Quick Links

ABCA1-Mediated Cholesterol Efflux Capacity to Cerebrospinal Fluid Is Reduced in Patients With Mild Cognitive Impairment and Alzh

Authors: Hussein N Yassine|||Qingru Feng|||Jiarong Chiang|||Larissa M Petrosspour|||Alfred N Fonteh|||Helena C Chui|||Michael G Harrington

Journal: Journal of the American Heart Association

Publication Type: Journal Article

Date: 2016

DOI: PMC4802440

ID: 26873692

Affiliations:

Affiliations

    Department of Medicine, University of Southern California, Los Angeles, CA hyassine@usc.edu.|||Department of Medicine, University of Southern California, Los Angeles, CA.|||Molecular Neurology Program, Huntington Medical Research Institutes, Pasadena, CA.|||Department of Medicine, University of Southern California, Los Angeles, CA Department of Neurology, University of Southern California, Los Angeles, CA.|||Molecular Neurology Program, Huntington Medical Research Institutes, Pasadena, CA.|||Department of Neurology, University of Southern California, Los Angeles, CA.|||Molecular Neurology Program, Huntington Medical Research Institutes, Pasadena, CA.

Abstract

Animal and human studies indicate that ABCA1-mediated cholesterol transport is important in Alzheimer's disease (AD). We hypothesized that the efficiency of cerebrospinal fluid (CSF) to facilitate ABCA1-mediated cholesterol efflux would be reduced in participants with mild cognitive impairment (MCI) or AD compared with cognitively healthy participants.


Chemical List

    ABCA1 protein, human|||ATP Binding Cassette Transporter 1|||Biomarkers|||Phosphatidylcholines|||Cholesterol

