Quick Links

E-Cigarettes and Cardiopulmonary Health.

Authors: Robert Tarran|||R Graham Barr|||Neal L Benowitz|||Aruni Bhatnagar|||Hong W Chu|||Pamela Dalton|||Claire M Doerschuk|||M Bradley Drummond|||Diane R Gold|||Maciej L Goniewicz|||Eric R Gross|||Nadia N Hansel|||Philip K Hopke|||Robert A Kloner|||Vladimir B Mikheev|||Evan W Neczypor|||Kent E Pinkerton|||Lisa Postow|||Irfan Rahman|||Jonathan M Samet|||Matthias Salathe|||Catherine M Stoney|||Philip S Tsao|||Rachel Widome|||Tian Xia|||DaLiao Xiao|||Loren E Wold

Journal: Function (Oxford, England)

Publication Type: Journal Article

Date: 2021

DOI: PMC7948134

ID: 33748758

Affiliations:

Affiliations

    Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA.|||Department of Medicine, Columbia University, New York, NY, USA.|||Department of Medicine, University of California San Francisco, San Francisco, CA, USA.|||Department of Medicine, American Heart Association Tobacco Regulation Center University of Louisville, Louisville, KY, USA.|||Department of Medicine, National Jewish Health, Denver, CO, USA.|||Monell Chemical Senses Center, Philadelphia, PA, USA.|||Department of Medicine, Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA.|||Department of Medicine, Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA.|||Department of Environmental Health, Harvard T.H. Chan School of Public Health and the Channing Division of Network Medicine, Boston, MA, USA.|||Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.|||Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA.|||Division of Pulmonary & Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.|||Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.|||Huntington Medical Research Institutes, Pasadena, CA, USA.|||Individual and Population Health, Battelle Memorial Institute, Columbus, OH, USA.|||Biomedical Science Program, College of Medicine, The Ohio State University, Columbus, OH, USA.|||Center for Health and the Environment, University of California, Davis, CA, USA.|||National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.|||Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.|||Colorado School of Public Health, Aurora, CO, USA.|||Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA.|||National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.|||Division of Cardiovascular Medicine, VA Palo Alto Health Care System, Stanford University School of Medicine, Stanford, CA, USA.|||Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA.|||Department of Medicine, University of California, Los Angeles, CA, USA.|||Department of Basic Sciences, Lawrence D Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, USA.|||Dorothy M. Davis Heart and Lung Research Institute, Colleges of Medicine and Nursing, The Ohio State University, Columbus, OH, USA.

Abstract

E-cigarettes have surged in popularity over the last few years, particularly among youth and young adults. These battery-powered devices aerosolize e-liquids, comprised of propylene glycol and vegetable glycerin, typically with nicotine, flavors, and stabilizers/humectants. Although the use of combustible cigarettes is associated with several adverse health effects including multiple pulmonary and cardiovascular diseases, the effects of e-cigarettes on both short- and long-term health have only begun to be investigated. Given the recent increase in the popularity of e-cigarettes, there is an urgent need for studies to address their potential adverse health effects, particularly as many researchers have suggested that e-cigarettes may pose less of a health risk than traditional combustible cigarettes and should be used as nicotine replacements. This report is prepared for clinicians, researchers, and other health care providers to provide the current state of knowledge on how e-cigarette use might affect cardiopulmonary health, along with research gaps to be addressed in future studies.


