Extracellular signal-regulated kinase 2 interacts with and is negatively regulated by the LIM-only protein FHL2 in cardiomyocyte
Authors:
Journal: Molecular and cellular biology
Publication Type: Journal Article
Date: 2004
DOI: PMC321437
ID: 14729955
Abstract
The mitogen-activated protein kinase (MAPK) signaling pathway regulates diverse biologic functions including cell growth, differentiation, proliferation, and apoptosis. The extracellular signal-regulated kinases (ERKs) constitute one branch of the MAPK pathway that has been implicated in the regulation of cardiac differentiated growth, although the downstream mechanisms whereby ERK signaling affects this process are not well characterized. Here we performed a yeast two-hybrid screen with ERK2 bait and a cardiac cDNA library to identify novel proteins involved in regulating ERK signaling in cardiomyocytes. This screen identified the LIM-only factor FHL2 as an ERK interacting protein in both yeast and mammalian cells. In vivo, FHL2 and ERK2 colocalized in the cytoplasm at the level of the Z-line, and interestingly, FHL2 interacted more efficiently with the activated form of ERK2 than with the dephosphorylated form. ERK2 also interacted with FHL1 and FHL3 but not with the muscle LIM protein. Moreover, at least two LIM domains in FHL2 were required to mediate efficient interaction with ERK2. The interaction between ERK2 and FHL2 did not influence ERK1/2 activation, nor was FHL2 directly phosphorylated by ERK2. However, FHL2 inhibited the ability of activated ERK2 to reside within the nucleus, thus blocking ERK-dependent transcriptional responsiveness of ELK-1, GATA4, and the atrial natriuretic factor promoter. Finally, FHL2 partially antagonized the cardiac hypertrophic response induced by activated MEK-1, GATA4, and phenylephrine agonist stimulation. Collectively, these results suggest that FHL2 serves a repressor function in cardiomyocytes through its ability to inhibit ERK1/2 transcriptional coupling.
Chemical List
- Fhl2 protein, rat|||Homeodomain Proteins|||LIM-Homeodomain Proteins|||Muscle Proteins|||Transcription Factors|||Mitogen-Activated Protein Kinases
Reference List
- Aoki, H., M. Richmond, S. Izumo, and J. Sadoshima. 2000. Specific role of the extracellular signal-regulated kinase pathway in angiotensin II-induced cardiac hypertrophy in vitro. Biochem. J. 347:275-284.|||Bogoyevitch, M. A., P. E. Glennon, M. B. Andersson, A. Clerk, A. Lazou, C. J. Marshall, P. J. Parker, and P. H. Sugden. 1994. Endothelin-1 and fibroblast growth factors stimulate the mitogen-activated protein kinase signaling cascade in cardiac myocytes. The potential role of the cascade in the integration of two signaling pathways leading to myocyte hypertrophy. J. Biol. Chem. 269:1110-1119.|||Bueno, O. F., and J. D. Molkentin. 2002. Involvement of extracellular signal-regulated kinases 1/2 in cardiac hypertrophy and cell death. Circ. Res. 91:776-781.|||Bueno, O. F., L. J. De Windt, K. M. Tymitz, S. A. Witt, T. R. Kimball, R. Klevitsky, T. E. Hewett, S. P. Jones, D. J. Lefer, C. F. Peng, R. N. Kitsis, and J. D. Molkentin. 2000. The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. EMBO J. 19:6341-6350.|||Cambon, N., and M. A. Sussman. 1997. Isolation and preparation of single mouse cardiomyocytes for confocal microscopy. Methods Cell Sci. 19:83-90.