Metabolic Evidence Rather Than Amounts of Red or Processed Meat as a Risk on Korean Colorectal Cancer.
Authors:
Journal: Metabolites
Publication Type: Journal Article
Date: 2021
DOI: PMC8303103
ID: 34357356
Abstract
The incidence of colorectal cancer (CRC) has increased in Korea, a newly- Asian country, with the dramatic increase of meat intake. To assess the risks of red or processed meat consumption on CRC, we performed a case-control study with biological monitoring of urinary1-OHP, PhIP, and MeIQx for the meat exposure; dG-C8 MeIQx and dG-C8 PhIP for HCA-induced DNA adducts; and homocysteine and C-reactive protein (CRP) in blood as well as malondialdehyde (MDA) and 31fatty acids in urine for inflammation and lipid alteration. We further analyzed global DNA methylation and expression of 15 CRC-related genes. As a result, the consumption of red or processed meat was not higher in the cases than in the controls. However, urinary MeIQx and PhIP were associated with the intake of red meat and urinary 1-OHP. MDA and multiple fatty acids were related to the exposure biomarkers. Most of the 31 fatty acids and multiple saturated fatty acids were higher in the cases than in the controls. Finally, the cases showed upregulation of , which is related to pro-inflammatory fatty acids. This study describes indirect mechanisms of CRC via lipid alteration with a series of processes including exposure to red meat, alteration of fatty acids, and relevant gene expression.
Reference List
- Red Meat and Processed Meat. IARC Working Group; Lyon, France: 2015. International Agency for Research on Cancer/ World Health Organization.|||Mattiuzzi C., Lippi G. Epidemiologic Burden of Red and Processed Meat Intake on Colorectal Cancer Mortality. Nutr. Cancer. 2020;73:562–567. doi: 10.1080/01635581.2020.1765259.|||Kweon S. Updates on Cancer Epidemiology in Korea, 2018. Chonnam Med. J. 2018;54:90–100. doi: 10.4068/cmj.2018.54.2.90.|||Lee S., Moon H., Kwak J., Kim J., Min B., Um J., Kim S. Relationship between meat and cereal consumption and colorectal cancer in Korea and Japan. J. Gastroenterol. Hepatol. 2008;23:138–140. doi: 10.1111/j.1440-1746.2007.05181.x.|||Wong M.C., Ding H., Wang J., Chan P.S., Huang J. Prevalence and risk factors of colorectal cancer in Asia. Intest. Res. 2019;17:317–329. doi: 10.5217/ir.2019.00021.|||Rawla P., Sunkara T., Barsouk A. Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors. Prz. Gastroenterol. 2019;14:89. doi: 10.5114/pg.2018.81072.|||Kruger C., Zhou Y. Red meat and colon cancer: A review of mechanistic evidence for heme in the context of risk assessment methodology. Food Chem. Toxicol. 2018;118:131–153. doi: 10.1016/j.fct.2018.04.048.|||Bouvard V., Loomis D., Guyton K.Z., Grosse Y., El Ghissassi F., Benbrahim-Tallaa L., Guha N., Mattock H., Straif K., Corpet D. Carcinogenicity of consumption of red and processed meat. Lancet Oncol. 2015;16:1599–1600. doi: 10.1016/S1470-2045(15)00444-1.|||Turesky R.J. Mechanistic evidence for red meat and processed meat intake and cancer risk: A follow-up on the international agency for research on cancer evaluation of 2015. CHIMIA Int. J. Chem. 2018;72:718–724. doi: 10.2533/chimia.2018.718.|||Kameyama H., Nagahashi M., Shimada Y., Tajima Y., Ichikawa H., Nakano M., Sakata J., Kobayashi T., Narayanan S., Takabe K. Genomic characterization of colitis-associated colorectal cancer. World J. Surg. Oncol. 2018;16:121. doi: 10.1186/s12957-018-1428-0.|||Khare S., Verma M. Epigenetics of colon cancer. Cancer Epigenetics. 2012:177–185.|||Pakiet A., Kobiela J., Stepnowski P., Sledzinski T., Mika A. Changes in lipids composition and metabolism in colorectal cancer: A review. Lipids Health Dis. 2019;18:29. doi: 10.1186/s12944-019-0977-8.|||Fernandes A.M.A., Messias M.C., Duarte G.H., de Santis G.K., Mecatti G.C., Porcari A.M., Murgu M., Simionato A.V.C., Rocha T., Martinez C.A. Plasma Lipid Profile Reveals Plasmalogens as Potential Biomarkers for Colon Cancer Screening. Metabolites. 