Chemical List

    Nicotine

Reference List

    Services USDoHaH. E-cigarette use among youth and young adults: a report of the Surgeon General. 2016. Available at: https://e-cigarettes.surgeongeneral.gov/documents/2016_SGR_Full_Report_non-508.pdf.|||Bals R, Boyd J, Esposito S, et al.  Electronic cigarettes: a task force report from the European Respiratory Society. Eur Respir J  2019;53:1801151.|||Ahmad S, Sassano MF, Tarran R.  Loose ENDs: electronic nicotine delivery systems and the FDA’s recent enforcement policy. EMJ Respir  2020;8:93–96.|||Blount BC, Karwowski MP, Shields PG, et al.  Vitamin E acetate in bronchoalveolar-lavage fluid associated with EVALI. N Engl J Med  2019:382:697–705.|||Barrington-Trimis JL, Urman R, Berhane K, et al.  E-cigarettes and future cigarette use. Pediatrics  2016;138:e20160379.|||Brown CJ, Cheng JM.  Electronic cigarettes: product characterisation and design considerations. Tob Control  2014;23:ii4–10.|||Barrington-Trimis JL, Leventhal AM.  Adolescents’ use of “pod mod” E-cigarettes - urgent concerns. N Engl J Med  2018;379:1099–1102.|||Breitbarth AK, Morgan J, Jones AL.  E-cigarettes-an unintended illicit drug delivery system. Drug Alcohol Depend  2018;192:98–111.|||Villarroel MA, Cha AE, Vahratian A.  Electronic cigarette use among U.S. adults. NCHS Data Brief  2018;2020:1–8.|||Harlow AF, Stokes A, Brooks DR.  Socioeconomic and racial/ethnic differences in E-cigarette uptake among cigarette smokers: longitudinal analysis of the population assessment of tobacco and health (PATH) study. Nicotine Tob Res  2019;21:1385–1393.|||Primack BA, Soneji S, Stoolmiller M, Fine MJ, Sargent JD.  Progression to traditional cigarette smoking after electronic cigarette use among US adolescents and young adults. JAMA Pediatr  2015;169:1018–1023.|||Leventhal AM, Strong DR, Kirkpatrick MG, et al.  Association of electronic cigarette use with initiation of combustible tobacco product smoking in early adolescence. JAMA  2015;314:700–707.|||Pankow JF.  Calculating compound dependent gas-droplet distributions in aerosols of propylene glycol and glycerol from electronic cigarettes. J Aerosol Sci  2017;107:9–13.|||Stauffer D.  Kinetic theory of two-component (“hetero-molcular”) nucleation and condensation. J Aerosol Sci  1976;7:319–333.|||Ingebrethsen BJ, Cole SK, Alderman SL.  Electronic cigarette aerosol particle size distribution measurements. Inhal Toxicol  2012;24:976–984.|||Mikheev VB, Ivanov A, Lucas EA, South PL, Colijn HO, Clark PI.  Aerosol size distribution measurement of electronic cigarette emissions using combined differential mobility and inertial impaction methods. Smoking machine and puff topography influence. Aerosol Sci Technol  2018:52:1233–1248.|||Tsuda A, Henry FS, Butler JP.  Particle transport and deposition: basic physics of particle kinetics. Compr Physiol  2013;3:1437–1471.|||Feng Y, Kleinstreuer C, Castro N, Rostrami A.  Computational transport, phase change and deposition analysis of inhaled multicomponent droplet–vapor mixtures in an idealized human upper lung model. J Aerosol Sci  2016;96:96–123.|||Asgharian B, Price OT, Rostami AA, Pithawalla YB.  Deposition of inhaled electronic cigarette aerosol in the human oral cavity. J Aerosol Sci  2018;116:34–47.|||Cunningham A, Slayford S, Vas C, Gee J, Costigan S, Prasad K.  Development, validation and application of a device to measure e-cigarette users’ puffing topography. Sci Rep  2016;6:35071.|||Behar RZ, Hua M, Talbot P.  Puffing topography and nicotine intake of electronic cigarette users. PLoS One  2015;10:e0117222.|||St Helen G, Shahid M, Chu S, Benowitz NL.  Impact of e-liquid flavors on e-cigarette vaping behavior. Drug Alcohol Depend  2018;189:42–48.|||Spindle TR, Talih S, Hiler MM, et al.  Effects of electronic cigarette liquid solvents propylene glycol and vegetable glycerin on user nicotine delivery, heart rate, subjective effects, and puff topography. Drug Alcohol Depend  2018;188:193–199.|||Benowitz NL.  Pharmacology of nicotine: addiction, smoking-induced disease, and therapeutics. Annu Rev Pharmacol Toxicol  2009;49:57–71.|||Benowitz NL, Burbank AD.  Cardiovascular toxicity of nicotine: implications for electronic cigarette use. Trends Cardiovasc Med  2016;26:515–523.|||Huhtasaari F, Lundberg V, Eliasson M, Janlert U, Asplund K.  Smokeless tobacco as a possible risk factor for myocardial infarction: a population-based study in middle-aged men. J Am Coll Cardiol  1999;34:1784–1790.|||Li N, Si B, Ju JF, et al.  