Quick Links

Activation of nuclear factor-kappaB is necessary for myotrophin-induced cardiac hypertrophy.

Authors: Sudhiranjan Gupta|||Nicole H Purcell|||Anning Lin|||Subha Sen

Journal: The Journal of cell biology

Publication Type: Journal Article

Date: 2002

DOI: PMC2173971

ID: 12486112

Affiliations:

Affiliations

    Department of Molecular Cardiology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA.|||||||||

Abstract

The transcription factor nuclear factor-kappaB (NF-kappaB) regulates expression of a variety of genes involved in immune responses, inflammation, proliferation, and programmed cell death (apoptosis). Here, we show that in rat neonatal ventricular cardiomyocytes, activation of NF-kappaB is involved in the hypertrophic response induced by myotrophin, a hypertrophic activator identified from spontaneously hypertensive rat heart and cardiomyopathic human hearts. Myotrophin treatment stimulated NF-kappaB nuclear translocation and transcriptional activity, accompanied by IkappaB-alpha phosphorylation and degradation. Consistently, myotrophin-induced NF-kappaB activation was enhanced by wild-type IkappaB kinase (IKK) beta and abolished by the dominant-negative IKKbeta or a general PKC inhibitor, calphostin C. Importantly, myotrophin-induced expression of two hypertrophic genes (atrial natriuretic factor [ANF] and c-myc) and also enhanced protein synthesis were partially inhibited by a potent NF-kappaB inhibitor, pyrrolidine dithio-carbamate (PDTC), and calphostin C. Expression of the dominant-negative form of IkappaB-alpha or IKKbeta also partially inhibited the transcriptional activity of ANF induced by myotrophin. These findings suggest that the PKC-IKK-NF-kappaB pathway may play a critical role in mediating the myotrophin-induced hypertrophic response in cardiomyocytes.


Chemical List

    Alkaloids|||Benzophenanthridines|||DNA, Complementary|||Growth Substances|||I-kappa B Proteins|||Intercellular Signaling Peptides and Proteins|||NF-kappa B|||NFKBIA protein, human|||Naphthalenes|||Nfkbia protein, rat|||Phenanthridines|||RNA, Messenger|||myotrophin|||NF-KappaB Inhibitor alpha|||chelerythrine|||Luciferases|||Protein Kinase C|||calphostin C

