Alpha desynchronization/synchronization during working memory testing is compromised in acute mild traumatic brain injury (mTBI)
Authors:
Journal: PloS one
Publication Type: Journal Article
Date: 2018
DOI: PMC5812562
ID: 29444081
Abstract
Diagnosing and monitoring recovery of patients with mild traumatic brain injury (mTBI) is challenging because of the lack of objective, quantitative measures. Diagnosis is based on description of injuries often not witnessed, subtle neurocognitive symptoms, and neuropsychological testing. Since working memory (WM) is at the center of cognitive functions impaired in mTBI, this study was designed to define objective quantitative electroencephalographic (qEEG) measures of WM processing that may correlate with cognitive changes associated with acute mTBI. First-time mTBI patients and mild peripheral (limb) trauma controls without head injury were recruited from the emergency department. WM was assessed by a continuous performance task (N-back). EEG recordings were obtained during N-back testing on three occasions: within five days, two weeks, and one month after injury. Compared with controls, mTBI patients showed abnormal induced and evoked alpha activity including event-related desynchronization (ERD) and synchronization (ERS). For induced alpha power, TBI patients had excessive frontal ERD on their first and third visit. For evoked alpha, mTBI patients had lower parietal ERD/ERS at the second and third visits. These exploratory qEEG findings offer new and non-invasive candidate measures to characterize the evolution of injury over the first month, with potential to provide much-needed objective measures of brain dysfunction to diagnose and monitor the consequences of mTBI.
Reference List
- Cassidy JD, Carroll LJ, Peloso PM, Borg J, von Holst H, Holm L, et al. Incidence, risk factors and prevention of mild traumatic brain injury: results of the WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury. J Rehabil Med. 2004;(43 Suppl):28–60. .|||Harmon KG, Drezner JA, Gammons M, Guskiewicz KM, Halstead M, Herring SA, et al.
American Medical Society for Sports Medicine position statement: concussion in sport. Br J Sports Med. 2013;47(1):15–26. doi: 10.1136/bjsports-2012-091941 .|||Perry DC, Sturm VE, Peterson MJ, Pieper CF, Bullock T, Boeve BF, et al.
Association of traumatic brain injury with subsequent neurological and psychiatric disease: a meta-analysis. J Neurosurg. 2016;124(2):511–26. doi: 10.3171/2015.2.JNS14503 ; PubMed Central PMCID: PMCPMC4751029.|||Bazarian JJ, McClung J, Shah MN, Cheng YT, Flesher W, Kraus J. Mild traumatic brain injury in the United States, 1998–2000. Brain Inj. 2005;19(2):85–91. .|||Toledo E, Lebel A, Becerra L, Minster A, Linnman C, Maleki N, et al.
The young brain and concussion: imaging as a biomarker for diagnosis and prognosis. Neurosci Biobehav Rev. 2012;36(6):1510–31. doi: 10.1016/j.neubiorev.2012.03.007 ; PubMed Central PMCID: PMCPMC3372677.|||Lee RR, Huang M. Magnetoencephalography in the diagnosis of concussion. Prog Neurol Surg. 2014;28:94–111. doi: 10.1159/000358768 .|||Lianyang L, Pagnotta MF, Arakaki X, Tran T, Strickland D, Harrington M, et al.
Brain activation profiles in mTBI: Evidence from combined resting-state EEG and MEG activity. Conf Proc IEEE Eng Med Biol Soc. 2015;2015:6963–6. doi: 10.1109/EMBC.2015.7319994 .|||Huang MX, Nichols S, Baker DG, Robb A, Angeles A, Yurgil KA, et al.
Single-subject-based whole-brain MEG slow-wave imaging approach for detecting abnormality in patients with mild traumatic brain injury. Neuroimage Clin. 2014;5:109–19. doi: 10.1016/j.nicl.2014.06.004 ; PubMed Central PMCID: PMCPMC4087185.|||Diamond A. Executive functions. Annu Rev Psychol. 2013;64:135–68. doi: 10.1146/annurev-psych-113011-143750 ; PubMed Central PMCID: PMCPMC4084861.|||Callicott JH, Mattay VS, Verchinski BA, Marenco S, Egan MF, Weinberger DR. Complexity of prefrontal cortical dysfunction in schizophrenia: more than up or down. Am J Psychiatry. 2003;160(12):2209–15. doi: 10.1176/appi.ajp.160.12.2209 .|||Takahashi M, Iwamoto K, Fukatsu H, Naganawa S, Iidaka T, Ozaki N. White matter microstructure of the cingulum and cerebellar peduncle is related to sustained attention and working memory: a diffusion tensor imaging study. Neurosci Lett. 2010;477(2):72–6. doi: 10.1016/j.neulet.2010.04.031 .|||Chen CJ, Wu CH, Liao YP, Hsu HL, Tseng YC, Liu HL, et al.
