A new hybrid echocardiography and arterial pressure waveform approach for non-invasive reconstruction of the entire left ventric
Authors:
Journal: European heart journal. Imaging methods and practice
Publication Type: Journal Article
Date: 2025
DOI: PMC12604097
ID: 41230124
Abstract
Non-invasive estimation of left ventricular pressure (LVP) is crucial for managing cardiovascular diseases such as heart failure and myocardial infarction (MI). Current clinical practices rely on invasive catheterization, limiting its feasibility for routine or longitudinal monitoring. This study evaluates the accuracy of a novel LVP reconstruction algorithm in preclinical (rat) experiments.
Reference List
- Paulus WJ, Tschöpe C, Sanderson JE, Rusconi C, Flachskampf FA, Rademakers FE et al. How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the heart failure and echocardiography associations of the European Society of Cardiology. Eur Heart J 2007;28:2539–50.|||Baicu CF, Zile MR, Aurigemma GP, Gaasch WH. Left ventricular systolic performance, function, and contractility in patients with diastolic heart failure. Circulation 2005;111:2306–12.|||Maurer MS, King DL, Rumbarger LE-K, Packer M, Burkhoff D. Left heart failure with a normal ejection fraction: identification of different pathophysiologic mechanisms. J Card Fail 2005;11:177–87.|||Rosenkranz S, Gibbs JSR, Wachter R, De Marco T, Vonk-Noordegraaf A, Vachiery J-L. Left ventricular heart failure and pulmonary hypertension. Eur Heart J 2016;37:942–54.|||Liu J, Bilgi C, Bregasi A, Mitchell GF, Pahlevan NM. Noninvasive left ventricle pressure-volume loop determination method with cardiac magnetic resonance imaging and carotid tonometry using a physics-informed approach. IEEE J Biomed Health Inform 2024;28:5487–96.|||Seemann F, Arvidsson P, Nordlund D, Kopic S, Carlsson M, Arheden H et al. Noninvasive quantification of pressure-volume loops from brachial pressure and cardiovascular magnetic resonance. Circ Cardiovasc Imaging 2019;12:e008493.|||Pagoulatou S, Rommel KP, Kresoja KP, von Roeder M, Lurz P, Thiele H et al. In vivo application and validation of a novel noninvasive method to estimate the end-systolic elastance. Am J Physiol Heart Circ Physiol 2021;320:H1543–53.|||Gayat E, Mor-Avi V, Weinert L, Yodwut C, Lang RM. Noninvasive quantification of left ventricular elastance and ventricular-arterial coupling using three-dimensional echocardiography and arterial tonometry. Am J Physiol Heart Circ Physiol 2011;301:H1916–23.|||Liu X, Chen X, Xia S, Yang F, Zhu H, He K. Heart failure classifications via non-invasive pressure volume loops from echocardiography. Echocardiography 2023;40:1205–15.|||Lav T, Engstrøm T, Kyhl K, Nordlund D, Lønborg J, Engblom H et al. Non-invasive pressure volume loops provide incremental value to age, sex, and infarct size for predicting adverse cardiac remodeling after ST-elevation myocardial infarction. Eur Heart J Imaging Methods Pract 2025;3:qyaf008.|||Bilgi C, Pahlevan NM. A novel analytical framework for noninvasive estimation of left ventricular pressure and pressure-volume loops. Physiol Meas 2025;46:085005.|||Buckberg GD, Fixler DE, Archie JP, Hoffman JIE. Experimental subendocardial ischemia in dogs with normal coronary arteries. Circ Res 1972;30:67–81.|||Alavi R, Dai W, Matthews RV, Kloner RA, Pahlevan NM. Instantaneous detection of acute myocardial infarction and ischaemia from a single carotid pressure waveform in rats. Eur Heart J Open 2023;3:oead099.|||Dai W, Amoedo ND, Perry J, Le Grand B, Boucard A, Carreno J et al. Effects of OP2113 on myocardial infarct size and no reflow in a rat myocardial ischemia/reperfusion model. Cardiovasc Drugs Ther 2022;36(2):217–27.|||Li J, Alavi R, Dai W, Matthews RV, Kloner RA, Pahlevan NM. Assessment of myocardial injury size metrics using carotid pressure waveform: proof-of-concept in coronary occlusion/reperfusion rat model. FASEB J 2025;39:e71029.|||Alavi R, Dai W, Kloner RA, Pahlevan NM. A physics-based machine learning approach for instantaneous classification of myocardial infarct size. Circulation 2021;144:A12098–A12098.|||Weiss JL, Frederiksen JW, Weisfeldt ML. Hemodynamic determinants of the time-course of fall in canine left ventricular pressure. J Clin Invest 1976;58:751–60.