Reference List

    Anderson, K.M., I. Berrebi-Bertrans, R.B. Kirkpatrick, M.S. McQueney, D.C. Underwood, S. Rouanet, and M. Chabot-Fletcher. 1999. cDNA sequence and charcterization of the gene that encodes human myotrophin/V-1 protein, a mediator of cardiac hypertrophy. J. Mol. Cell. Cardiol. 31:705–719.|||Baeuerle, P.A., and D. Baltimore. 1996. NF-κ B: ten years after. Cell. 87:13–20.|||Baldwin, A.S.J. 1996. The NF-κB and IκB proteins: new discoveries and insights. Annu. Rev. Immunol. 14:649–683.|||Brasier, A.R., M. Jamaluddin, Y. Han, C. Patterson, and M.S. Runge. 2000. Angiotensin II induces gene transcription through cell-type-dependent effects on the nuclear factor-κB (NF-kappaB) transcription factor. Mol. Cell. Biochem. 212:155–169.|||Brockman, J.A., D.C. Scherer, T.A. McKinsey, S.M. Hall, X. Qi, W.Y. Lee, and D.W. Ballard. 1995. Coupling of a signal response domain in IκBα to multiple pathways for NF-κB activation. Mol. Cell. Biol. 15:2809–2818.|||Brown, K., S. Gerstberger, L. Carlson, G. Franzoso, and U. Siebenlist. 1995. Control of IκB-α proteolysis by site-specific, signal-induced phosphorylation. Science. 267:1485–1488.|||Carter, A.B., K.L. Knudtson, M.M. Monick, and G.W. Hunninghake. 1999. The p38 mitogen-activated protein kinase is required for NF-κB-dependent gene expression. The role of TATA-binding protein (TBP). J. Biol. Chem. 274:30858–30863.|||Chen, F., V. Castranova, X. Shi, and L.M. Demers. 1999. New insights into the role of nuclear factor-κB, a ubiquitous transcription factor in the initiation of diseases. Clin. Chem. 45:7–17.|||Chen, Z., J. Hagler, V.J. Palombella, F. Melandri, D. Scherer, D. Ballard, and T. Maniatis. 1995. Signal-induced site-specific phosphorylation targets IκB alpha to the ubiquitin-proteasome pathway. Genes Dev. 9:1586–1597.|||Chen, Z.J., L. Parent, and T. Maniatis. 1996. Site-specific phosphorylation of IκBα by a novel ubiquitination-dependent protein kinase activity. Cell. 84:853–862.|||Chien, K.R. 1999. Stress pathways and heart failure. Cell. 98:555–558.|||Chien, K.R. 2000. Meeting Koch's postulates for calcium signaling in cardiac hypertrophy. J. Clin. Invest. 105:1339–1342.|||Chien, K.R., K.U. Knowlton, H. Zhu, and S. Chien. 1991. Regulation of cardiac gene expression during myocardial growth and hypertrophy: molecular studies of an adaptive physiologic response. FASEB J. 5:3037–3046.|||Craig, R., A. Larkin, A.M. Mingo, D.J. Thuerauf, C. Andrews, P.M. McDonough, and C.C. Glembotski. 2000. p38 MAPK and NF-κB collaborate to induce interleukin-6 gene expression and release. Evidence for a cytoprotective autocrine signaling pathway in a cardiac myocyte model system. J. Biol. Chem. 275:23814–23824.|||Das, D.K., N. Maulik, and I.I. Moraru. 1995. Gene expression in acute myocardial stress. Induction by hypoxia, ischemia, reperfusion, hyperthermia and oxidative stress. J. Mol. Cell. Cardiol. 27:181–193.|||De Martin, R., M. Hoeth, R. Hofer-Warbinek, and J.A. Schmid. 2000. The transcription factor NF-κB and the regulation of vascular cell function. Arterioscler. Thromb. Vasc. Biol. 20:E83–E88.|||DiDonato, J.A., M. Hayakawa, D.M. Rothwarf, E. Zandi, and M. Karin. 1997. A cytokine-responsive IκB kinase that activates the transcription factor NF-κB. Nature. 388:548–554.|||Dignam, J.D., P.L. Martin, B.S. Shastry, and R.G. Roeder. 1983. Eukaryotic gene transcription with purified components. Methods Enzymol. 101:582–598.|||Dostal, D.E., R.A. Hunt, C.E. Kule, G.J. Bhat, V. Karoor, C.D. McWhinney, and K.M. Baker. 1997. Molecular mechanisms of angiotensin II in modulating cardiac function: intracardiac effects and signal transduction pathways. J. Mol. Cell. Cardiol. 29:2893–2902.|||Finco, T.S., and A.S. Baldwin. 1995. Mechanistic aspects of NF-κB regulation: the emerging role of phosphorylation and proteolysis. Immunity. 3:263–272.|||Frost, J.A., J.L. Swantek, S. Stippec, M.J. Yin, R. Gaynor, and M.H. Cobb. 2000. a. Stimulation of NFκB activity by multiple signaling pathways requires PAK1. J. Biol. Chem. 275:19693–19699.