Reference List

    Diestschy J, Turley S. Cholesterol metabolism in the central nervous system during early development and in the mature animal. J Lipid Res. 2004;45:1375–1397.|||Martín MG, Pfrieger F, Dotti CG. Cholesterol in brain disease: sometimes determinant and frequently implicated. EMBO Rep. 2014;15:1036–1052.|||Bjorkhem I, Meaney S. Brain cholesterol: long secret life behind a barrier. Arterioscler Thromb Vasc Biol. 2004;24:806–815.||| Simpson JE, Ince PG, Minett T, Matthews FE, Heath PR, Shaw PJ, Goodall E, Garwood CJ, Ratcliffe LE, Brayne C, Rattray M, Wharton SB. Neuronal DNA damage response‐associated dysregulation of signalling pathways and cholesterol metabolism at the earliest stages of Alzheimer‐type pathology. Neuropathol Appl Neurobiol. 2015; doi: 10.1111/nan.12252. [Epub ahead of print].|||Gusareva ES, Carrasquillo MM, Bellenguez C, Cuyvers E, Colon S, Graff‐Radford NR, Petersen RC, Dickson DW, John JMM, Bessonov K. Genome‐wide association interaction analysis for Alzheimer's disease. Neurobiol Aging. 2014;35:2436–2443.|||Yancey PG, Bortnick AE, Kellner‐Weibel G, de la Llera‐Moya M, Phillips MC, Rothblat GH. Importance of different pathways of cellular cholesterol efflux. Arterioscler Thromb Vasc Biol. 2003;23:712–719.|||Koch S, Donarski N, Goetze K, Kreckel M, Stuerenburg H‐J, Buhmann C, Beisiegel U. Characterization of four lipoprotein classes in human cerebrospinal fluid. J Lipid Res. 2001;42:1143–1151.|||Demeester N, Castro G, Desrumaux C, De Geitere C, Fruchart J, Santens P, Mulleners E, Engelborghs S, De Deyn P, Vandekerckhove J. Characterization and functional studies of lipoproteins, lipid transfer proteins, and lecithin: cholesterol acyltransferase in CSF of normal individuals and patients with Alzheimer's disease. J Lipid Res. 2000;41:963–974.|||Kandimalla RJ, Wani WY, Anand R, Kaushal A, Prabhakar S, Grover VK, Bharadwaj N, Jain K, Gill KD. Apolipoprotein E levels in the cerebrospinal fluid of north Indian patients with Alzheimer's disease. Am J Alzheimers Dis Other Demen. 2013;28:258–262.|||Hu Y, Malone JP, Fagan AM, Townsend RR, Holtzman DM. Comparative proteomic analysis of intra‐and interindividual variation in human cerebrospinal fluid. Mol Cell Proteomics. 2005;4:2000–2009.|||Cruchaga C, Kauwe JS, Nowotny P, Bales K, Pickering EH, Mayo K, Bertelsen S, Hinrichs A, Fagan AM, Holtzman DM. Cerebrospinal fluid APOE levels: an endophenotype for genetic studies for Alzheimer's disease. Hum Mol Genet. 2012;21:4558–4571.|||Stein O, Vanderhoek J, Stein Y. Cholesterol content and sterol synthesis in human skin fibroblasts and rat aortic smooth muscle cells exposed to lipoprotein‐depleted serum and high density apolipoprotein/phospholipid mixtures. Biochim Biophys Acta. 1976;431:347–358.|||Zhao Y, Sparks DL, Marcel YL. Effect of the apolipoprotein A‐I and surface lipid composition of reconstituted discoidal HDL on cholesterol efflux from cultured fibroblasts. Biochemistry. 1996;35:16510–16518.|||Swaney JB. Membrane cholesterol uptake by recombinant lipoproteins. Chem Phys Lipids. 1985;37:317–327.|||Jian B, de la Llera‐Moya M, Royer L, Rothblat G, Francone O, Swaney JB. Modification of the cholesterol efflux properties of human serum by enrichment with phospholipid. J Lipid Res. 1997;38:734–744.|||Haidar B, Mott S, Boucher B, Lee CY, Marcil M, Genest J. Cellular cholesterol efflux is modulated by phospholipid‐derived signaling molecules in familial HDL deficiency/tangier disease fibroblasts. J Lipid Res. 2001;42:249–257.|||Fonteh AN, Chiang J, Cipolla M, Hale J, Diallo F, Chirino A, Arakaki X, Harrington MG. Alterations in cerebrospinal fluid glycerophospholipids and phospholipase A2 activity in Alzheimer's disease. J Lipid Res. 2013;54:2884–2897.|||Fonteh AN, Ormseth C, Chiang J, Cipolla M, Arakaki X, Harrington MG. Sphingolipid metabolism correlates with cerebrospinal fluid beta amyloid levels in Alzheimer's disease. PLoS One. 2015;10:e0125597.|||Harrington MG, Fonteh AN, Oborina E, Liao P, Cowan RP, McComb G, Chavez JN, Rush J, Biringer RG, Huhmer A. The morphology and biochemistry of nanostructures provide evidence for synthesis and signaling functions in human cerebrospinal fluid. Cerebrospinal Fluid Res. 2009;6:10.|||Cramer PE, Cirrito JR, Wesson DW, Lee CD, Karlo JC, Zinn AE, Casali BT, Restivo JL, Goebel WD, James MJ. ApoE‐directed therapeutics rapidly clear β‐amyloid and reverse deficits in AD mouse models. Science. 2012;335:1503–1506.|||Koldamova R, Staufenbiel M, Lefterov I. Lack of ABCA1 considerably decreases brain ApoE level and increases amyloid deposition in APP23 mice. J Biol Chem. 2005;280:43224–43235.