|||Chan, K. K., S. K. Tsui, S. M. Lee, S. C. Luk, C. C. Liew, K. P. Fung, M. M. Waye, and C. Y. Lee. 1998. Molecular cloning and characterization of FHL2, a novel LIM domain protein preferentially expressed in human heart. Gene 210:345-350.|||Chu, P. H., W. M. Bardwell, Y. Gu, J. Ross, Jr., and J. Chen. 2000. FHL2 (SLIM3) is not essential for cardiac development and function. Mol. Cell. Biol. 20:7460-7462.|||Chu, P. H., P. Ruiz-Lozano, Q. Zhou, C. Cai, and J. Chen. 2000. Expression patterns of FHL/SLIM family members suggest important functional roles in skeletal muscle and cardiovascular system. Mech. Dev. 95:259-265.|||Clerk, A., M. A. Bogoyevitch, M. B. Anderson, and P. H. Sugden. 1994. Differential activation of protein kinase C isoforms by endothelin-1 and phenylephrine and subsequent stimulation of p42 and p44 mitogen-activated protein kinases in ventricular myocytes cultured from neonatal rat hearts. J. Biol. Chem. 269:32848-32857.|||Dai, Y. S., P. Cserjesi, B. E. Markham, and J. D. Molkentin. 2002. The transcription factors GATA4 and dHAND physically interact to synergistically activate cardiac gene expression through a p300-dependent mechanism. J. Biol. Chem. 277:24390-24398.|||De Windt, L. J., H. W. Lim, S. Haq, T. Force, and J. D. Molkentin. 2000. Calcineurin promotes protein kinase C and c-Jun NH2-terminal kinase activation in the heart. Cross-talk between cardiac hypertrophic signaling pathways. J. Biol. Chem. 275:13571-13579.|||Du, X., P. Hublitz, T. Gunther, D. Wilhem, C. Englert, and R. Schüle. 2002. The LIM-only coactivator FHL2 modulates WT1 transcriptional activity during gonadal differentiation. Biochem. Biophys. Acta 19:93-101.|||Fimia, G. M., D. De Cesare, and P. Sassone-Corsi. 2000. A family of LIM-only transcriptional coactivators: tissue-specific expression and selective activation of CREB and CREM. Mol. Cell. Biol. 20:8613-8622.|||Garrington, T. P., and G. L. Johnson. 1999. Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr. Opin. Cell Biol. 11:211-218.|||Gusterson, R., B. Brar, D. Faulkes, A. Giordano, J. Chrivia, and D. Latchman. 2002. The transcriptional co-activators CBP and p300 are activated via phenylephrine through the p42/p44 MAPK cascade. J. Biol. Chem. 277:2517-2524.|||Knowlton, K. U., E. Baracchini, R. S. Ross, A. N. Harris, S. A. Henderson, S. M. Evans, C. C. Glembotski, and K. R. Chien. 1991. Co-regulation of the atrial natriuretic factor and cardiac myosin light chain-2 genes during alpha-adrenergic stimulation of neonatal rat ventricular cells. Indentification of cis sequences within an embryonic and a constitutive contractile protein gene which mediate inducible expression. J. Biol. Chem. 266:7759-7768.|||Kong, Y., J. M. Shelton, B. Rothermel, X. Li, J. A. Richardson, R. Bassel-Duby, and R. S. Williams. 2001. Cardiac-specific LIM protein FHL2 modifies the hypertrophic response to β-Adrenergic stimulation. Circulation 103:2731-2738.|||Lai, J. M., S. Wu, D. Y. Huang, and Z. F. Chang. 2002. Cytosolic retention of phosphorylated extracellular signal-regulated kinase and a Rho-associated kinase-mediated signal impair expression of p21Cip1/Waf1 in phorbol 12-myristate-13-acetate-induced apoptotic cells. Mol. Cell. Biol. 22:7581-7592.|||Liang, Q., R. J. Wiese, O. F. Bueno, Y. S. Dai, B. E. Markham, and J. D. Molkentin. 