Nicotine induces cardiomyocyte hypertrophy through TRPC3-mediated Ca(2+)/NFAT signalling pathway. Can J Cardiol  2016;32:1260 e1–e10.|||Kugo H, Zaima N, Tanaka H, Urano T, Unno N, Moriyama T.  The effects of nicotine administration on the pathophysiology of rat aortic wall. Biotech Histochem  2017;92:141–148.|||Wagenhauser MU, Schellinger IN, Yoshino T, et al.  Chronic nicotine exposure induces murine aortic remodeling and stiffness segmentation-implications for abdominal aortic aneurysm susceptibility. Front Physiol  2018;9:1459.|||Centner AM, Bhide PG, Salazar G.  Nicotine in senescence and atherosclerosis. Cells  2020;9:1035.|||Schweitzer KS, Chen SX, Law S, et al.  Endothelial disruptive proinflammatory effects of nicotine and e-cigarette vapor exposures. Am J Physiol Lung Cell Mol Physiol  2015;309:L175–L187.|||Clunes LA, Bridges A, Alexis N, Tarran R.  In vivo versus in vitro airway surface liquid nicotine levels following cigarette smoke exposure. J Anal Toxicol  2008;32:201–207.|||Ghosh A, Coakley RD, Ghio AJ, et al.  Chronic E-cigarette use increases neutrophil elastase and matrix metalloprotease levels in the lung. Am J Respir Crit Care Med  2019;200:1392–1401.|||St Helen G, Ross KC, Dempsey DA, Havel CM, Jacob P 3rd, Benowitz NL.  Nicotine delivery and vaping behavior during ad libitum E-cigarette access. Tob Regul Sci  2016;2:363–276.|||Zanetti F, Giacomello M, Donati Y, Carnesecchi S, Frieden M, Barazzone-Argiroffo C.  Nicotine mediates oxidative stress and apoptosis through cross talk between NOX1 and Bcl-2 in lung epithelial cells. Free Radic Biol Med  2014;76:173–184.|||Dhouib H, Jallouli M, Draief M, Bouraoui S, El-Fazaa S.  Oxidative damage and histopathological changes in lung of rat chronically exposed to nicotine alone or associated to ethanol. Pathol Biol  2015;63:258–267.|||Mabley J, Gordon S, Pacher P.  Nicotine exerts an anti-inflammatory effect in a murine model of acute lung injury. Inflammation  2011;34:231–237.|||Vicary GW, Ritzenthaler JD, Panchabhai TS, Torres-Gonzalez E, Roman J.  Nicotine stimulates collagen type I expression in lung via alpha7 nicotinic acetylcholine receptors. Respir Res  2017;18:115.|||Chung S, Baumlin N, Dennis JS, et al.  Electronic cigarette vapor with nicotine causes airway mucociliary dysfunction preferentially via TRPA1 receptors. Am J Respir Crit Care Med  2019;200:1134–1145.|||Garcia-Arcos I, Geraghty P, Baumlin N, et al.  Chronic electronic cigarette exposure in mice induces features of COPD in a nicotine-dependent manner. Thorax  2016;71:1119–1129.|||Lambers DS, Clark KE.  The maternal and fetal physiologic effects of nicotine. Semin Perinatol  1996;20:115–126.|||de Jonge LL, Harris HR, Rich-Edwards JW, et al.  Parental smoking in pregnancy and the risks of adult-onset hypertension. Hypertension  2013;61:494–500.|||Nachmanoff DB, Panigrahy A, Filiano JJ, et al.  Brainstem 3H-nicotine receptor binding in the sudden infant death syndrome. J Neuropathol Exp Neurol  1998;57:1018–1025.|||Services USDoHaH. Smoking Cessation: A Report of the Surgeon General. Atlanta, GA: US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health; 2020.|||Sekhon HS, Keller JA, Proskocil BJ, Martin EL, Spindel ER.  Maternal nicotine exposure upregulates collagen gene expression in fetal monkey lung. Association with alpha7 nicotinic acetylcholine receptors. Am J Respir Cell Mol Biol  2002;26:31–41.|||Hayatbakhsh MR, Sadasivam S, Mamun AA, Najman JM, Williams GM, O’Callaghan MJ.  Maternal smoking during and after pregnancy and lung function in early adulthood: a prospective study. Thorax  2009;64:810–814.|||Gao YJ, Holloway AC, Su LY, Takemori K, Lu C, Lee RM.  Effects of fetal and neonatal exposure to nicotine on blood pressure and perivascular adipose tissue function in adult life. Eur J Pharmacol  2008;590:264–268.|||Wetendorf M, Randall LT, Lemma MT, et al.  E-cigarette exposure delays implantation and causes reduced weight gain in female offspring exposed in utero. J Endocr Soc  2019;3:1907–1916.|||Lawrence J, Xiao D, Xue Q, Rejali M, Yang S, Zhang L.  Prenatal nicotine exposure increases heart susceptibility to ischemia/reperfusion injury in adult offspring. J Pharmacol Exp Ther  2008;324:331–341.|||King BA, Jones CM, Baldwin GT, Briss PA.  The EVALI and youth vaping epidemics - implications for public health. N Engl J Med  2020;382:689–691.|||Andres RL, Day MC.  Perinatal complications associated with maternal tobacco use. Semin Neonatol  2000;5:231–241.||| FDA. Enforcement Priorities for Electronic Nicotine Delivery System (ENDS) and Other Deemed Products on the Market Without Premarket Authorization Center for Tobacco Products.  