Endogenous Na+, K+-ATPase inhibitors and CSF [Na+] contribute to migraine formation.
Authors:
Journal: PloS one
Publication Type: Journal Article
Date: 2019
DOI: PMC6555523
ID: 31173612
Abstract
There is strong evidence that neuronal hyper-excitability underlies migraine, and may or may not be preceded by cortical spreading depression. However, the mechanisms for cortical spreading depression and/or migraine are not established. Previous studies reported that cerebrospinal fluid (CSF) [Na+] is higher during migraine, and that higher extracellular [Na+] leads to hyper-excitability. We raise the hypothesis that altered choroid plexus Na+, K+-ATPase activity can cause both migraine phenomena: inhibition raises CSF [K+] and initiates cortical spreading depression, while activation raises CSF [Na+] and causes migraine. In this study, we examined levels of specific Na+, K+-ATPase inhibitors, endogenous ouabain-like compounds (EOLC), in CSF from migraineurs and controls. CSF EOLC levels were significantly lower during ictal migraine (0.4 nM +/- 0.09) than from either controls (1.8 nM +/- 0.4) or interictal migraineurs (3.1 nM +/- 1.9). Blood plasma EOLC levels were higher in migraineurs than controls, but did not differ between ictal and interictal states. In a Sprague-Dawley rat model of nitroglycerin-triggered central sensitization, we changed the concentrations of EOLC and CSF sodium, and measured aversive mechanical threshold (von Frey hairs), trigeminal nucleus caudalis activation (cFos), and CSF [Na+] (ultra-high field 23Na MRI). Animals were sensitized by three independent treatments: intraperitoneal nitroglycerin, immunodepleting EOLC from cerebral ventricles, or cerebroventricular infusion of higher CSF [Na+]. Conversely, nitroglycerin-triggered sensitization was prevented by either vascular or cerebroventricular delivery of the specific Na+, K+-ATPase inhibitor, ouabain. These results affirm our hypothesis that higher CSF [Na+] is linked to human migraine and to a rodent migraine model, and demonstrate that EOLC regulates them both. Our data suggest that altered choroid plexus Na+, K+-ATPase activity is a common source of these changes, and may be the initiating mechanism in migraine.
Chemical List
- Ions|||Ouabain|||Sodium|||Sodium-Potassium-Exchanging ATPase
Reference List
- Borsook D, Burstein R, Becerra L. Functional imaging of the human trigeminal system: opportunities for new insights into pain processing in health and disease. J Neurobiol. 2004;61(1):107–25. 10.1002/neu.20085 .|||Burstein R, Jakubowski M, Garcia-Nicas E, Kainz V, Bajwa Z, Hargreaves R, et al. Thalamic sensitization transforms localized pain into widespread allodynia. Ann Neurol. 2010;68(1):81–91. 10.1002/ana.21994 .|||Maleki N, Becerra L, Brawn J, Bigal M, Burstein R, Borsook D. Concurrent functional and structural cortical alterations in migraine. Cephalalgia. 2012;32(8):607–20. 10.1177/0333102412445622|||Maleki N, Becerra L, Nutile L, Pendse G, Brawn J, Bigal M, et al. Migraine attacks the Basal Ganglia. Molecular pain. 2011;7:71 10.1186/1744-8069-7-71|||Maleki N, Linnman C, Brawn J, Burstein R, Becerra L, Borsook D. Her versus his migraine: multiple sex differences in brain function and structure. Brain. 2012;135(Pt 8):2546–59. 10.1093/brain/aws175|||Noseda R, Burstein R. Migraine pathophysiology: Anatomy of the trigeminovascular pathway and associated neurological symptoms, cortical spreading depression, sensitization, and modulation of pain. Pain. 2013. Epub 2013/07/31. 10.1016/j.pain.2013.07.021 .