Working memory in patients with mild traumatic brain injury: functional MR imaging analysis. Radiology. 2012;264(3):844–51. doi: 10.1148/radiol.12112154 .|||Klimesch W. alpha-band oscillations, attention, and controlled access to stored information. Trends Cogn Sci. 2012;16(12):606–17. doi: 10.1016/j.tics.2012.10.007 ; PubMed Central PMCID: PMCPMC3507158.|||Klimesch W, Hanslmayr S, Sauseng P, Gruber W, Brozinsky CJ, Kroll NE, et al.
Oscillatory EEG correlates of episodic trace decay. Cereb Cortex. 2006;16(2):280–90. doi: 10.1093/cercor/bhi107 .|||Schack B, Klimesch W, Sauseng P. Phase synchronization between theta and upper alpha oscillations in a working memory task. Int J Psychophysiol. 2005;57(2):105–14. doi: 10.1016/j.ijpsycho.2005.03.016 .|||Sadaghiani S, Scheeringa R, Lehongre K, Morillon B, Giraud AL, D'Esposito M, et al.
alpha-band phase synchrony is related to activity in the fronto-parietal adaptive control network. J Neurosci. 2012;32(41):14305–10. doi: 10.1523/JNEUROSCI.1358-12.2012 ; PubMed Central PMCID: PMCPMC4057938.|||Foster JJ, Sutterer DW, Serences JT, Vogel EK, Awh E. The topography of alpha-band activity tracks the content of spatial working memory. J Neurophysiol. 2016;115(1):168–77. doi: 10.1152/jn.00860.2015 ; PubMed Central PMCID: PMCPMC4760461.|||Wang C, Rajagovindan R, Han SM, Ding M. Top-Down Control of Visual Alpha Oscillations: Sources of Control Signals and Their Mechanisms of Action. Front Hum Neurosci. 2016;10:15
doi: 10.3389/fnhum.2016.00015 ; PubMed Central PMCID: PMCPMC4718979.|||Grabner RH, Fink A, Stipacek A, Neuper C, Neubauer AC. Intelligence and working memory systems: evidence of neural efficiency in alpha band ERD. Brain Res Cogn Brain Res. 2004;20(2):212–25. doi: 10.1016/j.cogbrainres.2004.02.010 .|||Grabner RH, Neubauer AC, Stern E. Superior performance and neural efficiency: the impact of intelligence and expertise. Brain Res Bull. 2006;69(4):422–39. doi: 10.1016/j.brainresbull.2006.02.009 .|||Del Percio C, Babiloni C, Bertollo M, Marzano N, Iacoboni M, Infarinato F, et al.
Visuo-attentional and sensorimotor alpha rhythms are related to visuo-motor performance in athletes. Hum Brain Mapp. 2009;30(11):3527–40. doi: 10.1002/hbm.20776 .|||Lenartowicz A, Lu S, Rodriguez C, Lau EP, Walshaw PD, McCracken JT, et al.
Alpha desynchronization and fronto-parietal connectivity during spatial working memory encoding deficits in ADHD: A simultaneous EEG-fMRI study. Neuroimage Clin. 2016;11:210–23. doi: 10.1016/j.nicl.2016.01.023 ; PubMed Central PMCID: PMCPMC4761724.|||Lenartowicz A, Delorme A, Walshaw PD, Cho AL, Bilder RM, McGough JJ, et al.
Electroencephalography correlates of spatial working memory deficits in attention-deficit/hyperactivity disorder: vigilance, encoding, and maintenance. J Neurosci. 2014;34(4):1171–82. doi: 10.1523/JNEUROSCI.1765-13.2014 ; PubMed Central PMCID: PMCPMC3898282.|||Bastiaansen M, Hagoort P. Event-induced theta responses as a window on the dynamics of memory. Cortex. 2003;39(4–5):967–92. .|||Deiber MP, Missonnier P, Bertrand O, Gold G, Fazio-Costa L, Ibanez V, et al.