2020. Available at: https://www.fda.gov/media/133880/download|||St Helen G, Dempsey DA, Havel CM, Jacob P 3rd, Benowitz NL.  Impact of e-liquid flavors on nicotine intake and pharmacology of e-cigarettes. Drug Alcohol Depend  2017;178:391–398.|||Willis DN, Liu B, Ha MA, Jordt SE, Morris JB.  Menthol attenuates respiratory irritation responses to multiple cigarette smoke irritants. FASEB J  2011;25:4434–4444.|||Kreiss K.  Recognizing occupational effects of diacetyl: what can we learn from this history?  Toxicology  2017;388:48–54.|||Farsalinos KE, Kistler KA, Gillman G, Voudris V.  Evaluation of electronic cigarette liquids and aerosol for the presence of selected inhalation toxins. Nicotine Tob Res  2015;17:168–174.|||Sassano MF, Davis ES, Keating JE, et al.  Evaluation of e-liquid toxicity using an open-source high-throughput screening assay. PLoS Biol  2018;16:e2003904.|||Hua M, Omaiye EE, Luo W, McWhirter KJ, Pankow JF, Talbot P.  Identification of cytotoxic flavor chemicals in top-selling electronic cigarette refill fluids. Sci Rep  2019;9:2782.|||Clapp PW, Lavrich KS, van Heusden CA, Lazarowski ER, Carson JL, Jaspers I.  Cinnamaldehyde in flavored e-cigarette liquids temporarily suppresses bronchial epithelial cell ciliary motility by dysregulation of mitochondrial function. Am J Physiol Lung Cell Mol Physiol  2019;316:L470–L486.|||Kabbani N.  Not so Cool? Menthol's discovered actions on the nicotinic receptor and its implications for nicotine addiction. Front Pharmacol  2013;4:95.|||Premkumar LS.  Transient receptor potential channels as targets for phytochemicals. ACS Chem Neurosci  2014;5:1117–1130.|||Erythropel HC, Jabba SV, DeWinter TM, et al.  Formation of flavorant-propylene glycol adducts with novel toxicological properties in chemically unstable E-cigarette liquids. Nicotine Tob Res  2019;21:1248–1258.|||An SS, Liggett SB.  Taste and smell GPCRs in the lung: evidence for a previously unrecognized widespread chemosensory system. Cell Signal  2018;41:82–88.|||Behar RZ, Wang Y, Talbot P.  Comparing the cytotoxicity of electronic cigarette fluids, aerosols and solvents. Tob Control  2018;27:325–333.|||Harvanko A, Kryscio R, Martin C, Kelly T.  Stimulus effects of propylene glycol and vegetable glycerin in electronic cigarette liquids. Drug Alcohol Depend  2019;194:326–329.|||Zar T, Graeber C, Perazella MA.  Recognition, treatment, and prevention of propylene glycol toxicity. Semin Dial  2007;20:217–219.|||Glynos C, Bibli SI, Katsaounou P, et al.  Comparison of the effects of e-cigarette vapor with cigarette smoke on lung function and inflammation in mice. Am J Physiol Lung Cell Mol Physiol  2018;315:L662–L672.|||Phillips BW, Schlage WK, Titz B, et al.  A 90-day OECD TG 413 rat inhalation study with systems toxicology endpoints demonstrates reduced exposure effects of the aerosol from the carbon heated tobacco product version 1.2 (CHTP1.2) compared with cigarette smoke. I. Inhalation exposure, clinical pathology and histopathology. Food Chem Toxicol  2018;116:388–413.|||Madison MC, Landers CT, Gu BH, et al.  Electronic cigarettes disrupt lung lipid homeostasis and innate immunity independent of nicotine. J Clin Invest  2019;129:4290–4304.|||Anderson WH, Coakley RD, Button B, et al.  The relationship of mucus concentration (hydration) to mucus osmotic pressure and transport in chronic bronchitis. Am J Respir Crit Care Med  2015;192:182–190.|||Ghosh A, Coakley RC, Mascenik T, et al.  Chronic E-cigarette exposure alters the human bronchial epithelial proteome. Am J Respir Crit Care Med  2018;198:67–76.|||Reidel B, Radicioni G, Clapp PW, et al.  E-cigarette use causes a unique innate immune response in the lung, involving increased neutrophilic activation and altered mucin secretion. Am J Respir Crit Care Med  2018;197:492–501.|||Son Y, Mishin V, Laskin JD, et al.  Hydroxyl radicals in E-cigarette vapor and E-vapor oxidative potentials under different vaping patterns. Chem Res Toxicol  2019;32:1087–1095.|||Wang P, Chen W, Liao J, et al.  A device-independent evaluation of carbonyl emissions from heated electronic cigarette solvents. PLoS One  2017;12:e0169811.|||Sleiman M, Logue JM, Montesinos VN, et al.  Emissions from electronic cigarettes: key parameters affecting the release of harmful chemicals. Environ Sci Technol  2016;50:9644–9651.|||Luo J, Hill BG, Gu Y, et al.  Mechanisms of acrolein-induced myocardial dysfunction: implications for environmental and endogenous aldehyde exposure. Am J Physiol Heart Circ Physiol  2007;293:H3673–H3684.