|||Pietrobon D, Moskowitz MA. Pathophysiology of migraine. Annu Rev Physiol. 2013;75:365–91. Epub 2012/11/30. 10.1146/annurev-physiol-030212-183717 .|||Goadsby PJ, Holland PR, Martins-Oliveira M, Hoffmann J, Schankin C, Akerman S. Pathophysiology of Migraine: A Disorder of Sensory Processing. Physiol Rev. 2017;97(2):553–622. 10.1152/physrev.00034.2015 .|||Brennan KC, Pietrobon D. A Systems Neuroscience Approach to Migraine. Neuron. 2018;97(5):1004–21. 10.1016/j.neuron.2018.01.029 .|||Leao A. Pial circulation and spreading depression of activity in the cerebral cortex. J Neurophysiol. 1944;7:391–6.|||Lauritzen M. Pathophysiology of the migraine aura. The spreading depression theory. Brain. 1994;117 (Pt 1):199–210. 10.1093/brain/117.1.199 .|||Hadjikhani N, Sanchez Del Rio M, Wu O, Schwartz D, Bakker D, Fischl B, et al. Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proc Natl Acad Sci U S A. 2001;98(8):4687–92. 10.1073/pnas.071582498 .|||Lambert GA, Hoskin KL, Zagami AS. Cortico-NRM influences on trigeminal neuronal sensation. Cephalalgia. 2008;28(6):640–52. 10.1111/j.1468-2982.2008.01572.x .|||Lipton RB, Silberstein SD, Stewart WF. An update on the epidemiology of migraine. Headache. 1994;34(6):319–28. .|||Russell MB, Ulrich V, Gervil M, Olesen J. Migraine without aura and migraine with aura are distinct disorders. A population-based twin survey. Headache. 2002;42(5):332–6. .|||Pisanu C, Preisig M, Castelao E, Glaus J, Pistis G, Squassina A, et al. A genetic risk score is differentially associated with migraine with and without aura. Hum Genet. 2017;136(8):999–1008. 10.1007/s00439-017-1816-5|||Lambert GA, Zagami AS. The mode of action of migraine triggers: a hypothesis. Headache. 2009;49(2):253–75. 10.1111/j.1526-4610.2008.01230.x .|||Russell MB. Is migraine a genetic illness? The various forms of migraine share a common genetic cause. Neurol Sci. 2008;29 Suppl 1:S52–4. 10.1007/s10072-008-0887-4 .|||De Fusco M, Marconi R, Silvestri L, Atorino L, Rampoldi L, Morgante L, et al. Haploinsufficiency of ATP1A2 encoding the Na+/K+ pump alpha2 subunit associated with familial hemiplegic migraine type 2. Nat Genet. 2003;33(2):192–6. 10.1038/ng1081 .|||Dichgans M, Freilinger T, Eckstein G, Babini E, Lorenz-Depiereux B, Biskup S, et al. Mutation in the neuronal voltage-gated sodium channel SCN1A in familial hemiplegic migraine. Lancet. 2005;366(9483):371–7. 10.1016/S0140-6736(05)66786-4 .|||Ophoff RA, Terwindt GM, Vergouwe MN, van Eijk R, Oefner PJ, Hoffman SM, et al. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell. 1996;87(3):543–52. .|||Riant F, Roze E, Barbance C, Meneret A, Guyant-Marechal L, Lucas C, et al. PRRT2 mutations cause hemiplegic migraine. Neurology. 2012;79(21):2122–4. 10.1212/WNL.0b013e3182752cb8 .|||Gormley P, Kurki MI, Hiekkala ME, Veerapen K, Happola P, Mitchell AA, et al. Common Variant Burden Contributes to the Familial Aggregation of Migraine in 1,589 Families. Neuron. 2018;98(4):743–53 e4. 10.1016/j.neuron.2018.04.014|||Gormley P, Anttila V, Winsvold BS, Palta P, Esko T, Pers TH, et al. Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine. Nat Genet. 2016;48(8):856–66. 10.1038/ng.3598|||Harrington MG, Fonteh AN, Cowan RP, Perrine K, Pogoda JM, Biringer RG, et al. Cerebrospinal fluid sodium increases in migraine. Headache. 2006;46(7):1128–35. 10.1111/j.1526-4610.2006.00445.x .|||Meyer MMS, A.; Konstandin, S.; Benrath, J.; Meyer, M.; Schad, L.R. Schoenberg, S/O.; Haneder, S. Cerebral Sodium (23Na) Magnetic Resonance Imaging in Patients with Migraine vs. Healthy Controls. RSNA 2017; November 26—December 1; Chicago2017.