2020;10:262. doi: 10.3390/metabo10060262.|||Christie W.W., Harwood J.L. Oxidation of polyunsaturated fatty acids to produce lipid mediators. Essays Biochem. 2020;64:401–421.|||Hur S.J., Jo C., Yoon Y., Jeong J.Y., Lee K.T. Controversy on the correlation of red and processed meat consumption with colorectal cancer risk: An Asian perspective. Crit. Rev. Food Sci. Nutr. 2019;59:3526–3537. doi: 10.1080/10408398.2018.1495615.|||Yang M., Koga M., Katoh T., Kawamoto T. A study for the proper application of urinary naphthols, new biomarkers for airborne polycyclic aromatic hydrocarbons. Arch. Environ. Contam. Toxicol. 1999;36:99–108. doi: 10.1007/s002449900447.|||Guo J., Yun B., Turesky R. DNA Damage, DNA Repair and Disease: Volume 1. RSC Publishing; London, UK: 2020. Biomonitoring of DNA Damage in Humans; pp. 1–26.|||Hidalgo-Estévez A.M., Stamatakis K., Jiménez-Martínez M., López-Pérez R., Fresno M. Cyclooxygenase 2-regulated genes an alternative avenue to the development of new therapeutic drugs for colorectal cancer. Front. Pharmacol. 2020;11:533. doi: 10.3389/fphar.2020.00533.|||Beyerle J., Frei E., Stiborova M., Habermann N., Ulrich C.M. Biotransformation of xenobiotics in the human colon and rectum and its association with colorectal cancer. Drug Metab. Rev. 2015;47:199–221. doi: 10.3109/03602532.2014.996649.|||Caramujo-Balseiro S., Faro C., Carvalho L. Metabolic pathways in sporadic colorectal carcinogenesis: A new proposal. Med. Hypotheses. 2021;148:110512. doi: 10.1016/j.mehy.2021.110512.|||Chen C., Wang L., Liao Q., Xu L., Huang Y., Zhang C., Ye H., Xu X., Ye M., Duan S. Association between six genetic polymorphisms and colorectal cancer: A meta-analysis. Genet. Test. Mol. Biomark. 2014;18:187–195. doi: 10.1089/gtmb.2013.0425.|||Sunami E., De Maat M., Vu A., Turner R.R., Hoon D.S. LINE-1 hypomethylation during primary colon cancer progression. PLoS One. 2011;6:e18884. doi: 10.1371/journal.pone.0018884.|||Fonteh A.N., Cipolla M., Chiang J., Arakaki X., Harrington M.G. Human cerebrospinal fluid fatty acid levels differ between supernatant fluid and brain-derived nanoparticle fractions, and are altered in Alzheimer’s disease. PLoS ONE. 2014;9:e100519. doi: 10.1371/journal.pone.0100519.|||Lee H.S., Park J.Y., Yang M. Chemopreventive Effects of Korean Red Ginseng (Panax ginseng Meyer) on Exposure to Polycyclic Aromatic Hydrocarbons. J. Ginseng Res. 2011;35:339–343. doi: 10.5142/jgr.2011.35.3.339.|||Shiao S.P.K., Lie A., Yu C.H. Meta-analysis of homocysteine-related factors on the risk of colorectal cancer. Oncotarget. 2018;9:25681–25697. doi: 10.18632/oncotarget.25355.|||Holm M., Saraswat M., Joenväärä S., Ristimäki A., Haglund C., Renkonen R. Colorectal cancer patients with different C-reactive protein levels and 5-year survival times can be differentiated with quantitative serum proteomics. PLoS ONE. 2018;13:e0195354. doi: 10.1371/journal.pone.0195354.|||Zhang L., Xia Y., Xia B., Nicodemus K.J., McGuffey J., McGahee E., Blount B., Wang L. High-throughput and sensitive analysis of urinary heterocyclic aromatic amines using isotope-dilution liquid chromatography–tandem mass spectrometry and robotic sample preparation system. Anal. Bioanal. Chem. 2016;408:8149–8161. doi: 10.1007/s00216-016-9917-x.|||Aglago E.K., Huybrechts I., Murphy N., Casagrande C., Nicolas G., Pischon T., Fedirko V., Severi G., Boutron-Ruault M., Fournier A. Consumption of fish and long-chain n-3 polyunsaturated fatty acids is associated with reduced risk of colorectal cancer in a large European cohort. Clin. Gastroenterol. Hepatol. 2020;18:654–666. e6. doi: 10.1016/j.cgh.2019.06.031.|||GeneCards. [(accessed on 17 June 2021)]; Available online: https://www.genecards.org.|||Hammerling U., Bergman Laurila J., Grafström R., Ilbäck N. Consumption of red/processed meat and colorectal carcinoma: Possible mechanisms underlying the significant association. Crit. Rev. Food Sci. Nutr. 2016;56:614–634. doi: 10.1080/10408398.2014.972498.