|||Bhatnagar A.  Cardiovascular pathophysiology of environmental pollutants. Am J Physiol Heart Circ Physiol  2004;286:H479–H485.|||Gross ER, Zambelli VO, Small BA, Ferreira JC, Chen CH, Mochly-Rosen D.  A personalized medicine approach for Asian Americans with the aldehyde dehydrogenase 22 variant. Annu Rev Pharmacol Toxicol  2015;55:107–127.|||Heymann HM, Gardner AM, Gross ER.  Aldehyde-induced DNA and protein adducts as biomarker tools for alcohol use disorder. Trends Mol Med  2018;24:144–155.|||Moore PJ, Reidel B, Ghosh A, Sesma J, Kesimer M, Tarran R.  Cigarette smoke modifies and inactivates SPLUNC1, leading to airway dehydration. FASEB J  2018;32:fj201800345R.|||Takamiya R, Uchida K, Shibata T, et al.  Disruption of the structural and functional features of surfactant protein A by acrolein in cigarette smoke. Sci Rep  2017;7:8304.|||Sapkota M, Wyatt TA.  Alcohol, aldehydes, adducts and airways. Biomolecules  2015;5:2987–3008.|||Olmedo P, Goessler W, Tanda S, et al.  Metal concentrations in e-cigarette liquid and aerosol samples: the contribution of metallic coils. Environ Health Perspect  2018;126:027010.|||Williams M, Villarreal A, Bozhilov K, Lin S, Talbot P.  Metal and silicate particles including nanoparticles are present in electronic cigarette cartomizer fluid and aerosol. PLoS One  2013;8:e57987.|||Goniewicz ML, Knysak J, Gawron M, et al.  Levels of selected carcinogens and toxicants in vapour from electronic cigarettes. Tob Control  2014;23:133–139.|||Bhatnagar A, Whitsel LP, Ribisl KM, et al.  Electronic cigarettes: a policy statement from the American Heart Association. Circulation  2014;130:1418–1436.|||Chaumont M, de Becker B, Zaher W, et al.  Differential effects of E-cigarette on microvascular endothelial function, arterial stiffness and oxidative stress: a randomized crossover trial. Sci Rep  2018;8:10378.|||Caporale A, Langham MC, Guo W, Johncola A, Chatterjee S, Wehrli FW.  Acute effects of electronic cigarette aerosol inhalation on vascular function detected at quantitative MRI. Radiology  2019;293:97–106.|||Hrubecky I, Andrys J, Kohoutek M, Vacha K. [ Puerperal sepsis and other severe infections in connection with pregnancy at the gynecological-obstetrical clinic in Hradec Kralove]. Sb Ved Pr Lek Fak Karlovy Univerzity Hradci Kralove Suppl  1978;21:123–126.|||Kerr DMI, Brooksbank KJM, Taylor RG, et al.  Acute effects of electronic and tobacco cigarettes on vascular and respiratory function in healthy volunteers: a cross-over study. J Hypertens  2019;37:154–166.|||McVeigh GE, Morgan DJ, Finkelstein SM, Lemay LA, Cohn JN.  Vascular abnormalities associated with long-term cigarette smoking identified by arterial waveform analysis. Am J Med  1997;102:227–231.|||Carnevale R, Sciarretta S, Violi F, et al.  Acute impact of tobacco vs electronic cigarette smoking on oxidative stress and vascular function. Chest  2016;150:606–612.|||Nicholls SJ, Hazen SL.  Myeloperoxidase and cardiovascular disease. Arterioscler Thromb Vasc Biol  2005;25:1102–1111.|||Biondi-Zoccai G, Sciarretta S, Bullen C, et al.  Acute effects of heat-not-burn, electronic vaping, and traditional tobacco combustion cigarettes: the Sapienza University of Rome-vascular assessment of proatherosclerotic effects of smoking (SUR - VAPES) 2 randomized trial. J Am Heart Assoc  2019;8:e010455.|||Klonizakis M, Crank H, Gumber A, Brose LS.  Smokers making a quit attempt using e-cigarettes with or without nicotine or prescription nicotine replacement therapy: Impact on cardiovascular function (ISME-NRT) - a study protocol. BMC Public Health  2017;17:293.|||Moheimani RS, Bhetraratana M, Yin F, et al.  Increased cardiac sympathetic activity and oxidative stress in habitual electronic cigarette users: implications for cardiovascular risk. JAMA Cardiol  2017;2:278–284.|||Hom S, Chen L, Wang T, Ghebrehiwet B, Yin W, Rubenstein DA.  Platelet activation, adhesion, inflammation, and aggregation potential are altered in the presence of electronic cigarette extracts of variable nicotine concentrations. Platelets  2016;27:694–702.|||Nocella C, Biondi-Zoccai G, Sciarretta S, et al.  Impact of tobacco versus electronic cigarette smoking on platelet function. Am J Cardiol  2018;122:1477–1481.|||Mobarrez F, Antoniewicz L, Hedman L, Bosson JA, Lundback M.  Electronic cigarettes containing nicotine increase endothelial and platelet derived extracellular vesicles in healthy volunteers. Atherosclerosis  2020;301:93–100.