Quick Links

Publications:

A new hybrid echocardiography and arterial pressure waveform approach for non-invasive reconstruction of the entire left ventric

Authors: Coskun Bilgi|||Rashid Alavi|||Jiajun Li|||Wangde Dai|||Abdallah Elkhal|||Ray V Matthews|||Robert A Kloner|||Niema M Pahlevan

Journal: European heart journal. Imaging methods and practice

Publication Type: Journal Article

Date: 2025

DOI: PMC12604097

ID: 41230124

Affiliations:

Affiliations

    Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA, USA.|||Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA.|||Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA, USA.|||Cardiovascular Research Institute, Huntington Medical Research Institutes, Pasadena, CA, USA.|||Cardiovascular Research Institute, Huntington Medical Research Institutes, Pasadena, CA, USA.|||Division of Cardiovascular Medicine, Viterbi School of Engineering and Keck School of Medicine, University of Southern California, 1002 Childs Way, MCB 470, Los Angeles, CA 90089, USA.|||Cardiovascular Research Institute, Huntington Medical Research Institutes, Pasadena, CA, USA.|||Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA, USA.

Abstract

Non-invasive estimation of left ventricular pressure (LVP) is crucial for managing cardiovascular diseases such as heart failure and myocardial infarction (MI). Current clinical practices rely on invasive catheterization, limiting its feasibility for routine or longitudinal monitoring. This study evaluates the accuracy of a novel LVP reconstruction algorithm in preclinical (rat) experiments.