Distinction between perceptual and attentional processing in working memory tasks: a study of phase-locked and induced oscillatory brain dynamics. J Cogn Neurosci. 2007;19(1):158–72. doi: 10.1162/jocn.2007.19.1.158 .|||Ergen M, Saban S, Kirmizi-Alsan E, Uslu A, Keskin-Ergen Y, Demiralp T. Time-frequency analysis of the event-related potentials associated with the Stroop test. Int J Psychophysiol. 2014;94(3):463–72. doi: 10.1016/j.ijpsycho.2014.08.177 .|||Cohen MX, Donner TH. Midfrontal conflict-related theta-band power reflects neural oscillations that predict behavior. J Neurophysiol. 2013;110(12):2752–63. doi: 10.1152/jn.00479.2013 .|||Deiber MP, Ibanez V, Missonnier P, Herrmann F, Fazio-Costa L, Gold G, et al.
Abnormal-induced theta activity supports early directed-attention network deficits in progressive MCI. Neurobiol Aging. 2009;30(9):1444–52. doi: 10.1016/j.neurobiolaging.2007.11.021 .|||McCrory P, Meeuwisse WH, Aubry M, Cantu B, Dvorak J, Echemendia RJ, et al.
Consensus statement on concussion in sport: the 4th International Conference on Concussion in Sport held in Zurich, November 2012. Br J Sports Med. 2013;47(5):250–8. doi: 10.1136/bjsports-2013-092313 .|||Henry LC, Tremblay S, Boulanger Y, Ellemberg D, Lassonde M. Neurometabolic changes in the acute phase after sports concussions correlate with symptom severity. J Neurotrauma. 2010;27(1):65–76. doi: 10.1089/neu.2009.0962 .|||Vagnozzi R, Signoretti S, Floris R, Marziali S, Manara M, Amorini AM, et al.
Decrease in N-acetylaspartate following concussion may be coupled to decrease in creatine. J Head Trauma Rehabil. 2013;28(4):284–92. doi: 10.1097/HTR.0b013e3182795045 .|||McCrory P, Meeuwisse W, Aubry M, Cantu B, Dvorak J, Echemendia RJ, et al.
Consensus statement on concussion in sport—the 4th International Conference on Concussion in Sport held in Zurich, November 2012. Clin J Sport Med. 2013;23(2):89–117. doi: 10.1097/JSM.0b013e31828b67cf .|||Asken BM, McCrea MA, Clugston JR, Snyder AR, Houck ZM, Bauer RM. "Playing Through It": Delayed Reporting and Removal From Athletic Activity After Concussion Predicts Prolonged Recovery. J Athl Train. 2016;51(4):329–35. doi: 10.4085/1062-6050-51.5.02 ; PubMed Central PMCID: PMCPMC4874376.|||Lianyang L, Arakaki X, Thao T, Harrington M, Padhye N, Zouridakis G. Brain activation profiles in mTBI: evidence from ERP activity of working memory response. Conf Proc IEEE Eng Med Biol Soc. 2016;2016:1862–5. doi: 10.1109/EMBC.2016.7591083 .|||Owen AM, McMillan KM, Laird AR, Bullmore E. N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Hum Brain Mapp. 2005;25(1):46–59. doi: 10.1002/hbm.20131 .|||Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134(1):9–21. doi: 10.1016/j.jneumeth.2003.10.009 .|||Cohen MX. Analyzing Neural Time Series Data: Theory and Practice. 2014.|||Heitland I, Kenemans JL, Oosting RS, Baas JM, Bocker KB. Auditory event-related potentials (P3a, P3b) and genetic variants within the dopamine and serotonin system in healthy females. Behav Brain Res. 2013;249:55–64. doi: 10.1016/j.bbr.2013.04.013 .|||Brincat SL, Miller EK. Prefrontal Cortex Networks Shift from External to Internal Modes during Learning. J Neurosci. 2016;36(37):9739–54. doi: 10.1523/JNEUROSCI.0274-16.2016 ; PubMed Central PMCID: PMCPMC5039250.|||Ridley RM, Cummings RM, Leow-Dyke A, Baker HF. Neglect of memory after dopaminergic lesions in monkeys. Behav Brain Res. 2006;166(2):253–62. doi: 10.1016/j.bbr.2005.08.007 .|||Zhang GL, Li H, Song Y, Yu C. ERP C1 is top-down modulated by orientation perceptual learning. J Vis. 2015;15(10):8
doi: 10.1167/15.10.8 .|||Beauregard M, Courtemanche J, Paquette V. Brain activity in near-death experiencers during a meditative state. Resuscitation. 2009;80(9):1006–10. doi: 10.1016/j.resuscitation.2009.05.006 .|||Ropper AH, Gorson KC. Clinical practice. Concussion. N Engl J Med. 2007;356(2):166–72. doi: 10.1056/NEJMcp064645 .|||van der Horn HJ, Liemburg EJ, Scheenen ME, de Koning ME, Spikman JM, van der Naalt J. Post-concussive complaints after mild traumatic brain injury associated with altered brain networks during working memory performance. Brain Imaging Behav. 2015.