|||Ministry of Agriculture, Food and Rural Affairs, Korea. [(accessed on 17 June 2021)]; Available online: https://lib.mafra.go.kr/skyblueimage/29722.pdf.|||National Institute of Food and Drug Safety Evaluation. [(accessed on 17 June 2021)]; Available online: http://nifds.go.kr/brd/m_21.|||Leem D., Yoon S., Oh K. Trends in dietary risk factors contributing to burden of chronic disease in Korean adults: Findings in Korea National Health and Nutrition Examination Survey, 2007-2015. Public Health Wkly. Rep. KCDC. 2018;11:27–33.|||Kim M.J., Kim S., Choi S., Lee I., Moon M.K., Choi K., Park Y.J., Cho Y.H., Kwon Y.M., Yoo J. Association of exposure to polycyclic aromatic hydrocarbons and heavy metals with thyroid hormones in general adult population and potential mechanisms. Sci. Total Environ. 2021;762:144227. doi: 10.1016/j.scitotenv.2020.144227.|||Lee I., Tran M., Evans-Nguyen T., Stickle D., Kim S., Han J., Park J.Y., Yang M. Detoxification of chlorella supplement on heterocyclic amines in Korean young adults. Environ. Toxicol. Pharmacol. 2015;39:441–446. doi: 10.1016/j.etap.2014.11.015.|||Konorev D., Koopmeiners J.S., Tang Y. Measurement of the heterocyclic amines 2-amino-9 H-pyrido [2,3-b] indole and 2-amino-1-methyl-6-phenylimidazo [4, 5-b] pyridine in urine: Effects of cigarette smoking. Chem. Res. Toxicol. 2015;28:2390–2399. doi: 10.1021/acs.chemrestox.5b00401.|||Pouzou J.G., Costard S., Zagmutt F.J. Probabilistic assessment of dietary exposure to heterocyclic amines and polycyclic aromatic hydrocarbons from consumption of meats and breads in the United States. Food Chem. Toxicol. 2018;114:361–374. doi: 10.1016/j.fct.2018.02.004.|||Kidd L.C., Stillwell W.G., Yu M.C., Wishnok J.S., Skipper P.L. Urinary Excretion of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in White, African-American, and Asian-American Men in Los Angeles County. Cancer Epidemiol. Prev. Biomark. 1999;8:439–445.|||Cuparencu C., Praticó G., Hemeryck L.Y., Harsha P.S.S., Noerman S., Rombouts C., Xi M., Vanhaecke L., Hanhineva K., Brennan L. Biomarkers of meat and seafood intake: An extensive literature review. Genes Nutr. 2019;14:1–30. doi: 10.1186/s12263-019-0656-4.|||Zeng L., Ruan M., Liu J., Wilde P., Naumova E.N., Mozaffarian D., Zhang F.F. Trends in Processed Meat, Unprocessed Red Meat, Poultry, and Fish Consumption in the United States, 1999–2016. J. Acad. Nutr. Diet. 2019;119:1085–1098.e12. doi: 10.1016/j.jand.2019.04.004.|||May-Wilson S., Sud A., Law P.J., Palin K., Tuupanen S., Gylfe A., Hänninen U.A., Cajuso T., Tanskanen T., Kondelin J. Pro-inflammatory fatty acid profile and colorectal cancer risk: A Mendelian randomisation analysis. Eur. J. Cancer. 2017;84:228–238. doi: 10.1016/j.ejca.2017.07.034.|||Parisi L.R., Li N., Atilla-Gokcumen G.E. Very long chain fatty acids are functionally involved in necroptosis. Cell Chem. Biol. 2017;24:1445–1454.e8. doi: 10.1016/j.chembiol.2017.08.026.|||Zhu X., Wang B., Zhang X., Chen X., Zhu J., Zou Y., Li J. Alpha-linolenic acid protects against lipopolysaccharide-induced acute lung injury through anti-inflammatory and anti-oxidative pathways. Microb. Pathog. 2020;142:104077. doi: 10.1016/j.micpath.2020.104077.|||Bellamri M., Xiao S., Murugan P., Weight C.J., Turesky R.J. Metabolic activation of the cooked meat carcinogen 2-amino-1-methyl-6-phenylimidazo [4, 5-b] pyridine in human prostate. Toxicol. Sci. 2018;163:543–556. doi: 10.1093/toxsci/kfy060.|||Park M., Noh H., Song N., Paik H., Park S., Joung H., Song W., Kim J. Validity and reliability of a dish-based, semi-quantitative food frequency questionnaire for Korean diet and cancer research. Asian Pac. J. Cancer Prev. 2012;13:545–552. doi: 10.7314/APJCP.2012.13.2.545.|||Quehenberger O., Armando A.M., Dennis E.A. High sensitivity quantitative lipidomics analysis of fatty acids in biological samples by gas chromatography–mass spectrometry. Biochim. Biophys. Acta BBA Mol. Cell Biol. Lipids. 2011;1811:648–656.