Reference List

    Paulus  WJ, Tschöpe  C, Sanderson  JE, Rusconi  C, Flachskampf  FA, Rademakers  FE  et al.  How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the heart failure and echocardiography associations of the European Society of Cardiology. Eur Heart J  2007;28:2539–50.|||Baicu  CF, Zile  MR, Aurigemma  GP, Gaasch  WH. Left ventricular systolic performance, function, and contractility in patients with diastolic heart failure. Circulation  2005;111:2306–12.|||Maurer  MS, King  DL, Rumbarger  LE-K, Packer  M, Burkhoff  D. Left heart failure with a normal ejection fraction: identification of different pathophysiologic mechanisms. J Card Fail  2005;11:177–87.|||Rosenkranz  S, Gibbs  JSR, Wachter  R, De Marco  T, Vonk-Noordegraaf  A, Vachiery  J-L. Left ventricular heart failure and pulmonary hypertension. Eur Heart J  2016;37:942–54.|||Liu  J, Bilgi  C, Bregasi  A, Mitchell  GF, Pahlevan  NM. Noninvasive left ventricle pressure-volume loop determination method with cardiac magnetic resonance imaging and carotid tonometry using a physics-informed approach. IEEE J Biomed Health Inform  2024;28:5487–96.|||Seemann  F, Arvidsson  P, Nordlund  D, Kopic  S, Carlsson  M, Arheden  H  et al.  Noninvasive quantification of pressure-volume loops from brachial pressure and cardiovascular magnetic resonance. Circ Cardiovasc Imaging  2019;12:e008493.|||Pagoulatou  S, Rommel  KP, Kresoja  KP, von Roeder  M, Lurz  P, Thiele  H  et al.  In vivo application and validation of a novel noninvasive method to estimate the end-systolic elastance. Am J Physiol Heart Circ Physiol  2021;320:H1543–53.|||Gayat  E, Mor-Avi  V, Weinert  L, Yodwut  C, Lang  RM. Noninvasive quantification of left ventricular elastance and ventricular-arterial coupling using three-dimensional echocardiography and arterial tonometry. Am J Physiol Heart Circ Physiol  2011;301:H1916–23.|||Liu  X, Chen  X, Xia  S, Yang  F, Zhu  H, He  K. Heart failure classifications via non-invasive pressure volume loops from echocardiography. Echocardiography  2023;40:1205–15.|||Lav  T, Engstrøm  T, Kyhl  K, Nordlund  D, Lønborg  J, Engblom  H  et al.  Non-invasive pressure volume loops provide incremental value to age, sex, and infarct size for predicting adverse cardiac remodeling after ST-elevation myocardial infarction. Eur Heart J Imaging Methods Pract  2025;3:qyaf008.|||Bilgi  C, Pahlevan  NM. A novel analytical framework for noninvasive estimation of left ventricular pressure and pressure-volume loops. Physiol Meas  2025;46:085005.|||Buckberg  GD, Fixler  DE, Archie  JP, Hoffman  JIE. Experimental subendocardial ischemia in dogs with normal coronary arteries. Circ Res  1972;30:67–81.|||Alavi  R, Dai  W, Matthews  RV, Kloner  RA, Pahlevan  NM. Instantaneous detection of acute myocardial infarction and ischaemia from a single carotid pressure waveform in rats. Eur Heart J Open  2023;3:oead099.|||Dai  W, Amoedo  ND, Perry  J, Le Grand  B, Boucard  A, Carreno  J  et al.  Effects of OP2113 on myocardial infarct size and no reflow in a rat myocardial ischemia/reperfusion model. Cardiovasc Drugs Ther  2022;36(2):217–27.|||Li  J, Alavi  R, Dai  W, Matthews  RV, Kloner  RA, Pahlevan  NM. Assessment of myocardial injury size metrics using carotid pressure waveform: proof-of-concept in coronary occlusion/reperfusion rat model. FASEB J  2025;39:e71029.|||Alavi  R, Dai  W, Kloner  RA, Pahlevan  NM. A physics-based machine learning approach for instantaneous classification of myocardial infarct size. Circulation  2021;144:A12098–A12098.|||Weiss  JL, Frederiksen  JW, Weisfeldt  ML. Hemodynamic determinants of the time-course of fall in canine left ventricular pressure. J Clin Invest  1976;58:751–60.|||Mead  J, Takishima  T, Leith  D. Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol  1970;28:596–608.|||Oyama  T, Suzuki  S, Horiguchi  Y, Yamane  A, Akao  K, Nagamori  K  et al.  Performance comparison of spectral distance calculation methods. Appl Spectrosc  2022;76:1482–93.|||Bartko  JJ. The intraclass correlation coefficient as a measure of reliability. Psychol Rep  1966;19:3–11.|||Rinderknecht  D, De Balasy  JM, Pahlevan  NM. A wireless optical handheld device for carotid waveform measurement and its validation in a clinical study. Physiol Meas  2020;41:055008.|||Salvi  P, Baldi  C, Scalise  F, Grillo  A, Salvi  L, Tan  I  et al.  Comparison between invasive and noninvasive methods to estimate subendocardial oxygen supply and demand imbalance. J Am Heart Assoc  2021;10:e021207.|||Bland  JM, Altman  DG. Statistical methods for assessing agreement between two methods of clinical measurement. The Lancet  1986;327:307–10.|||Dai  W, Alavi  R, Li  J, Carreno  J, Pahlevan  NM, Kloner  RA. Empagliflozin demonstrates neuroprotective and cardioprotective effects by reducing ischemia/reperfusion damage in rat models of ischemic stroke and myocardial infarction. Sci Rep  2025;15:8986.|||Pahlevan  NM, Rinderknecht  DG, Tavallali  P, Razavi  M, Tran  TT, Fong  MW  et al.  Noninvasive iphone measurement of left ventricular ejection fraction using intrinsic frequency methodology. Crit Care Med  2017;45:1115–20.|||Heidenreich  PA, Bozkurt  B, Aguilar  D, Allen  LA, Byun  JJ, Colvin  MM  et al.  2022 AHA/ACC/HFSA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation  2022;145:e876–94.|||Pagoulatou  SZ, Stergiopulos  N. Estimating left ventricular elastance from aortic flow waveform, ventricular ejection fraction, and brachial pressure: an in silico study. Ann Biomed Eng  2018;46:1722–35.|||Russell  K, Eriksen  M, Aaberge  L, Wilhelmsen  N, Skulstad  H, Remme  EW  et al.  A novel clinical method for quantification of regional left ventricular pressure–strain loop area: a non-invasive index of myocardial work. Eur Heart J  2012;33:724–33.|||Mielniczuk  LM, Lamas  GA, Flaker  GC, Mitchell  G, Smith  SC, Gersh  BJ  et al.  Left ventricular end-diastolic pressure and risk of subsequent heart failure in patients following an acute myocardial infarction. Congest Heart Fail  2007;13:209–14.|||Oh  JK, Miranda  WR, Kane  GC. Diagnosis of heart failure with preserved ejection fraction relies on detection of increased diastolic filling pressure, but how?  J Am Heart Assoc  2023;12:e028867.|||Alavi  R, Dai  W, Amlani  F, Rinderknecht  DG, Kloner  RA, Pahlevan  NM. Scalability of cardiovascular intrinsic frequencies: validations in preclinical models and non-invasive clinical studies. Life Sci  2021;284:119880.|||Bernard  O, Lalande  A, Zotti  C, Cervenansky  F, Yang  X, Heng  PA  et al.  Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved?  IEEE Trans Med Imaging  2018;37:2514–25.|||Howard  JP, Stowell  CC, Cole  GD, Ananthan  K, Demetrescu  CD, Pearce  K  et al.  Automated left ventricular dimension assessment using artificial intelligence developed and validated by a UK-wide collaborative. Circ Cardiovasc Imaging  2021;14:e011951.|||Fortuni  F, Ciliberti  G, De Chiara  B, Conte  E, Franchin  L, Musella  F  et al.  Advancements and applications of artificial intelligence in cardiovascular imaging: a comprehensive review. Eur Heart J Imaging Methods Pract  2024;2:qyae136.|||Niroumandi  S, Wei  H, Amlani  F, Gorji  H, Alavi  R, Chirinos  JA  et al.  Time-frequency machine learning transfer function for central pressure waveforms. Eur Heart J Open  2025;5:oeaf082.|||Niroumandi  S, Alavi  R, Wolfson  AM, Vaidya  AS, Pahlevan  NM. Assessment of aortic characteristic impedance and arterial compliance from non-invasive carotid pressure waveform in the Framingham heart study. Am J Cardiol  2023;204:195–9.|||Rafiei  D, Alavi  R, Matthews  RV, Pahlevan  NM. Assessment of left ventricular relaxation time constant using arterial pressure waveform. Physiol Meas  2025;46:085006.|||Park  I, Park  JH, Koo  BW, Kim  JH, Jeon  YT, Na  HS  et al.  Predicting stroke volume variation using central venous pressure waveform: a deep learning approach. Physiol Meas  2024;45:095007.|||Marzlin  N, Hays  AG, Peters  M, Kaminski  A, Roemer  S, O'Leary  P  et al.  Myocardial work in echocardiography. Circ Cardiovasc Imaging  2023;16:e014419.|||Smiseth  OA, Donal  E, Penicka  M, Sletten  OJ. How to measure left ventricular myocardial work by pressure–strain loops. Eur Heart J Cardiovasc Imaging  2021;22:259–61.