doi: 10.1007/s11682-015-9489-y .|||Medaglia JD, McAleavey AA, Rostami S, Slocomb J, Hillary FG. Modeling distinct imaging hemodynamics early after TBI: the relationship between signal amplitude and connectivity. Brain Imaging Behav. 2015;9(2):285–301. doi: 10.1007/s11682-014-9306-z .|||Perlstein WM, Cole MA, Demery JA, Seignourel PJ, Dixit NK, Larson MJ, et al.
Parametric manipulation of working memory load in traumatic brain injury: behavioral and neural correlates. J Int Neuropsychol Soc. 2004;10(5):724–41. doi: 10.1017/S1355617704105110 .|||Schneider-Garces NJ, Gordon BA, Brumback-Peltz CR, Shin E, Lee Y, Sutton BP, et al.
Span, CRUNCH, and beyond: working memory capacity and the aging brain. J Cogn Neurosci. 2010;22(4):655–69. doi: 10.1162/jocn.2009.21230 ; PubMed Central PMCID: PMCPMC3666347.|||Stern Y, Habeck C, Moeller J, Scarmeas N, Anderson KE, Hilton HJ, et al.
Brain networks associated with cognitive reserve in healthy young and old adults. Cereb Cortex. 2005;15(4):394–402. doi: 10.1093/cercor/bhh142 ; PubMed Central PMCID: PMCPMC3025536.|||Darowski ES, Helder E, Zacks RT, Hasher L, Hambrick DZ. Age-related differences in cognition: the role of distraction control. Neuropsychology. 2008;22(5):638–44. doi: 10.1037/0894-4105.22.5.638 .|||Dong S, Reder LM, Yao Y, Liu Y, Chen F. Individual differences in working memory capacity are reflected in different ERP and EEG patterns to task difficulty. Brain Res. 2015;1616:146–56. doi: 10.1016/j.brainres.2015.05.003 .|||Muhl C, Jeunet C, Lotte F. EEG-based workload estimation across affective contexts. Front Neurosci. 2014;8:114
doi: 10.3389/fnins.2014.00114 ; PubMed Central PMCID: PMCPMC4054975.|||Patterson ZR, Holahan MR. Understanding the neuroinflammatory response following concussion to develop treatment strategies. Front Cell Neurosci. 2012;6:58
doi: 10.3389/fncel.2012.00058 ; PubMed Central PMCID: PMCPMC3520152.|||Collins MW, Grindel SH, Lovell MR, Dede DE, Moser DJ, Phalin BR, et al. Relationship between concussion and neuropsychological performance in college football players. JAMA. 1999;282(10):964–70. .|||Marshall S, Bayley M, McCullagh S, Velikonja D, Berrigan L. Clinical practice guidelines for mild traumatic brain injury and persistent symptoms. Can Fam Physician. 2012;58(3):257–67, e128-40. ; PubMed Central PMCID: PMCPMC3303645.|||Willer B, Leddy JJ. Management of concussion and post-concussion syndrome. Curr Treat Options Neurol. 2006;8(5):415–26. .|||Sauseng P. Brain oscillations: phase-locked EEG alpha controls perception. Curr Biol. 2012;22(9):R306–8. doi: 10.1016/j.cub.2012.03.029 .|||Petraglia AL, Plog BA, Dayawansa S, Dashnaw ML, Czerniecka K, Walker CT, et al.