|||Frost, J.A., J.L. Swantek, S. Stippec, M.J. Yin, R. Gaynor, and M.H. Cobb. 2000. b. Stimulation of NFκB activity by multiple signaling pathways requires PAK1. J. Biol. Chem. 275:19693–19699.|||Gammage, M.D., and J.A. Franklyn. 1991. Role of proto-oncogenes in the control of myocardial cell growth and function. Clin. Sci. (Lond). 80:405–411.|||Gillespie-Brown, J., S.J. Fuller, M.A. Bogoyevitch, S. Cowley, and P.H. Sugden. 1995. The mitogen-activated protein kinase kinase MEK1 stimulates a pattern of gene expression typical of the hypertrophic phenotype in rat ventricular cardiomyocytes. J. Biol. Chem. 270:28092–28096.|||Glennon, P.E., P.H. Sugden, and P.A. Poole-Wilson. 1995. Cellular mechanisms of cardiac hypertrophy. Br. Heart J. 73:496–499.|||Goodfriend, T.L., M.E. Elliott, and K.J. Catt. 1996. Angiotensin receptors and their antagonists. N. Engl. J. Med. 334:1649–1654.|||Gupta, S., and S. Sen. 2002. Myotrophin-κB DNA interaction in the initiation process of cardiac hypertrophy. Biochim. Biophys. Acta. 1589:247–260.|||Hefti, M.A., B.A. Harder, H.M. Eppenberger, and M.C. Schaub. 1997. Signaling pathways in cardiac hypertrophy. J. Mol. Cell. Cardiol. 29:2873–2892.|||Huarte, J., and A. Stutz. 1992. Transient translational silencing by reversible mRNA deadenylation. Cell. 69:1021–1030.|||Imbert, V., R.A. Rupec, A. Livolsi, H.L. Pahl, E.B. Traenckner, C. Mueller-Dieckmann, D. Farahifar, B. Rossi, P. Auberger, P.A. Baeuerle, and J.F. Peyron. 1996. Tyrosine phosphorylation of IκB-α activates NF-κB without proteolytic degradation of IκB-α. Cell. 86:787–798.|||Israel, A. 2000. The IKK complex: an integrator of all signals that activate NF-κB? Trends Cell Biol. 10:129–133.|||Iwaki, K., V.P. Sukhatme, H.E. Shubeita, and K.R. Chien. 1990. α- and β-adrenergic stimulation induces distinct patterns of immediate early gene expression in neonatal rat myocardial cells. Fos/jun expression is associated with sarcomere assembly; egr-1 induction is primarily an α1-mediated response. J. Biol. Chem. 265:13809–13817.|||Izumo, S., A.M. Lompre, R. Matsuoka, G. Koren, K. Schwartz, G.B. Nadal, and V. Mahdavi. 1987. Myosin heavy chain messenger RNA and protein isoform transitions during cardaic hypertrophy. Interaction between hemodynamic and thyroid hormone-induced signals. J. Clin. Invest. 79:970–977.|||Izumo, S., B. Nadal-Ginard, and V. Mahdavi. 1988. Protooncogene induction and reprogramming of cardiac gene expression produced by pressure overload. Proc. Natl. Acad. Sci. USA. 85:339–343.|||Karin, M. 1999. The beginning of the end: IκB kinase (IKK) and NF-κB activation. J. Biol. Chem. 274:27339–27342.|||Kijima, K., H. Matsubara, S. Murasawa, K. Maruyama, Y. Mori, N. Ohkubo, I. Komuro, Y. Yazaki, T. Iwasaka, and M. Inada. 1996. Mechanical stretch induces enhanced expression of angiotensin II receptor subtypes in neonatal rat cardiac myocytes. Circ. Res. 79:887–897.|||Knuefermann, P., P. Chen, A. Misra, S.-P. Shi, M. Abdellatif, and N. Sivasubramanian. 2002. Myotrophin/V-1, a protein up-regulated in the failing human heart and in postnatal cerebellum, converts NFκB p50-p65 heterodimers to p50-p50 and p65-p65 homodimers. J. Biol. Chem. 277:23888–23897.|||Lattion, A.L., J.B. Michel, E. Arnauld, P. Corvol, and F. Soubrier. 1986. Myocardial recruitment during ANF mRNA increase with volume overload in the rat. Am. J. Physiol. 251:H890–H896.|||Levy, D., R.J. Garrison, D.D. Savage, W.B. Kannel, and W.P. Castelli. 1990. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N. Engl. J. Med. 322:1561–1566.|||Li, C., W. Browder, and R.L. Kao. 1999. Early activation of transcription factor NF-κB during ischemia in perfused rat heart. Am. J. Physiol. 276:H543–H552.|||Li, C., R.L. Kao, T. Ha, J. Kelley, I.W. Browder, and D.L. Williams. 2001. Early activation of IKKβ during in vivo myocardial ischemia. Am. J. Physiol. Heart Circ. Physiol. 280:H1264–H1271.|||Li, N., and M. Karin. 1998. Ionizing radiation and short wavelength UV activate NF-κB through two distinct mechanisms. Proc. Natl. Acad. Sci. USA. 95:13012–13017.|||Liang, F., J. Wu, M. Garami, and D.G. Gardner. 