Quick Links

Publications:

Opportunistic AI-derived adiposity measures from coronary artery calcium scans predict new-onset type 2 diabetes in adults witho

Authors: Morteza Naghavi|||Amir Azimi|||Kyle Atlas|||Anthony P Reeves|||Chenyu Zhang|||Jakob Wasserthal|||Seyed Reza Mirjalili|||Mohammadhossein Mozafarybazargany|||Ali Hashemi|||Thomas Atlas|||Claudia I Henschke|||David F Yankelevitz|||Jeffrey I Mechanick|||Andrea D Branch|||Susan K Fried|||Khurram Nasir|||Zahi A Fayad|||Michael V McConnell|||Rozemarijn Vliegenthart|||David J Maron|||Jagat Narula|||Kim A Williams|||Prediman K Shah|||Matthew J Budoff|||Daniel Levy|||Emelia J Benjamin|||Robert A Kloner|||Nathan D Wong

Journal: Diabetology & metabolic syndrome

Publication Type: Journal Article

Date: 2025

DOI: PMC12590910

ID: 41199381

Affiliations:

Affiliations

    HeartLung.AI, Houston, 77021, TX, US. mn@vp.org.|||HeartLung.AI, Houston, 77021, TX, US.|||HeartLung.AI, Houston, 77021, TX, US.|||Department of Electrical and Computer Engineering, Cornell University, Ithaca, 14853, NY, USA.|||HeartLung.AI, Houston, 77021, TX, US.|||Clinic of Radiology and Nuclear Medicine, University Hospital Basel, Petersgraben 4, Basel, CH-4031, Switzerland.|||HeartLung.AI, Houston, 77021, TX, US.|||HeartLung.AI, Houston, 77021, TX, US.|||HeartLung.AI, Houston, 77021, TX, US.|||Tustin Teleradiology, Tustin, 92780, CA, USA.|||Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.|||Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.|||Kravis Center for Clinical Cardiovascular Health, Mount Sinai Fuster Heart Hospital, New York, 10029, NY, USA.|||Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.|||Diabetes Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.|||Houston Methodist Hospital, Houston, 77030, TX, USA.|||BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA.|||Stanford Prevention Research Center, Stanford University School of Medicine, Stanford, 94305, CA, USA.|||Department of Radiology, University Medical Center, Groningen, 9713, GZ, Netherlands.|||Stanford Prevention Research Center, Stanford University School of Medicine, Stanford, 94305, CA, USA.|||University of Texas Health-McGovern Medical School, Houston, 77030, TX, USA.|||University of Louisville, Louisville, 40202, KY, USA.|||Cedars-Sinai Medical Center, Los Angeles, 90048, CA, USA.|||The Lundquist Institute, Los Angeles, 90502, CA, USA.|||Population Sciences Branch, Division of Intramural Research, Lung, and Blood Institute, National Heart, National Institutes of Health, Bethesda, 20824, MD, USA.|||Boston Medical Center and Chobanian & Avedisian School of Medicine and School of Public Health, Boston University, Boston, 02218, MA, USA.|||Huntington Medical Research Institutes, Pasadena, 91105, CA, USA.|||Heart Disease Prevention Program, Mary and Steve Wen Cardiovascular Division, University of California Irvine, Irvine, 92697, CA, USA.

Abstract

The AI-CVD initiative aims to maximize the value of coronary artery calcium (CAC) scans for cardiometabolic risk prediction by extracting opportunistic screening information. We investigated whether artificial intelligence (AI)-derived measures from CAC scans are associated with new-onset Type 2 diabetes mellitus (T2DM) in adults without obesity or hyperglycemia.


