Pogoda JM, Gomez M, Thomas K, et al. (2013) Executive function changes before memory in preclinical Alzheimer's pathology: a prospective, cross-sectional, case control study. PLoS One 8: e79378 10.1371/journal.pone.0079378 [doi];PONE-D-13-28931 [pii].|||Petersen RC (2004) Mild cognitive impairment as a diagnostic entity. J Intern Med 256: 183–194.|||McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, et al. (2011) The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 7: 263–269.|||Saunders AM, Strittmatter WJ, Schmechel D, George-Hyslop PH, Pericak-Vance MA, et al. (1993) Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer's disease. Neurology 43: 1467–1472.|||Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37: 911–917.|||Aveldano MI, Horrocks LA (1983) Quantitative release of fatty acids from lipids by a simple hydrolysis procedure. J Lipid Res 24: 1101–1105.|||Quehenberger O, Armando A, Dumlao D, Stephens DL, Dennis EA (2008) Lipidomics analysis of essential fatty acids in macrophages. Prostaglandins Leukot Essent Fatty Acids 79: 123–129.|||Roe CM, Mintun MA, D'Angelo G, Xiong C, Grant EA, et al. (2008) Alzheimer disease and cognitive reserve: variation of education effect with carbon 11-labeled Pittsburgh Compound B uptake. Arch Neurol 65: 1467–1471.|||Gupta S, Knight AG, Gupta S, Keller JN, Bruce-Keller AJ (2012) Saturated long-chain fatty acids activate inflammatory signaling in astrocytes. J Neurochem 120: 1060–1071.|||Bruce-Keller AJ, White CL, Gupta S, Knight AG, Pistell PJ, et al. (2010) NOX activity in brain aging: exacerbation by high fat diet. Free Radic Biol Med 49: 22–30.|||Farias SE, Heidenreich KA, Wohlauer MV, Murphy RC, Moore EE (2011) Lipid mediators in cerebral spinal fluid of traumatic brain injured patients. J Trauma 71: 1211–1218.|||Long EK, Picklo MJ Sr (2010) Trans-4-hydroxy-2-hexenal, a product of n-3 fatty acid peroxidation: make some room HNE. Free Radic Biol Med 49: 1–8.|||Song WL, Lawson JA, Reilly D, Rokach J, Chang CT, et al. (2008) Neurofurans, novel indices of oxidant stress derived from docosahexaenoic acid. J Biol Chem 283: 6–16.|||Montine KS, Quinn JF, Zhang J, Fessel JP, Roberts LJ, et al. (2004) Isoprostanes and related products of lipid peroxidation in neurodegenerative diseases. Chem Phys Lipids 128: 117–124.|||Bazan NG (2013) The docosanoid neuroprotectin D1 induces homeostatic regulation of neuroinflammation and cell survival. Prostaglandins Leukot Essent Fatty Acids 88: 127–129.|||Gupta S, Knight AG, Gupta S, Keller JN, Bruce-Keller AJ (2012) Saturated long-chain fatty acids activate inflammatory signaling in astrocytes. J Neurochem 120: 1060–1071.|||Moulle VS, Cansell C, Luquet S, Cruciani-Guglielmacci C (2012) The multiple roles of fatty acid handling proteins in brain. Front Physiol 3: 385 10.3389/fphys.2012.00385 [doi].|||Liu RZ, Mita R, Beaulieu M, Gao Z, Godbout R (2010) Fatty acid binding proteins in brain development and disease. Int J Dev Biol 54: 1229–1239.|||Ishimura S, Furuhashi M, Watanabe Y, Hoshina K, Fuseya T, et al. (2013) Circulating levels of fatty acid-binding protein family and metabolic phenotype in the general population. PLoS One 8: e81318 10.1371/journal.pone.0081318 [doi];PONE-D-13-35765 [pii].