|||Antoniewicz L, Brynedal A, Hedman L, Lundback M, Bosson JA.  Acute effects of electronic cigarette inhalation on the vasculature and the conducting airways. Cardiovasc Toxicol  2019;19:441–450.|||Fetterman JL, Keith RJ, Palmisano JN, et al.  Alterations in vascular function associated with the use of combustible and electronic cigarettes. J Am Heart Assoc  2020;9:e014570.|||George J, Hussain M, Vadiveloo T, et al.  Cardiovascular effects of switching from tobacco cigarettes to electronic cigarettes. J Am Coll Cardiol  2019;74:3112–3120.|||Benowitz NL, Fraiman JB.  Cardiovascular effects of electronic cigarettes. Nat Rev Cardiol  2017;14:447–456.|||Anderson C, Majeste A, Hanus J, Wang S.  E-cigarette aerosol exposure induces reactive oxygen species, DNA damage, and cell death in vascular endothelial cells. Toxicol Sci  2016;154:332–340.|||Noel A, Hossain E, Perveen Z, Zaman H, Penn AL.  Sub-ohm vaping increases the levels of carbonyls, is cytotoxic, and alters gene expression in human bronchial epithelial cells exposed at the air-liquid interface. Respir Res  2020;21:305.|||Chatterjee S, Tao JQ, Johncola A, et al.  Acute exposure to e-cigarettes causes inflammation and pulmonary endothelial oxidative stress in nonsmoking, healthy young subjects. Am J Physiol Lung Cell Mol Physiol  2019;317:L155–L166.|||Kuntic M, Oelze M, Steven S, et al.  Short-term e-cigarette vapour exposure causes vascular oxidative stress and dysfunction: evidence for a close connection to brain damage and a key role of the phagocytic NADPH oxidase (NOX-2). Eur Heart J  2020;41:2472–2483.|||Kashiwagi H, Yuhki KI, Imamichi Y, et al.  Cigarette smoke extract inhibits platelet aggregation by suppressing cyclooxygenase activity. TH Open  2017;1:e122–e9.|||Qasim H, Karim ZA, Silva-Espinoza JC, et al.  Short-term E-cigarette exposure increases the risk of thrombogenesis and enhances platelet function in mice. J Am Heart Assoc  2018;7:e009264.|||Ramirez JEM, Karim ZA, Alarabi AB, et al.  The JUUL E-cigarette elevates the risk of thrombosis and potentiates platelet activation. J Cardiovasc Pharmacol Ther  2020;25:578–586.|||Gordon C, Gudi K, Krause A, et al.  Circulating endothelial microparticles as a measure of early lung destruction in cigarette smokers. Am J Respir Crit Care Med  2011;184:224–232.|||Vansickel AR, Weaver MF, Eissenberg T.  Clinical laboratory assessment of the abuse liability of an electronic cigarette. Addiction  2012;107:1493–1500.|||D’Ruiz CD, O’Connell G, Graff DW, Yan XS.  Measurement of cardiovascular and pulmonary function endpoints and other physiological effects following partial or complete substitution of cigarettes with electronic cigarettes in adult smokers. Regul Toxicol Pharmacol  2017;87:36–53.|||Moheimani RS, Bhetraratana M, Peters KM, et al.  . Sympathomimetic effects of acute E-cigarette use: role of nicotine and non-nicotine constituents. J Am Heart Assoc  2017;6:e006579.|||MacDonald A, Middlekauff HR.  Electronic cigarettes and cardiovascular health: what do we know so far?  Vasc Health Risk Manag  2019;15:159–174.|||Espinoza-Derout J, Hasan KM, Shao XM, et al.  Chronic intermittent electronic cigarette exposure induces cardiac dysfunction and atherosclerosis in apolipoprotein-E knockout mice. Am J Physiol Heart Circ Physiol  2019;317:H445–H459.|||Szostak J, Wong ET, Titz B, et al.  A 6-month systems toxicology inhalation study in ApoE(-/-) mice demonstrates reduced cardiovascular effects of E-vapor aerosols compared with cigarette smoke. Am J Physiol Heart Circ Physiol  2020;318:H604–H631.|||Crotty Alexander LE, Drummond CA, Hepokoski M, et al.  Chronic inhalation of e-cigarette vapor containing nicotine disrupts airway barrier function and induces systemic inflammation and multiorgan fibrosis in mice. Am J Physiol Regul Integr Comp Physiol  2018;314:R834–R847.|||Farsalinos KE, Romagna G, Allifranchini E, et al.  Comparison of the cytotoxic potential of cigarette smoke and electronic cigarette vapour extract on cultured myocardial cells. Int J Environ Res Public Health  2013;10:5146–5162.|||Vardavas CI, Anagnostopoulos N, Kougias M, Evangelopoulou V, Connolly GN, Behrakis PK.  Short-term pulmonary effects of using an electronic cigarette: impact on respiratory flow resistance, impedance, and exhaled nitric oxide. Chest  2012;141:1400–1406.|||Flouris AD, Chorti MS, Poulianiti KP, et al.  Acute impact of active and passive electronic cigarette smoking on serum cotinine and lung function. Inhal Toxicol  2013;25:91–101.|||Staudt MR, Salit J, Kaner RJ, Hollmann C, Crystal RG.  