Reference List

    Abdul Basith Khan M, Hashim MJ, King JK, Govender RD, Mustafa H, Al Kaabi J. Epidemiology of type 2 diabetes—global burden of disease and forecasted trends. J Epidemiol Glob Health. 2020;10(1):107–11.|||Tallam H, Elton DC, Lee S, Wakim P, Pickhardt PJ, Summers RM. Fully automated abdominal CT biomarkers for type 2 diabetes using deep learning. Radiology. 2022;304(1):85–95.|||Beagley J, Guariguata L, Weil C, Motala AA. Global estimates of undiagnosed diabetes in adults. Diabetes Res Clin Pract. 2014;103(2):150–60.|||Tang Z, Fang Z, Huang W, Liu Z, Chen Y, Li Z, et al. Non-obese diabetes and its associated factors in an underdeveloped area of South China, Guangxi. Int J Environ Res Public Health. 2016;13(10):976.|||Tang Y, Wei Z, Li N, Jiang C, Liang C, Sun L, et al. CT quantitation and prediction of the risk of type 2 diabetes mellitus in non-obese patients with pancreatic fatty infiltration. Diabetes Metab Syndr Obes. 2024. 10.2147/DMSO.S455966.|||Gujral UP, Weber MB, Staimez LR, Narayan KV. Diabetes among non-overweight individuals: an emerging public health challenge. Curr Diab Rep. 2018;18:1–10.|||Zhu Y, Sidell MA, Arterburn D, Daley MF, Desai J, Fitzpatrick SL, et al. Racial/ethnic disparities in the prevalence of diabetes and prediabetes by BMI: patient outcomes research to advance learning (PORTAL) multisite cohort of adults in the US. Diabetes Care. 2019;42(12):2211–9.|||Higashiura Y, Furuhashi M, Tanaka M, Takahashi S, Koyama M, Ohnishi H, et al. High level of fatty liver index predicts new onset of diabetes mellitus during a 10-year period in healthy subjects. Sci Rep. 2021;11(1):12830.|||Pickhardt PJ. Value-added opportunistic CT screening: state of the art. Radiology. 2022;303(2):241–54.|||Fu Y, Ippolito JE, Ludwig DR, Nizamuddin R, Li HH, Yang D. Automatic segmentation of CT images for ventral body composition analysis. Med Phys. 2020;47(11):5723–30.|||Mechanick JI, Farkouh ME, Newman JD, Garvey WT. Cardiometabolic-based chronic disease, adiposity and dysglycemia drivers: JACC state-of-the-art review. J Am Coll Cardiol. 2020;75(5):525–38.|||Naghavi M, Reeves A, Atlas K, Zhang C, Atlas T, Henschke C et al. AI-enabled Cardiac Chambers Volumetry and Calcified Plaque Characterization in Coronary Artery Calcium (CAC) Scans (AI-CAC) Significantly Improves on Agatston CAC Score for Predicting All Cardiovascular Events: The Multi-Ethnic Study of Atherosclerosis. Research Square. 2024;rs-3.|||Naghavi M, Atlas K, Jaberzadeh A, Zhang C, Manubolu V, Li D, et al. Validation of opportunistic artificial intelligence-based bone mineral density measurements in coronary artery calcium scans. J Am Coll Radiol. 2024;21(4):624–32.|||Naghavi M, De Oliveira I, Mao SS, Jaberzadeh A, Montoya J, Zhang C, et al. Opportunistic AI-enabled automated bone mineral density measurements in lung cancer screening and coronary calcium scoring CT scans are equivalent. Eur J Radiol Open. 2023;10:100492.|||Naghavi M, Yankelevitz D, Reeves AP, Budoff MJ, Li D, Atlas K, et al. AI-enabled left atrial volumetry in coronary artery calcium scans (AI-CACTM) predicts atrial fibrillation as early as one year, improves CHARGE-AF, and outperforms NT-proBNP: the multi-ethnic study of atherosclerosis. J Cardiovasc Comput Tomogr. 2024;18(4):383–91.