|||Harrington MG, Salomon RM, Pogoda JM, Oborina E, Okey N, Johnson B, et al. Cerebrospinal fluid sodium rhythms. Cerebrospinal fluid research. 2010;7:3 10.1186/1743-8454-7-3|||Iversen HK, Olesen J, Tfelt-Hansen P. Intravenous nitroglycerin as an experimental model of vascular headache. Basic characteristics. Pain. 1989;38(1):17–24. .|||Thomsen LL, Kruuse C, Iversen HK, Olesen J. A nitric oxide donor (nitroglycerin) triggers genuine migraine attacks. Eur J Neurol. 1994;1(1):73–80. Epub 1994/09/01. 10.1111/j.1468-1331.1994.tb00053.x .|||Greco R, Tassorelli C, Mangione AS, Smeraldi A, Allena M, Sandrini G, et al. Effect of sex and estrogens on neuronal activation in an animal model of migraine. Headache. 2013;53(2):288–96. Epub 2012/08/24. 10.1111/j.1526-4610.2012.02249.x .|||Tassorelli C, Joseph SA. Systemic nitroglycerin induces Fos immunoreactivity in brainstem and forebrain structures of the rat. Brain Res. 1995;682(1–2):167–81. Epub 1995/06/05. .|||Tassorelli C, Joseph SA, Nappi G. Neurochemical mechanisms of nitroglycerin-induced neuronal activation in rat brain: a pharmacological investigation. Neuropharmacology. 1997;36(10):1417–24. Epub 1998/01/10. .|||Harrington MG, Chekmenev EY, Schepkin V, Fonteh AN, Arakaki X. Sodium MRI in a rat migraine model and a NEURON simulation study support a role for sodium in migraine. Cephalalgia. 2011;31(12):1254–65. 10.1177/0333102411408360|||Arakaki X, Foster H, Su L, Do H, Wain AJ, Fonteh AN, et al. Extracellular sodium modulates the excitability of cultured hippocampal pyramidal cells. Brain Res. 2011;1401:85–94. 10.1016/j.brainres.2011.05.037|||Kelly RA, Smith TW. Pharmacological treatment of heart failure. 9th Edition ed. Herdamn JG, Limbird LE, editors: McGraw-Hill comp; 1996. 809–38 p.|||Meyer K, Linde H. Collection of toad venoms and chemistry of the toad venom steroids. Bucherl W, Buckley EE, editors. New York: Academic Press; 1971.|||Hamlyn JM, Blaustein MP, Bova S, DuCharme DW, Harris DW, Mandel F, et al. Identification and characterization of a ouabain-like compound from human plasma. Proc Natl Acad Sci U S A. 1991;88(14):6259–63. 10.1073/pnas.88.14.6259 .|||Goto A, Ishiguro T, Yamada K, Ishii M, Yoshioka M, Eguchi C, et al. Isolation of a urinary digitalis-like factor indistinguishable from digoxin. Biochem Biophys Res Commun. 1990;173(3):1093–101. .|||Lichtstein D, Gati I, Samuelov S, Berson D, Rozenman Y, Landau L, et al. Identification of digitalis-like compounds in human cataractous lenses. Eur J Biochem. 1993;216(1):261–8. Epub 1993/08/15. .|||Hilton PJ, White RW, Lord GA, Garner GV, Gordon DB, Hilton MJ, et al. An inhibitor of the sodium pump obtained from human placenta. Lancet. 1996;348(9023):303–5. .|||Schneider R, Antolovic R, Kost H, Sich B, Kirch U, Tepel M, et al. Proscillaridin A immunoreactivity: its purification, transport in blood by a specific binding protein and its correlation with blood pressure. Clin Exp Hypertens. 1998;20(5–6):593–9. .|||Bagrov AY, Fedorova OV, Dmitrieva RI, Howald WN, Hunter AP, Kuznetsova EA, et al. Characterization of a urinary bufodienolide Na+,K+-ATPase inhibitor in patients after acute myocardial infarction. Hypertension. 1998;31(5):1097–103. .|||Komiyama Y, Dong XH, Nishimura N, Masaki H, Yoshika M, Masuda M, et al. A novel endogenous digitalis, telocinobufagin, exhibits elevated plasma levels in patients with terminal renal failure. Clin Biochem. 2005;38(1):36–45. 10.1016/j.clinbiochem.2004.08.005 .