Altered lung biology of healthy never smokers following acute inhalation of E-cigarettes. Respir Res  2018;19:78.|||Boulay ME, Henry C, Bosse Y, Boulet LP, Morissette MC.  Acute effects of nicotine-free and flavour-free electronic cigarette use on lung functions in healthy and asthmatic individuals. Respir Res  2017;18:33.|||Leem AY, Park B, Kim YS, Chang J, Won S, Jung JY.  Longitudinal decline in lung function: a community-based cohort study in Korea. Sci Rep  2019;9:13614.|||Meo SA, Ansary MA, Barayan FR, et al.  Electronic cigarettes: impact on lung function and fractional exhaled nitric oxide among healthy adults. Am J Mens Health  2019;13:1557988318806073.|||Veldheer S, Yingst J, Midya V, et al.  Pulmonary and other health effects of electronic cigarette use among adult smokers participating in a randomized controlled smoking reduction trial. Addict Behav  2019;91:95–101.|||Cibella F, Campagna D, Caponnetto P, et al.  Lung function and respiratory symptoms in a randomized smoking cessation trial of electronic cigarettes. Clin Sci (Lond)  2016;130:1929–1937.|||Lambert AA, Bhatt SP.  Respiratory symptoms in smokers with normal spirometry: clinical significance and management considerations. Curr Opin Pulm Med  2019;25:138–143.|||Wills TA, Pagano I, Williams RJ, Tam EK.  E-cigarette use and respiratory disorder in an adult sample. Drug Alcohol Depend  2019;1:363–370.|||McConnell R, Barrington-Trimis JL, Wang K, et al.  Electronic cigarette use and respiratory symptoms in adolescents. Am J Respir Crit Care Med  2017;195:10431049.|||Cho JH, Paik SY.  Association between electronic cigarette use and asthma among high school students in South Korea. PLoS One  2016;11:e0151022.|||Schweitzer RJ, Wills TA, Tam E, Pagano I, Choi K.  E-cigarette use and asthma in a multiethnic sample of adolescents. Prev Med  2017;105:226–231.|||Schober W, Szendrei K, Matzen W, et al.  Use of electronic cigarettes (e-cigarettes) impairs indoor air quality and increases FeNO levels of e-cigarette consumers. Int J Hyg Environ Health  2014;217:628–637.|||Bhatta DN, Glantz SA.  Association of E-cigarette use with respiratory disease among adults: a longitudinal analysis. Am J Prev Med  2020;58:182–190.|||Bowler RP, Hansel NN, Jacobson S, et al.  Electronic cigarette use in US adults at risk for or with COPD: analysis from two observational cohorts. J Gen Intern Med  2017;32:1315–1322.|||Tsai M, Song MA, McAndrew C, et al.  Electronic versus combustible cigarette effects on inflammasome component release into human lung. Am J Respir Crit Care Med  2019;199:922–925.|||Lerner CA, Sundar IK, Yao H, et al.  Vapors produced by electronic cigarettes and e-juices with flavorings induce toxicity, oxidative stress, and inflammatory response in lung epithelial cells and in mouse lung. PLoS One  2015;10:e0116732.|||Sussan TE, Gajghate S, Thimmulappa RK, et al.  Exposure to electronic cigarettes impairs pulmonary anti-bacterial and anti-viral defenses in a mouse model. PLoS One  2015;10:e0116861.|||Husari A, Shihadeh A, Talih S, Hashem Y, El Sabban M, Zaatari G.  Acute exposure to electronic and combustible cigarette aerosols: effects in an animal model and in human alveolar cells. Nicotine Tob Res  2016;18:613–619.|||Hwang JH, Lyes M, Sladewski K, et al.  Electronic cigarette inhalation alters innate immunity and airway cytokines while increasing the virulence of colonizing bacteria. J Mol Med  2016;94:667–679.|||Martin EM, Clapp PW, Rebuli ME, et al.  E-cigarette use results in suppression of immune and inflammatory-response genes in nasal epithelial cells similar to cigarette smoke. Am J Physiol Lung Cell Mol Physiol  2016;311:L135–144.|||Chaumont M, van de Borne P, Bernard A, et al.  Fourth generation e-cigarette vaping induces transient lung inflammation and gas exchange disturbances: results from two randomized clinical trials. Am J Physiol Lung Cell Mol Physiol  2019;316:L705–L719.|||Lee HW, Park SH,, Weng MW, et al.  E-cigarette smoke damages DNA and reduces repair activity in mouse lung, heart, and bladder as well as in human lung and bladder cells. Proc Natl Acad Sci USA  2018;115:E1560–E1569.|||Canistro D, Vivarelli F, Cirillo S, et al.  E-cigarettes induce toxicological effects that can raise the cancer risk. Sci Rep  2017;7:2028.|||Miyashita L, Suri R, Dearing E, et al.  E-cigarette vapour enhances pneumococcal adherence to airway epithelial cells. Eur Respir J  2018;7.|||Twigg MS, Brockbank S, Lowry P, FitzGerald SP, Taggart C, Weldon S.  