|||Desikan RS, Thompson WK, Holland D, Hess CP, Brewer JB, et al. (2013) Heart fatty acid binding protein and Abeta-associated Alzheimer's neurodegeneration. Mol Neurodegener 8: 39 1750-1326-8-39 [pii];10.1186/1750-1326-8-39 [doi].|||Boneva NB, Kikuchi M, Minabe Y, Yamashima T (2011) Neuroprotective and ameliorative actions of polyunsaturated fatty acids against neuronal diseases: implication of fatty acid-binding proteins (FABP) and G protein-coupled receptor 40 (GPR40) in adult neurogenesis. J Pharmacol Sci 116: 163–172.|||Pelsers MM, Hanhoff T, Van d, V, Arts B, Peters M, et al. (2004) Brain- and heart-type fatty acid-binding proteins in the brain: tissue distribution and clinical utility. Clin Chem 50: 1568–1575.|||Moulle VS, Picard A, Le FC, Levin BE, Magnan C (2014) Lipid sensing in the brain and regulation of energy balance. Diabetes Metab 40: 29–33.|||Milligan G, Ulven T, Murdoch H, Hudson BD (2014) G-protein-coupled receptors for free fatty acids: nutritional and therapeutic targets. Br J Nutr1–5. S0007114513002249 [pii];10.1017/S0007114513002249 [doi].|||Yamada D, Takeo J, Koppensteiner P, Wada K, Sekiguchi M (2014) Modulation of Fear Memory by Dietary Polyunsaturated Fatty Acids via Cannabinoid Receptors. Neuropsychopharmacology. npp201432 [pii];10.1038/npp.2014.32 [doi].|||Agrawal R, Tyagi E, Vergnes L, Reue K, Gomez-Pinilla F (2013) Coupling energy homeostasis with a mechanism to support plasticity in brain trauma. Biochim Biophys Acta 1842: 535–546.|||Otaegui-Arrazola A, Amiano P, Elbusto A, Urdaneta E, Martinez-Lage P (2014) Diet, cognition, and Alzheimer's disease: food for thought. Eur J Nutr 53: 1–23.|||Chang CY, Ke DS, Chen JY (2009) Essential fatty acids and human brain. Acta Neurol Taiwan 18: 231–241.|||Titova OE, Ax E, Brooks SJ, Sjogren P, Cederholm T, et al. (2013) Mediterranean diet habits in older individuals: associations with cognitive functioning and brain volumes. Exp Gerontol 48: 1443–1448.|||Lourida I, Soni M, Thompson-Coon J, Purandare N, Lang IA, et al. (2013) Mediterranean diet, cognitive function, and dementia: a systematic review. Epidemiology 24: 479–489.|||Solfrizzi V, Frisardi V, Seripa D, Logroscino G, Imbimbo BP, et al. (2011) Mediterranean diet in predementia and dementia syndromes. Curr Alzheimer Res 8: 520–542.|||Rabiei Z, Bigdeli MR, Rasoulian B (2013) Neuroprotection of dietary virgin olive oil on brain lipidomics during stroke. Curr Neurovasc Res 10: 231–237.|||Amtul Z, Westaway D, Cechetto DF, Rozmahel RF (2011) Oleic acid ameliorates amyloidosis in cellular and mouse models of Alzheimer's disease. Brain Pathol 21: 321–329.|||Martinez M, Mougan I (1998) Fatty acid composition of human brain phospholipids during normal development. J Neurochem 71: 2528–2533.|||Pottala JV, Yaffe K, Robinson JG, Espeland MA, Wallace R, et al. (2014) Higher RBC EPA + DHA corresponds with larger total brain and hippocampal volumes: WHIMS-MRI Study. Neurology 82: 435–442.|||Bowman GL, Dodge HH, Mattek N, Barbey AK, Silbert LC, et al. (2013) Plasma omega-3 PUFA and white matter mediated executive decline in older adults. Front Aging Neurosci 5: 92 10.3389/fnagi.2013.00092 [doi].