|||Reynolds CA, Hong MG, Eriksson UK, Blennow K, Bennet AM, Johansson B, Malmberg B, Berg S, Wiklund F, Gatz M, Pedersen NL, Prince JA. A survey of ABCA1 sequence variation confirms association with dementia. Hum Mutat. 2009;30:1348–1354.|||Nordestgaard LT, Tybjærg‐Hansen A, Nordestgaard BG, Frikke‐Schmidt R. Loss‐of‐function mutation in abca1 and risk of Alzheimer's disease and cerebrovascular disease. Alzheimers Dement. 2015;12:1430–1438.|||Harrington MG, Chiang J, Pogoda JM, Gomez M, Thomas K, Marion SD, Miller KJ, Siddarth P, Yi X, Zhou F, Lee S, Arakaki X, Cowan RP, Tran T, Charleswell C, Ross BD, Fonteh AN. Executive function changes before memory in preclinical Alzheimer's pathology: a prospective, cross‐sectional, case control study. PLoS One. 2013;8:e79378.|||Yassine HN, Belopolskaya A, Schall C, Stump CS, Lau SS, Reaven PD. Enhanced cholesterol efflux to HDL through the ABCA1 transporter in hypertriglyceridemia of type 2 diabetes. Metabolism. 2014;63:727–734.|||Shao B, Tang C, Sinha A, Mayer PS, Davenport GD, Brot N, Oda MN, Zhao X‐Q, Heinecke JW. Humans with atherosclerosis have impaired abca1 cholesterol efflux and enhanced high‐density lipoprotein oxidation by myeloperoxidase. Circ Res. 2014;114:1733–1742.|||Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911–917.|||Lambert J‐C, Ibrahim‐Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, Jun G, DeStefano AL, Bis JC, Beecham GW. Meta‐analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nat Genet. 2013;12:1452–1458.|||Kolsch H, Lutjohann D, Ludwig M, Schulte A, Ptok U, Jessen F, von Bergmann K, Rao ML, Maier W, Heun R. Polymorphism in the cholesterol 24S‐hydroxylase gene is associated with Alzheimer's disease. Mol Psychiatry. 2002;7:899–902.|||Li L, Yin Z, Liu J, Li G, Wang Y, Yan J, Zhou H. CYP46A1 T/C polymorphism associated with the APOE epsilon4 allele increases the risk of Alzheimer's disease. J Neurol. 2013;260:1701–1708.|||Kolsch H, Lutjohann D, Jessen F, Popp J, Hentschel F, Kelemen P, Schmitz S, Maier W, Heun R. CYP46A1 variants influence Alzheimer's disease risk and brain cholesterol metabolism. Eur Psychiatry. 2009;24:183–190.|||Simons M, Keller P, De Strooper B, Beyreuther K, Dotti CG, Simons K. Cholesterol depletion inhibits the generation of β‐amyloid in hippocampal neurons. Proc Natl Acad Sci USA. 1998;95:6460–6464.|||Wolozin B. Cholesterol and the biology of Alzheimer's disease. Neuron. 2004;41:7–10.|||Lee CYD, Tse W, Smith JD, Landreth GE. Apolipoprotein E promotes β‐amyloid trafficking and degradation by modulating microglial cholesterol levels. J Biol Chem. 2012;287:2032–2044.|||Fitz NF, Cronican AA, Lefterov I, Koldamova R. Comment on “ApoE‐directed therapeutics rapidly clear beta‐amyloid and reverse deficits in AD mouse models”. Science. 2013;340:924‐c.|||Price AR, Xu G, Siemienski ZB, Smithson LA, Borchelt DR, Golde TE, Felsenstein KM. Comment on “ApoE‐directed therapeutics rapidly clear beta‐amyloid and reverse deficits in AD mouse models”. Science. 2013;340:924‐d.|||Tesseur I, Lo AC, Roberfroid A, Dietvorst S, Van Broeck B, Borgers M, Gijsen H, Moechars D, Mercken M, Kemp J, D'Hooge R, De Strooper B. Comment on “ApoE‐directed therapeutics rapidly clear beta‐amyloid and reverse deficits in AD mouse models”. Science. 2013;340:924‐e.|||Veeraraghavalu K, Zhang C, Miller S, Hefendehl JK, Rajapaksha TW, Ulrich J, Jucker M, Holtzman DM, Tanzi RE, Vassar R, Sisodia SS. Comment on “ApoE‐directed therapeutics rapidly clear beta‐amyloid and reverse deficits in AD mouse models”. Science. 2013;340:924‐f.|||Bassett CN, Neely MD, Sidell KR, Markesbery WR, Switt LL, Montine TJ. Cerebrospinal fluid lipoproteins are more vulnerable to oxidation in Alzheimer's disease and are neurotoxic when oxidized ex vivo. Lipids. 1999;34:1273–1280.|||Smith MA, Taneda S, Richey PL, Miyata S, Yan S‐D, Stern D, Sayre LM, Monnier VM, Perry G. Advanced Maillard reaction end products are associated with Alzheimer disease pathology. Proc Natl Acad Sci USA. 1994;91:5710–5714.|||Asztalos BF, de la Llera‐Moya M, Dallal GE, Horvath KV, Schaefer EJ, Rothblat GH. Differential effects of HDL subpopulations on cellular ABCA1‐and SR‐BI‐mediated cholesterol efflux. J Lipid Res. 2005;46:2246–2253.|||Mapstone M, Cheema AK, Fiandaca MS, Zhong X, Mhyre TR, MacArthur LH, Hall WJ, Fisher SG, Peterson DR, Haley JM. Plasma phospholipids identify antecedent memory impairment in older adults. Nat Med. 2014;20:415–418.|||Whiley L, Sen A, Heaton J, Proitsi P, García‐Gómez D, Leung R, Smith N, Thambisetty M, Kloszewska I, Mecocci P. Evidence of altered phosphatidylcholine metabolism in Alzheimer's disease. Neurobiol Aging. 2014;35:271–278.