1997. Mechanical strain increases expression of the brain natriuretic peptide gene in rat cardiac myocytes. J. Biol. Chem. 272:28050–28056.|||Lindroos, P.M., A.B. Rice, Y.Z. Wang, and J.C. Bonner. 1998. Role of nuclear factor-κB and mitogen-activated protein kinase signaling pathways in IL-1β-mediated induction of α-PDGF receptor expression in rat pulmonary myofibroblasts. J. Immunol. 161:3464–3468.|||Maulik, N., M. Sato, B.D. Price, and D.K. Das. 1998. An essential role of NFκB in tyrosine kinase signaling of p38 MAP kinase regulation of myocardial adaptation to ischemia. FEBS Lett. 429:365–369.|||May, M.J., and S. Ghosh. 1997. Rel/NF-κB and I κB proteins: an overview. Semin. Cancer Biol. 8:63–73.|||May, M.J., and S. Ghosh. 1998. Signal transduction through NF-κB. Immunol. Today. 19:80–88.|||Mercadier, J.J., J.L. Samuel, J.B. Michel, M.A. Zongazo, D. de la Bastie, A.M. Lompre, C. Wisnewsky, L. Rappaport, B. Levy, and K. Schwartz. 1989. Atrial natriuretic factor gene expression in rat ventricle during experimental hypertension. Am. J. Physiol. 257:H979–H987.|||Molkentin, J.D., J.R. Lu, C.L. Antos, B. Markham, J. Richardson, J. Robbins, S.R. Grant, and E.N. Olson. 1998. A calcineurin-dependent transcrirptional pathway for cardiac hypertrophy. Cell. 93:215–228.|||Morgan, H.E., and K.M. Baker. 1991. Cardiac hypertrophy, mechanical, neural, and endocrine dependence. Circulation. 83:13–25.|||Mukherjee, D.P., C.F. McTiernan, and S. Sen. 1993. Myotrophin induces early response genes and enhances cardiac gene expression. Hypertension. 21:142–148.|||Nemoto, S., J.A. DiDonato, and A. Lin. 1998. a. Coordinate regulation of IκB kinases by mitogen-activated protein kinase kinase kinase 1 and NF-κB-inducing kinase. Mol. Cell. Biol. 18:7336–7343.|||Nemoto, S., Z. Sheng, and A. Lin. 1998. b. Opposing effects of Jun kinase and p38 mitogen-activated protein kinases on cardiomyocyte hypertrophy. Mol. Cell. Biol. 18:3518–3526.|||Olson, E.N., and J.D. Molkentin. 1999. Prevention of cardiac hypertrophy by calcineurin inhibition: hope or hype? Circ. Res. 84:623–632.|||Peng, M., L. Huang, Z.J. Xie, W.H. Huang, and A. Askari. 1995. Oxident-induced activation of nuclear factor-κB and activator protein-1 in cardiac myocytes. Cell. Mol. Biol. Res. 41:189–197.|||Purcell, N.H., G. Tang, C. Yu, F. Mercurio, J.A. DiDonato, and A. Lin. 2001. a. Activation of NF-κB is required for hypertrophic growth of primary rat neonatal ventricular cardiomyocytes. Proc. Natl. Acad. Sci. USA. 98:6668–6673.|||Purcell, N.H., C. Yu, D. He, J. Xiang, N. Paran, J.A. DiDonato, S. Yamaoka, Y. Shaul, and A. Lin. 2001. b. Activation of NF-κB by hepatitis B virus X protein through an IκB kinase-independent mechanism. Am. J. Physiol. Gastrointest. Liver Physiol. 280:G669–G677.|||Regnier, C.H., H.Y. Song, X. Gao, D.V. Goeddel, Z. Cao, and M. Rothe. 1997. Identification and characterization of an IκB kinase. Cell. 90:373–383.|||Ritchie, M.E. 1998. Nuclear factor-κB is selectively and markedly activated in humans with unstable angina pectoris. Circulation. 98:1707–1713.|||Rothwarf, D.M., E. Zandi, G. Natoli, and M. Karin. 1998. IKK-γ is an essential regulatory subunit of the IκB kinase complex. Nature. 395:297–300.|||Rouet-Benzineb, P., B. Gontero, P. Dreyfus, and C.J. Lafuma. 2000. Angiotensin II induces gene transcription through cell-type-dependent effects on the nuclear fctor-κB (NF-κB) transcription factor. J. Mol. Cell. Cardiol. 32:1767–1778.|||Sadoshima, J., and S. Izumo. 1993. Molecular characterization of angiotensin II-induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts: critical role of the AT1 receptor subtype. Circ. Res. 73:413–423.|||Sadoshima, J., L. Jahn, T. Takahashi, T.J. Kulik, and S. Izumo. 1992. Molecular characterization of the stretch-induced adaptation of cultured cardiac cells. An in vitro model of load-induced cardiac hypertrophy. J. Biol. Chem. 267:10551–10560.|||Sen, R., and D. Baltimore. 1986. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell. 46:705–716.|||Sen, S., G. Kundu, N. Mekhail, J. Castel, K. Misono, and B. Healy. 