The pathophysiology underlying repetitive mild traumatic brain injury in a novel mouse model of chronic traumatic encephalopathy. Surg Neurol Int. 2014;5:184
doi: 10.4103/2152-7806.147566 ; PubMed Central PMCID: PMCPMC4287910.|||Blumenfeld RS, Ranganath C. Dorsolateral prefrontal cortex promotes long-term memory formation through its role in working memory organization. J Neurosci. 2006;26(3):916–25. doi: 10.1523/JNEUROSCI.2353-05.2006 .|||Khader P, Ranganath C, Seemuller A, Rosler F. Working memory maintenance contributes to long-term memory formation: evidence from slow event-related brain potentials. Cogn Affect Behav Neurosci. 2007;7(3):212–24. .|||Axmacher N, Lenz S, Haupt S, Elger CE, Fell J. Electrophysiological signature of working and long-term memory interaction in the human hippocampus. Eur J Neurosci. 2010;31(1):177–88. doi: 10.1111/j.1460-9568.2009.07041.x .|||Lei S, Roetting M. Influence of task combination on EEG spectrum modulation for driver workload estimation. Hum Factors. 2011;53(2):168–79. doi: 10.1177/0018720811400601 .|||Manza P, Hau CL, Leung HC. Alpha power gates relevant information during working memory updating. J Neurosci. 2014;34(17):5998–6002. doi: 10.1523/JNEUROSCI.4641-13.2014 .|||Pesonen M, Hamalainen H, Krause CM. Brain oscillatory 4–30 Hz responses during a visual n-back memory task with varying memory load. Brain Res. 2007;1138:171–7. doi: 10.1016/j.brainres.2006.12.076 .|||Cooper NR, Burgess AP, Croft RJ, Gruzelier JH. Investigating evoked and induced electroencephalogram activity in task-related alpha power increases during an internally directed attention task. Neuroreport. 2006;17(2):205–8. .|||Ayaz H, Shewokis PA, Bunce S, Izzetoglu K, Willems B, Onaral B. Optical brain monitoring for operator training and mental workload assessment. Neuroimage. 2012;59(1):36–47. doi: 10.1016/j.neuroimage.2011.06.023 .|||Jonassen R, Endestad T, Neumeister A, Foss Haug KB, Berg JP, Landro NI. Serotonin transporter polymorphism modulates N-back task performance and fMRI BOLD signal intensity in healthy women. PLoS One. 2012;7(1):e30564
doi: 10.1371/journal.pone.0030564 ; PubMed Central PMCID: PMCPMC3264612.|||Foxe JJ, Snyder AC. The Role of Alpha-Band Brain Oscillations as a Sensory Suppression Mechanism during Selective Attention. Front Psychol. 2011;2:154
doi: 10.3389/fpsyg.2011.00154 ; PubMed Central PMCID: PMCPMC3132683.|||Klimesch W, Sauseng P, Hanslmayr S. EEG alpha oscillations: the inhibition-timing hypothesis. Brain Res Rev. 2007;53(1):63–88. doi: 10.1016/j.brainresrev.2006.06.003 .|||Dipoppa M, Gutkin BS. Flexible frequency control of cortical oscillations enables computations required for working memory. Proc Natl Acad Sci U S A. 2013;110(31):12828–33. doi: 10.1073/pnas.1303270110 ; PubMed Central PMCID: PMCPMC3732977.|||Roux F, Uhlhaas PJ. Working memory and neural oscillations: alpha-gamma versus theta-gamma codes for distinct WM information?
Trends Cogn Sci. 2014;18(1):16–25. doi: 10.1016/j.tics.2013.10.010 .|||Sauseng P, Klimesch W, Doppelmayr M, Pecherstorfer T, Freunberger R, Hanslmayr S. EEG alpha synchronization and functional coupling during top-down processing in a working memory task. Hum Brain Mapp. 2005;26(2):148–55. doi: 10.1002/hbm.20150 .|||Linkenkaer-Hansen K, Nikulin VV, Palva S, Ilmoniemi RJ, Palva JM. Prestimulus oscillations enhance psychophysical performance in humans. J Neurosci. 2004;24(45):10186–90. doi: 10.1523/JNEUROSCI.2584-04.2004 .|||Doppelmayr M, Klimesch W, Sauseng P, Hodlmoser K, Stadler W, Hanslmayr S. Intelligence related differences in EEG-bandpower. Neurosci Lett. 2005;381(3):309–13. doi: 10.1016/j.neulet.2005.02.037 .|||Hsueh JJ, Chen TS, Chen JJ, Shaw FZ. Neurofeedback training of EEG alpha rhythm enhances episodic and working memory. Hum Brain Mapp. 2016;37(7):2662–75. doi: 10.1002/hbm.23201 .|||Eckart C, Wozniak-Kwasniewska A, Herweg NA, Fuentemilla L, Bunzeck N. Acetylcholine modulates human working memory and subsequent familiarity based recognition via alpha oscillations. Neuroimage. 2016;137:61–9. doi: 10.1016/j.neuroimage.2016.05.049 .|||Almeida-Suhett CP, Prager EM, Pidoplichko V, Figueiredo TH, Marini AM, Li Z, et al.