|||Nesher M, Shpolansky U, Rosen H, Lichtstein D. The digitalis-like steroid hormones: new mechanisms of action and biological significance. Life Sci. 2007;80(23):2093–107. 10.1016/j.lfs.2007.03.013 .|||Buckalew VM. Endogenous digitalis-like factors: an overview of the history. Front Endocrinol (Lausanne). 2015;6:49 10.3389/fendo.2015.00049 .|||Hamlyn JM, Manunta P. Endogenous cardiotonic steroids in kidney failure: a review and an hypothesis. Adv Chronic Kidney Dis. 2015;22(3):232–44. 10.1053/j.ackd.2014.12.005 .|||Bagrov AY, Shapiro JI, Fedorova OV. Endogenous cardiotonic steroids: physiology, pharmacology, and novel therapeutic targets. Pharmacol Rev. 2009;61(1):9–38. 10.1124/pr.108.000711|||Hodes A, Lichtstein D. Natriuretic hormones in brain function. Front Endocrinol (Lausanne). 2014;5:201 10.3389/fendo.2014.00201 .|||Harrington MG, Fonteh AN, Arakaki X, Cowan RP, Ecke LE, Foster H, et al. Capillary endothelial Na(+), K(+), ATPase transporter homeostasis and a new theory for migraine pathophysiology. Headache. 2010;50(3):459–78. 10.1111/j.1526-4610.2009.01551.x .|||The International Classification of Headache Disorders, 3rd edition (beta version). Cephalalgia. 2013;33(9):629–808. Epub 2013/06/19. 10.1177/0333102413485658 .|||Lichtstein D, Steinitz M, Gati I, Samuelov S, Deutsch J, Orly J. Biosynthesis of digitalis-like compounds in rat adrenal cells: hydroxycholesterol as possible precursor. Life Sci. 1998;62(23):2109–26. .|||Dvela M, Rosen H, Ben-Ami HC, Lichtstein D. Endogenous ouabain regulates cell viability. Am J Physiol Cell Physiol. 2012;302(2):C442–52. 10.1152/ajpcell.00336.2011 .|||Abad N, Rosenberg JT, Hike DC, Harrington MG, Grant SC. Dynamic Sodium Imaging at Ultra-High Field Reveals Progression in a Preclinical Migraine Model. Pain. 2018. 10.1097/j.pain.0000000000001307 .|||Fu R, Brey WW, Shetty K, Gor'kov P, Saha S, Long JR, et al. Ultra-wide bore 900 MHz high-resolution NMR at the National High Magnetic Field Laboratory. J Magn Reson. 2005;177(1):1–8. 10.1016/j.jmr.2005.07.013 .|||Qian C, Masad IS, Rosenberg JT, Elumalai M, Brey WW, Grant SC, et al. A volume birdcage coil with an adjustable sliding tuner ring for neuroimaging in high field vertical magnets: Ex and in vivo applications at 21.1 T. Journal of Magnetic Resonance. 2012;221:110–6. 10.1016/j.jmr.2012.05.016|||Paxinos G. WC. The rat brain in stereotaxic coordinates: Academic Press; 2007.|||Bignami E, Casamassima N, Frati E, Lanzani C, Corno L, Alfieri O, et al. Preoperative endogenous ouabain predicts acute kidney injury in cardiac surgery patients. Crit Care Med. 2013;41(3):744–55. 10.1097/CCM.0b013e3182741599|||El-Mallakh RS, Stoddard M, Jortani SA, El-Masri MA, Sephton S, Valdes R Jr. Aberrant regulation of endogenous ouabain-like factor in bipolar subjects. Psychiatry Res. 2010;178(1):116–20. 10.1016/j.psychres.2009.03.032 .|||Grider G, El-Mallakh RS, Huff MO, Buss TJ, Miller J, Valdes R Jr. Endogenous digoxin-like immunoreactive factor (DLIF) serum concentrations are decreased in manic bipolar patients compared to normal controls. J Affect Disord. 1999;54(3):261–7. .|||Ishkaraeva-Yakovleva VV, Fedorova OV, Solodovnikova NG, Frolova EV, Bzhelyansky AM, Emelyanov IV, et al. DigiFab interacts with endogenous cardiotonic steroids and reverses preeclampsia-induced Na/K-ATPase inhibition. Reprod Sci. 2012;19(12):1260–7. 10.1177/1933719112447124|||Simonini M, Lanzani C, Bignami E, Casamassima N, Frati E, Meroni R, et al. A new clinical multivariable model that predicts postoperative acute kidney injury: impact of endogenous ouabain. Nephrol Dial Transplant. 