|||Mead J, Takishima T, Leith D. Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol 1970;28:596–608.|||Oyama T, Suzuki S, Horiguchi Y, Yamane A, Akao K, Nagamori K et al. Performance comparison of spectral distance calculation methods. Appl Spectrosc 2022;76:1482–93.|||Bartko JJ. The intraclass correlation coefficient as a measure of reliability. Psychol Rep 1966;19:3–11.|||Rinderknecht D, De Balasy JM, Pahlevan NM. A wireless optical handheld device for carotid waveform measurement and its validation in a clinical study. Physiol Meas 2020;41:055008.|||Salvi P, Baldi C, Scalise F, Grillo A, Salvi L, Tan I et al. Comparison between invasive and noninvasive methods to estimate subendocardial oxygen supply and demand imbalance. J Am Heart Assoc 2021;10:e021207.|||Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. The Lancet 1986;327:307–10.|||Dai W, Alavi R, Li J, Carreno J, Pahlevan NM, Kloner RA. Empagliflozin demonstrates neuroprotective and cardioprotective effects by reducing ischemia/reperfusion damage in rat models of ischemic stroke and myocardial infarction. Sci Rep 2025;15:8986.|||Pahlevan NM, Rinderknecht DG, Tavallali P, Razavi M, Tran TT, Fong MW et al. Noninvasive iphone measurement of left ventricular ejection fraction using intrinsic frequency methodology. Crit Care Med 2017;45:1115–20.|||Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022;145:e876–94.|||Pagoulatou SZ, Stergiopulos N. Estimating left ventricular elastance from aortic flow waveform, ventricular ejection fraction, and brachial pressure: an in silico study. Ann Biomed Eng 2018;46:1722–35.|||Russell K, Eriksen M, Aaberge L, Wilhelmsen N, Skulstad H, Remme EW et al. A novel clinical method for quantification of regional left ventricular pressure–strain loop area: a non-invasive index of myocardial work. Eur Heart J 2012;33:724–33.|||Mielniczuk LM, Lamas GA, Flaker GC, Mitchell G, Smith SC, Gersh BJ et al. Left ventricular end-diastolic pressure and risk of subsequent heart failure in patients following an acute myocardial infarction. Congest Heart Fail 2007;13:209–14.|||Oh JK, Miranda WR, Kane GC. Diagnosis of heart failure with preserved ejection fraction relies on detection of increased diastolic filling pressure, but how? J Am Heart Assoc 2023;12:e028867.|||Alavi R, Dai W, Amlani F, Rinderknecht DG, Kloner RA, Pahlevan NM. Scalability of cardiovascular intrinsic frequencies: validations in preclinical models and non-invasive clinical studies. Life Sci 2021;284:119880.|||Bernard O, Lalande A, Zotti C, Cervenansky F, Yang X, Heng PA et al. Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE Trans Med Imaging 2018;37:2514–25.|||Howard JP, Stowell CC, Cole GD, Ananthan K, Demetrescu CD, Pearce K et al. Automated left ventricular dimension assessment using artificial intelligence developed and validated by a UK-wide collaborative. Circ Cardiovasc Imaging 2021;14:e011951.|||Fortuni F, Ciliberti G, De Chiara B, Conte E, Franchin L, Musella F et al. Advancements and applications of artificial intelligence in cardiovascular imaging: a comprehensive review. Eur Heart J Imaging Methods Pract 2024;2:qyae136.|||Niroumandi S, Wei H, Amlani F, Gorji H, Alavi R, Chirinos JA et al. Time-frequency machine learning transfer function for central pressure waveforms. Eur Heart J Open 2025;5:oeaf082.|||Niroumandi S, Alavi R, Wolfson AM, Vaidya AS, Pahlevan NM. Assessment of aortic characteristic impedance and arterial compliance from non-invasive carotid pressure waveform in the Framingham heart study. Am J Cardiol 2023;204:195–9.|||Rafiei D, Alavi R, Matthews RV, Pahlevan NM. Assessment of left ventricular relaxation time constant using arterial pressure waveform. Physiol Meas 2025;46:085006.|||Park I, Park JH, Koo BW, Kim JH, Jeon YT, Na HS et al. Predicting stroke volume variation using central venous pressure waveform: a deep learning approach. Physiol Meas 2024;45:095007.|||Marzlin N, Hays AG, Peters M, Kaminski A, Roemer S, O'Leary P et al. Myocardial work in echocardiography. Circ Cardiovasc Imaging 2023;16:e014419.|||Smiseth OA, Donal E, Penicka M, Sletten OJ. How to measure left ventricular myocardial work by pressure–strain loops. Eur Heart J Cardiovasc Imaging 2021;22:259–61.