Reduced GABAergic inhibition in the basolateral amygdala and the development of anxiety-like behaviors after mild traumatic brain injury. PLoS One. 2014;9(7):e102627
doi: 10.1371/journal.pone.0102627 ; PubMed Central PMCID: PMCPMC4105413.|||Fujiki M, Kubo T, Kamida T, Sugita K, Hikawa T, Abe T, et al.
Neuroprotective and antiamnesic effect of donepezil, a nicotinic acetylcholine-receptor activator, on rats with concussive mild traumatic brain injury. J Clin Neurosci. 2008;15(7):791–6. doi: 10.1016/j.jocn.2007.07.002 .|||Bauer M, Kluge C, Bach D, Bradbury D, Heinze HJ, Dolan RJ, et al.
Cholinergic enhancement of visual attention and neural oscillations in the human brain. Curr Biol. 2012;22(5):397–402. doi: 10.1016/j.cub.2012.01.022 ; PubMed Central PMCID: PMCPMC3314945.|||Jensen O, Gips B, Bergmann TO, Bonnefond M. Temporal coding organized by coupled alpha and gamma oscillations prioritize visual processing. Trends Neurosci. 2014;37(7):357–69. doi: 10.1016/j.tins.2014.04.001 .|||Liguori C, Chiaravalloti A, Sancesario G, Stefani A, Sancesario GM, Mercuri NB, et al.
Cerebrospinal fluid lactate levels and brain [18F]FDG PET hypometabolism within the default mode network in Alzheimer's disease. Eur J Nucl Med Mol Imaging. 2016;43(11):2040–9. doi: 10.1007/s00259-016-3417-2 .|||Ishibashi K, Ishiwata K, Toyohara J, Murayama S, Ishii K. Regional analysis of striatal and cortical amyloid deposition in patients with Alzheimer's disease. Eur J Neurosci. 2014;40(4):2701–6. doi: 10.1111/ejn.12633 .|||Masurkar AV, Devanand DP. Olfactory Dysfunction in the Elderly: Basic Circuitry and Alterations with Normal Aging and Alzheimer's Disease. Curr Geriatr Rep. 2014;3(2):91–100. doi: 10.1007/s13670-014-0080-y ; PubMed Central PMCID: PMCPMC4097327.|||Vorobyov S, Cichocki A. Blind noise reduction for multisensory signals using ICA and subspace filtering, with application to EEG analysis. Biol Cybern. 2002;86(4):293–303. doi: 10.1007/s00422-001-0298-6 .|||Junghofer M, Elbert T, Tucker DM, Braun C. The polar average reference effect: a bias in estimating the head surface integral in EEG recording. Clin Neurophysiol. 1999;110(6):1149–55. .|||Yao D. A method to standardize a reference of scalp EEG recordings to a point at infinity. Physiol Meas. 2001;22(4):693–711. .|||Yao D, Wang L, Oostenveld R, Nielsen KD, Arendt-Nielsen L, Chen AC. A comparative study of different references for EEG spectral mapping: the issue of the neutral reference and the use of the infinity reference. Physiol Meas. 2005;26(3):173–84. doi: 10.1088/0967-3334/26/3/003 .|||McKeever CK, Schatz P. Current issues in the identification, assessment, and management of concussions in sports-related injuries. Appl Neuropsychol. 2003;10(1):4–11. doi: 10.1207/S15324826AN1001_2 .|||Evans RW. The postconcussion syndrome and the sequelae of mild head injury. Neurol Clin. 1992;10(4):815–47. .