1990. Myotrophin: purification of a novel peptide from spontaneously hypertensive rat heart that influences myocardial growth. J. Biol. Chem. 265:16635–16643.|||Sil, P., K. Misono, and S. Sen. 1993. Myotrophin in human cardiomyopathic heart. Circ. Res. 73:98–108.|||Sil, P., D.P. Mukherjee, and S. Sen. 1995. Quantification of myotrophin from spontaneously hypertensive and normal rat hearts. Circ. Res. 76:1020–1027.|||Sil, P., V. Kandaswamy, and S. Sen. 1998. Increased protein kinase C activity in myotrophin-induced myocyte growth. Circ. Res. 82:1173–1188.|||Sivasubramanian, N., G. Adhikary, P.C. Sil, and S. Sen. 1996. Cardiac myotrophin exhibits rel/nf-κb interacting activity in vitro. J. Biol. Chem. 271:2812–2816.|||Starksen, N.F., P.C. Simpson, N. Bishopric, S.R. Coughlin, W.M. Lee, J.A. Escobedo, and L.T. Williams. 1986. Cardiac myocyte hypertrophy is associated with c-myc protooncogene expression. Proc. Natl. Acad. Sci. USA. 83:8348–8350.|||Sussman, M.A., H.W. Lim, N. Gude, T. Taigen, E.N. Olson, J. Robbins, M.C. Colbert, A. Gualberto, D.F. Wieczorek, and J.D. Molkentin. 1998. Prevention of cardiac hypertrophy in mice by calcineurin inhibition. Science. 281:1690–1693.|||Takahashi, T., H. Schunkert, S. Isoyama, J.Y. Wei, B. Nadal-Ginard, W. Grossman, and S. Izumo. 1992. Age-related differences in the expression of proto-oncogene and contractile protein genes in response to pressure overload in the rat myocardium. J. Clin. Invest. 89:939–946.|||Thanos, D., and T. Maniatis. 1995. NF-κB: a lesson in family values. Cell. 80:529–532.|||Thorburn, J., J.A. Frost, and A. Thorburn. 1994. a. Mitogen-activated protein kinases mediate changes in gene expression, but not cytoskeletal organization associated with cardiac muscle cell hypertrophy. J. Cell Biol. 126:1565–1572.|||Thorburn, J., M. McMahon, and A. Thorburn. 1994. b. Raf-1 kinase activity is necessary and sufficient for gene expression changes but not sufficient for cellular morphology changes associated with cardiac myocyte hypertrophy. J. Biol. Chem. 269:30580–30586.|||Traenckner, E.B., S. Wilk, and P.A. Baeuerle. 1994. A proteasome inhibitor prevents activation of NF-κB and stabilizes a newly phosphorylated form of I κB-α that is still bound to NF-κB. EMBO J. 13:5433–5441.|||Vanden Berghe, W., L. Vermeulen, G. De Wilde, K. De Bosscher, E. Boone, and G. Haegeman. 2000. Signal transduction by tumor necrosis factor and gene regulation of the inflammatory cytokine interleukin-6. Biochem. Pharmacol. 60:1185–1195.|||Whiteside, S.T. 1995. N- and C-terminal sequence control degradation of MAD3/IκBα in response to inducers of NF-κB activity. Mol. Cell. Biol. 15:5339–5345.|||Wong, S.C., M. Fukuchi, P. Melnyk, I. Rodger, and A. Giaid. 1998. Induction of cyclooxygenase-2 and activation of nuclear factor-κB in myocardium of patients with congestive heart failure. Circulation. 98:100–103.|||Woronicz, J.D., X. Gao, Z. Cao, M. Rothe, and D.V. Goeddel. 1997. IκB kinase-β: NF-κB activation and complex formation with IκB kinase-α and NIK. Science. 278:866–869.|||Xuan, Y.T., X.L. Tang, S. Banerjee, H. Takano, R.C. Li, H. Han, Y. Qiu, J.J. Li, and R. Bolli. 1999. Nuclear factor-κB plays an essential role in the late phase of ischemic preconditioning in conscious rabbits. Circ. Res. 84:1095–1109.|||Yamaoka, S., G. Courtois, C. Bessia, S.T. Whiteside, R. Weil, F. Agou, H.E. Kirk, R.J. Kay, and A. Israel. 1998. Complementation cloning of NEMO, a component of the IκB kinase complex essential for NF-κB activation. Cell. 93:1231–1240.|||Zandi, E., and M. Karin. 1999. Bridging the gap: composition, regulation, and physiological function of the IκB kinase complex. Mol. Cell. Biol. 19:4547–4551.|||Zandi, E., D.M. Rothwarf, M. Delhase, M. Hayakawa, and M. Karin. 1997. The IκB kinase complex (IKK) contains two kinase subunits, IKKα and IKKβ, necessary for IκB phosphorylation and NF-κB activation. Cell. 91:243–252.|||Zandi, E., Y. Chen, and M. Karin. 1998. Direct phosphorylation of IκB by IKKα and IKKβ: discrimination between free and NF-κB-bound substrate. Science. 281:1360–1363.