2014;29(9):1696–701. 10.1093/ndt/gfu200|||Simonini M, Pozzoli S, Bignami E, Casamassima N, Messaggio E, Lanzani C, et al. Endogenous Ouabain: An Old Cardiotonic Steroid as a New Biomarker of Heart Failure and a Predictor of Mortality after Cardiac Surgery. Biomed Res Int. 2015;2015:714793 10.1155/2015/714793|||Loreaux EL, Kaul B, Lorenz JN, Lingrel JB. Ouabain-Sensitive alpha1 Na,K-ATPase enhances natriuretic response to saline load. J Am Soc Nephrol. 2008;19(10):1947–54. 10.1681/ASN.2008020174|||Tvedskov JF, Thomsen LL, Iversen HK, Gibson A, Wiliams P, Olesen J. The prophylactic effect of valproate on glyceryltrinitrate induced migraine. Cephalalgia. 2004;24(7):576–85. 10.1111/j.1468-2982.2003.00720.x .|||Maniyar FH, Sprenger T, Schankin C, Goadsby PJ. Photic hypersensitivity in the premonitory phase of migraine—a positron emission tomography study. Eur J Neurol. 2014. 10.1111/ene.12451 .|||Anton F, Herdegen T, Peppel P, Leah JD. c-FOS-like immunoreactivity in rat brainstem neurons following noxious chemical stimulation of the nasal mucosa. Neuroscience. 1991;41(2–3):629–41. .|||Giovannelli L, Shiromani PJ, Jirikowski GF, Bloom FE. Expression of c-fos protein by immunohistochemically identified oxytocin neurons in the rat hypothalamus upon osmotic stimulation. Brain Res. 1992;588(1):41–8. .|||Bahra A, Matharu MS, Buchel C, Frackowiak RS, Goadsby PJ. Brainstem activation specific to migraine headache. Lancet. 2001;357(9261):1016–7. .|||Schulte LH, May A. The migraine generator revisited: continuous scanning of the migraine cycle over 30 days and three spontaneous attacks. Brain. 2016;139(Pt 7):1987–93. 10.1093/brain/aww097 .|||Davson H, Segal MB. The effects of some inhibitors and accelerators of sodium transport on the turnover of (22)Na in the cerebrospinal fluid and the brain. The Journal of physiology. 1970;209(1):131–53. PubMed PMID: PMC1396036. 10.1113/jphysiol.1970.sp009159|||Gomez DG, Potts DG. The lateral, third, and fourth ventricle choroid plexus of the dog: a structural and ultrastructural study. Ann Neurol. 1981;10(4):333–40. 10.1002/ana.410100404 .|||Brightman MW, Reese TS. Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol. 1969;40(3):648–77. Epub 1969/03/01. 10.1083/jcb.40.3.648|||Fame RM, Chang JT, Hong A, Aponte-Santiago NA, Sive H. Directional cerebrospinal fluid movement between brain ventricles in larval zebrafish. Fluids and barriers of the CNS. 2016;13(1):11 10.1186/s12987-016-0036-z|||Faubel R, Westendorf C, Bodenschatz E, Eichele G. Cilia-based flow network in the brain ventricles. Science. 2016;353(6295):176–8. 10.1126/science.aae0450 .|||Mirzadeh Z, Kusne Y, Duran-Moreno M, Cabrales E, Gil-Perotin S, Ortiz C, et al. Bi- and uniciliated ependymal cells define continuous floor-plate-derived tanycytic territories. Nat Commun. 2017;8:13759 10.1038/ncomms13759|||Davson H. Review lecture. The blood-brain barrier. The Journal of physiology. 1976;255(1):1–28. PubMed PMID: PMC1309232. 10.1113/jphysiol.1976.sp011267|||Parnas I, Hochstein S, Parnas H. Theoretical analysis of parameters leading to frequency modulation along an inhomogeneous axon. Journal of neurophysiology. 1976;39(4):909–23. PubMed PMID: 966045. 10.1152/jn.1976.39.4.909|||Spira ME, Yarom Y, Parnas I. Modulation of spike frequency by regions of special axonal geometry and by synaptic inputs. Journal of neurophysiology. 1976;39(4):882–99. 10.1152/jn.1976.39.4.882 .|||Fishman MC. Endogenous digitalis-like activity in mammalian brain. Proc Natl Acad Sci U S A. 1979;76(9):4661–3. Epub 1979/09/01. 