|||Naghavi M, Reeves A, Budoff M, Li D, Atlas K, Zhang C, et al. AI-enabled cardiac chambers volumetry in coronary artery calcium scans (AI-CACTM) predicts heart failure and outperforms NT-proBNP: the multi-ethnic study of atherosclerosis. J Cardiovasc Comput Tomogr. 2024;18(4):392–400.|||Naghavi M, Reeves AP, Atlas KC, Zhang C, Li D, Atlas T, et al. AI-enabled CT cardiac chamber volumetry predicts atrial fibrillation and stroke comparable to MRI. JACC: Advances. 2024;3(11):101300.|||Naghavi M, Atlas K, Reeves A, Zhang C, Wasserthal J, Atlas T, Henschke CI, Yankelevitz DF, Zulueta JJ, Budoff MJ, Branch AD. AI-enabled opportunistic measurement of liver steatosis in coronary artery calcium scans predicts cardiovascular events and all-cause mortality: an AI-CVD study within the Multi-Ethnic Study of Atherosclerosis (MESA). BMJ Open Diabetes Res Care. 2025;13(2). 10.1136/bmjdrc-2024-004760.|||Zeng Q, Wang L, Dong S, Zha X, Ran L, Li Y, et al. CT-derived abdominal adiposity: distributions and better predictive ability than BMI in a nationwide study of 59,429 adults in China. Metabolism. 2021;115:154456.|||Chang Y, Yoon SH, Kwon R, Kang J, Kim YH, Kim JM, et al. Automated comprehensive CT assessment of the risk of diabetes and associated cardiometabolic conditions. Radiology. 2024;312(2):e233410.|||Bild DE, Bluemke DA, Burke GL, Detrano R, Diez Roux AV, Folsom AR, et al. Multi-ethnic study of atherosclerosis: objectives and design. Am J Epidemiol. 2002;156(9):871–81.|||on the Diagnosis EC. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care. 2000;23:S4–19.|||Carr JJ, Nelson JC, Wong ND, McNitt-Gray M, Arad Y, Jacobs DR Jr, et al. Calcified coronary artery plaque measurement with cardiac CT in population-based studies: standardized protocol of Multi-Ethnic study of atherosclerosis (MESA) and coronary artery risk development in young adults (CARDIA) study. Radiology. 2005;234(1):35–43.|||Wasserthal J, Breit HC, Meyer MT, Pradella M, Hinck D, Sauter AW, et al. Totalsegmentator: robust segmentation of 104 anatomic structures in CT images. Radiology: Artificial Intelligence. 2023;5(5):e230024.|||Cardoso MJ, Li W, Brown R, Ma N, Kerfoot E, Wang Y, Murrey B, Myronenko A, Zhao C, Yang D, Nath V. Monai: An open-source framework for deep learning in healthcare. 2022. arXiv preprint arXiv:2211.02701.|||Yao Z, Gholami A, Shen S, Mustafa M, Keutzer K, Mahoney M. Adahessian: An adaptive second order optimizer for machine learning. In proceedings of the AAAI conference on artificial intelligence 2021 May 18 (Vol. 35, No. 12, pp. 10665–10673). 10.1609/aaai.v35i12.17275.|||Haji-Momenian S, Parkinson W, Khati N, Brindle K, Earls J, Zeman RK. Single-energy non-contrast hepatic steatosis criteria applied to virtual non-contrast images: is it still highly specific and positively predictive? Clin Radiol. 2018;73(6):594–e7.|||Limanond P, Raman SS, Lassman C, Sayre J, Ghobrial RM, Busuttil RW, et al. Macrovesicular hepatic steatosis in living related liver donors: correlation between CT and histologic findings. Radiology. 2004;230(1):276–80.|||Pickhardt PJ, Graffy PM, Reeder SB, Hernando D, Li K. Quantification of liver fat content with unenhanced MDCT: phantom and clinical correlation with MRI proton density fat fraction. Am J Roentgenol. 2018;211(3):W151-7.|||Haghshomar M, Antonacci D, Smith AD, Thaker S, Miller FH, Borhani AA. Diagnostic accuracy of CT for the detection of hepatic steatosis: a systematic review and meta-analysis. Radiology. 2024;313(2):e241171.|||Tan K. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. The lancet. 2004.|||American Diabetes Association. 2007. Available from [Internet]. Available from: https://diabetes.org/diabetes/risk-test|||Mantovani A, Byrne CD, Bonora E, Targher G. Nonalcoholic fatty liver disease and risk of incident type 2 diabetes: a meta-analysis. Diabetes Care. 2018;41(2):372–82.|||Shah RV, Allison MA, Lima JA, Bluemke DA, Abbasi SA, Ouyang P, et al. Liver fat, statin use, and incident diabetes: the Multi-Ethnic study of atherosclerosis. Atherosclerosis. 2015;242(1):211–7.|||Han JM, Cho JH, Kim HI, Suh S, Lee YJ, Lee JW, et al. Greater severity of steatosis is associated with a higher risk of incident diabetes: a retrospective longitudinal study. Endocrinol Metab. 2023;38(4):418–25.|||Lee JJ, Pedley A, Therkelsen KE, Hoffmann U, Massaro JM, Levy D, et al. Upper body subcutaneous fat is associated with cardiometabolic risk factors. Am J Med. 2017;130(8):958–66.|||Pishgar F, Shabani M, Quinaglia AC, Silva T, Bluemke DA, Budoff M, et al. Adipose tissue biomarkers and type 2 diabetes incidence in normoglycemic participants in the mesarthritis ancillary study: a cohort study. PLoS Med. 2021;18(7):e1003700.|||Wander PL, Boyko EJ, Leonetti DL, McNeely MJ, Kahn SE, Fujimoto WY. Change in visceral adiposity independently predicts a greater risk of developing type 2 diabetes over 10 years in Japanese Americans. Diabetes Care. 2013;36(2):289–93.|||Wang C, Hsu H, Hung W, Yu T, Chen Y, Chiu C, et al. Increased epicardial adipose tissue (EAT) volume in type 2 diabetes mellitus and association with metabolic syndrome and severity of coronary atherosclerosis. Clin Endocrinol. 2009;70(6):876–82.|||Morteza Naghavi AP, Reeves K, Atlas C, Zhang J, Wasserthal T, Atlas et al. AI Measurement of Myosteatosis in Cardiac CT Predicts Atrial Fibrillation and Heart Failure in MESA. Under review. 2025.|||Naghavi M, Atlas K, Azimi A, Zhang C, Reeves A, Atlas T, et al. Artificial intelligence-derived myosteatosis on cardiac CT and incident COPD risk: an AI-CVD study. J Cardiovasc Comput Tomogr. 2025;19(4):S64–S5.|||Sachs S, Zarini S, Kahn DE, Harrison KA, Perreault L, Phang T, et al. Intermuscular adipose tissue directly modulates skeletal muscle insulin sensitivity in humans. Am J Physiology-Endocrinology Metabolism. 2019;316(5):E866–79.|||Jun JE, Lee SE, Lee YB, Kim G, Jin SM, Jee JH, et al. Low skeletal muscle mass accompanied by abdominal obesity additively increases the risk of incident type 2 diabetes. J Clin Endocrinol Metab. 2023;108(5):1173–80.|||Boettcher M, Machann J, Stefan N, Thamer C, Häring H, Claussen CD, et al. Intermuscular adipose tissue (IMAT): association with other adipose tissue compartments and insulin sensitivity. J Magn Reson Imaging. 2009;29(6):1340–5.|||Han SJ, Boyko EJ, Kim SK, Fujimoto WY, Kahn SE, Leonetti DL. Association of thigh muscle mass with insulin resistance and incident type 2 diabetes mellitus in Japanese Americans. Diabetes Metab J. 2018;42:e31.|||Lugner M, Rawshani A, Helleryd E, Eliasson B. Identifying top ten predictors of type 2 diabetes through machine learning analysis of UK biobank data. Sci Rep. 2024;14(1):2102.|||Messenger B, Li D, Nasir K, Carr JJ, Blankstein R, Budoff MJ. Coronary calcium scans and radiation exposure in the multi-ethnic study of atherosclerosis. Int J Cardiovasc Imaging. 2016;32(3):525–9. 10.1007/s10554-015-0799-3.