The role of serine proteases and antiproteases in the cystic fibrosis lung. Mediators Inflamm  2015;2015:293053.|||Ghosh A, Boucher RC, Tarran R.  Airway hydration and COPD. Cell Mol Life Sci  2015;72:3637–3652.|||Reinikovaite V, Rodriguez IE, Karoor V, et al.  The effects of electronic cigarette vapour on the lung: direct comparison to tobacco smoke. Eur Respir J  2018;51.|||Tang MS, Wu XR, Lee HW, et al.  Electronic-cigarette smoke induces lung adenocarcinoma and bladder urothelial hyperplasia in mice. Proc Natl Acad Sci USA  2019;116:21727–21731.|||Kowitt SD, Osman A, Meernik C, et al.  Vaping cannabis among adolescents: prevalence and associations with tobacco use from a cross-sectional study in the USA. BMJ Open  2019;9:e028535.|||Giroud C, de Cesare M, Berthet A, Varlet V, Concha-Lozano N, Favrat B.  E-cigarettes: a review of new trends in cannabis use. Int J Environ Res Public Health  2015;12:9988–10008.|||Varlet V, Concha-Lozano N, Berthet A, et al.  Drug vaping applied to cannabis: is “Cannavaping” a therapeutic alternative to marijuana?  Sci Rep  2016;6:25599.|||Bhat TA, Kalathil SG, Bogner PN, Blount BC, Goniewicz ML, Thanavala YM.  An animal model of inhaled vitamin E acetate and EVALI-like lung injury. N Engl J Med  2020;382:1175–1177.|||Tzadok M, Uliel-Siboni S, Linder I, et al.  CBD-enriched medical cannabis for intractable pediatric epilepsy: The current Israeli experience. Seizure  2016;35:41–44.|||Javadi-Paydar M, Nguyen JD, Kerr TM, et al.  Effects of Delta9-THC and cannabidiol vapor inhalation in male and female rats. Psychopharmacology  2018;235:2541–2557.|||Muthumalage T, Friedman MR, McGraw MD, Ginsberg G, Friedman AE, Rahman I.  Chemical constituents involved in E-cigarette, or vaping product use-associated lung injury (EVALI). Toxics  2020;825.|||Henry TS, Kanne JP, Kligerman SJ.  Imaging of vaping-associated lung disease. N Engl J Med  2019;381:1486–1487.|||Blagev DP, Harris D, Dunn AC, Guidry DW, Grissom CK, Lanspa MJ.  Clinical presentation, treatment, and short-term outcomes of lung injury associated with e-cigarettes or vaping: a prospective observational cohort study. Lancet  2019;394:2073–2083.|||Rao DR, Maple KL, Dettori A, et al.  Clinical features of E-cigarette, or vaping, product use-associated lung injury in teenagers. Pediatrics  2020;146:e20194104.|||Carroll BJ, Kim M, Hemyari A, et al.  Impaired lung function following e-cigarette or vaping product use associated lung injury in the first cohort of hospitalized adolescents. Pediatr Pulmonol  2020;55:1712–1718.|||Li D, Sundar IK, McIntosh S, et al.  Association of smoking and electronic cigarette use with wheezing and related respiratory symptoms in adults: cross-sectional results from the Population Assessment of Tobacco and Health (PATH) study, wave 2. Tob Control  2020;29:140–147.|||Osei AD, Mirbolouk M, Orimoloye OA, et al.  The association between e-cigarette use and asthma among never combustible cigarette smokers: behavioral risk factor surveillance system (BRFSS) 2016 & 2017. BMC Pulm Med  2019;19:180.|||Fernandez E, Ballbe M, Sureda X, Fu M, Salto E, Martinez-Sanchez JM.  Particulate matter from electronic cigarettes and conventional cigarettes: a systematic review and observational study. Curr Environ Health Rep  2015;2:423–429.|||Marcham CL, Floyd EL, Wood BL, Arnold S, Johnson DL.  E-cigarette nicotine deposition and persistence on glass and cotton surfaces. J Occup Environ Hyg  2019;16:349–354.|||Goniewicz ML, Lee L.  Electronic cigarettes are a source of thirdhand exposure to nicotine. Nicotine Tob Res  2015;17:256–258.|||Davis ES, Sassano MF, Goodell H, Tarran R.  E-liquid autofluorescence can be used as a marker of vaping deposition and third-hand vape exposure. Sci Rep  2017;7:7459.|||Liu J, Liang Q, Oldham MJ, et al.  Determination of selected chemical levels in room air and on surfaces after the use of cartridge- and tank-based E-vapor products or conventional cigarettes. Int J Environ Res Public Health  2017;14:969.|||Tsuji H, Larson MG, Venditti FJ Jr., et al.  Impact of reduced heart rate variability on risk for cardiac events. The Framingham Heart Study. Circulation  1996;94:2850–2855.|||Sjoberg N, Saint DA.  A single 4 mg dose of nicotine decreases heart rate variability in healthy nonsmokers: implications for smoking cessation programs. Nicotine Tob Res  2011;13:369–372.|||Rowell TR, Keating JE, Zorn BT, Glish GL, Shears SB, Tarran R.  Flavored e-liquids increase cytoplasmic Ca(2+) levels in airway epithelia. Am J Physiol Lung Cell Mol Physiol  2020;318:L226–L241.