10.1073/pnas.76.9.4661|||Haber E, Haupert GT Jr. The search for a hypothalamic Na+,K+-ATPase inhibitor. Hypertension. 1987;9(4):315–24. .|||Huang BS, Leenen FH. Brain "ouabain" mediates the sympathoexcitatory and hypertensive effects of high sodium intake in Dahl salt-sensitive rats. Circ Res. 1994;74(4):586–95. .|||Leenen FH, Huang BS, Yu H, Yuan B. Brain 'ouabain' mediates sympathetic hyperactivity in congestive heart failure. Circ Res. 1995;77(5):993–1000. .|||Takahashi H, Matsuzawa M, Okabayashi H, Suga K, Ikegaki I, Yoshimura M, et al. Evidence for a digitalis-like substance in the hypothalamopituitary axis in rats: implications in the central cardiovascular regulation associated with an excess intake of sodium. Jpn Circ J. 1987;51(10):1199–207. .|||Boulanger C, Vanhoutte PM. Ouabain, Na(+)-free and K(+)-free solutions and relaxations to nitric oxide and nitrovasodilators. Gen Pharmacol. 1991;22(2):337–40. .|||Ellis DZ, Nathanson JA, Sweadner KJ. Carbachol inhibits Na(+)-K(+)-ATPase activity in choroid plexus via stimulation of the NO/cGMP pathway. Am J Physiol Cell Physiol. 2000;279(6):C1685–93. Epub 2000/11/18. 10.1152/ajpcell.2000.279.6.C1685 .|||Ellis DZ, Sweadner KJ. NO regulation of Na,K-ATPase: nitric oxide regulation of the Na,K-ATPase in physiological and pathological states. Ann N Y Acad Sci. 2003;986:534–5. .|||Arakaki X, McCleary P, Techy M, Chiang J, Kuo L, Fonteh AN, et al. Na,K-ATPase alpha isoforms at the blood-cerebrospinal fluid-trigeminal nerve and blood-retina interfaces in the rat. Fluids and barriers of the CNS. 2013;10(1):14 10.1186/2045-8118-10-14|||Feschenko MS, Donnet C, Wetzel RK, Asinovski NK, Jones LR, Sweadner KJ. Phospholemman, a single-span membrane protein, is an accessory protein of Na,K-ATPase in cerebellum and choroid plexus. J Neurosci. 2003;23(6):2161–9. .|||Jurkat-Rott K, Freilinger T, Dreier JP, Herzog J, Gobel H, Petzold GC, et al. Variability of familial hemiplegic migraine with novel A1A2 Na+/K+-ATPase variants. Neurology. 2004;62(10):1857–61. 10.1212/01.wnl.0000127310.11526.fd .|||Tavraz NN, Friedrich T, Durr KL, Koenderink JB, Bamberg E, Freilinger T, et al. Diverse functional consequences of mutations in the Na+/K+-ATPase alpha2-subunit causing familial hemiplegic migraine type 2. J Biol Chem. 2008;283(45):31097–106. 10.1074/jbc.M802771200|||Lopatina EV, Yachnev IL, Penniyaynen VA, Plakhova VB, Podzorova SA, Shelykh TN, et al. Modulation of signal-transducing function of neuronal membrane Na+,K+-ATPase by endogenous ouabain and low-power infrared radiation leads to pain relief. Med Chem. 2012;8(1):33–9. .|||Zeng W, Chen X, Dohi S. Antinociceptive synergistic interaction between clonidine and ouabain on thermal nociceptive tests in the rat. The journal of pain: official journal of the American Pain Society. 2007;8(12):983–8. 10.1016/j.jpain.2007.07.006 .|||Zeng W, Dohi S, Shimonaka H, Asano T. Spinal antinociceptive action of Na+-K+ pump inhibitor ouabain and its interaction with morphine and lidocaine in rats. Anesthesiology. 1999;90(2):500–8. Epub 1999/02/10. .|||Masocha W, Gonzalez LG, Agil A. Distinguishing subgroups among mu-opioid receptor agonists using Na(+),K(+)-ATPase as an effector mechanism. Eur J Pharmacol. 2016;774:43–9. 10.1016/j.ejphar.2016.01.010 .|||Masocha W, Horvath G, Agil A, Ocana M, Del Pozo E, Szikszay M, et al. Role of Na(+), K(+)-ATPase in morphine-induced antinociception. J Pharmacol Exp Ther. 2003;306(3):1122–8. 10.1124/jpet.103.052977 .