2001. The transcription factor GATA4 is activated by extracellular signal-regulated kinase 1- and 2-mediated phosphorylation of serine 105 in cardiomyocytes. Mol. Cell. Biol. 21:7460-7469.|||Martin, B., R. Schneider, S. Janetzky, Z. Waibler, P. Pandur, M. Kühl, J. Behrens, K. von der Mark, A. Starzinski-Powitz, and V. Wixler. 2002. The LIM-only protein FHL2 interacts with β-catenin and promotes differentiation of mouse myoblasts. J. Cell Biol. 159:113-122.|||McLoughlin, P., E. Ehler, G. Carlile, J. D. Licht, and B. W. Schäfer. 2002. The LIM-only protein DRAL/FHL2 interacts with and is a corepressor for the promyelocytic leukemia zinc finger protein. J. Biol. Chem. 277:37045-37053.|||Molkentin, J. D. 2000. The zinc finger-containing transcription factors GATA-4, -5, and -6. Ubiquitously expressed regulators of tissue-specific gene expression. J. Biol. Chem. 275:38949-38952.|||Morimoto, T., K. Hasegawa, S. Kaburagi, T. Kakita, H. Wada, T. Yanazume, and S. Sasayama. 2000. Phosphorylation of GATA-4 is involved in alpha 1-adrenergic agonist-responsive transcription of the endothelin-1 gene in cardiac myocytes. J. Biol. Chem. 275:13721-13726.|||Morolon, A., and P. Sassone-Corsi. 2003. The LIM-only protein FHL2 is a serum-inducible transcriptional coactivator of AP-1. Proc. Natl. Acad. Sci. USA 100:3977-3982.|||Müller, J. M., U. Isele, E. Metzger, A. Rempel, M. Moser, A. Pscherer, T. Breyer, C. Holubarsch, R. Buettner, and R. Schüle. 2000. FHL2, a novel tissue-specific coactivator of the androgen receptor. EMBO J. 19:359-369.|||Müller, J. M., E. Metzger, H. Greshik, A.-K. Bosserhoff, L. Mercep, R. Buettner, and R. Schüle. 2002. The transcriptional coactivator FHL2 transmits Rho signals from the cell membrane into the nucleus. EMBO J. 21:736-748.|||Ng, E. K., K. K. Chan, C. H. Wong, S. K. Tsui, S. M. Ngai, S. M. Lee, M. Kotaka, C. Y. Lee, M. M. Waye, and K. P. Fung. 2002. Interaction of the heart-specific LIM domain protein, FHL2 with DNA-binding nuclear protein hNP220. J. Cell. Biochem. 84:556-566.|||Post, G. R., D. Goldstein, D. J. Thuerauf, C. C. Glembotski, and J. H. Brown. 1996. Dissociation of p44 and p42 mitogen-activated protein kinase activation from receptor-induced hypertrophy in neonatal rat ventricular myocytes. J. Biol. Chem. 271:8452-8457.|||Rapacciuolo, A., G. Esposito, K. Caron, L. Mao, S. A. Thomas, and H. A. Rockman. 2001. Important role of endogenous norepinephrine and epinephrine in the development of in vivo pressure-overload cardiac hypertrophy. J. Am. Coll. Cardiol. 38:876-882.|||Retaux, S., and I. Bachy. 2002. A short history of LIM domain (1993-2002): from protein interaction to degradation. Mol. Neurobiol. 26:269-281.|||Stefanovsky, V. Y., G. Pelletier, R. Hannan, T. Gagnon-Kugler, L. I. Rothblum, and T. Moss. 2001. An immediate response of ribosomal transcription to growth factor stimulation in mammals is mediated by ERK phosphorylation of UBF. Mol. Cell 8:1063-1073.|||Sugden, P. H., and A. Clerk. 1998. “Stress-responsive” mitogen-activated protein kinases (c-Jun N-terminal kinases and p38 mitogen-activated protein kinases) in the myocardium. Circ. Res. 24:345-352.|||Takeishi, Y., Q. Huang, J. I. Abe, M. Glassman, W. Che, J. D. Lee, H. Kawakatsu, E. G. Lawrence, B. D. Hoit, B. C. Berk, and R. A. Walsh. 2001. Src and multiple map kinase activation in cardiac hypertrophy and congestive heart failure under chronic pressure-overload: comparison with acute mechanical stretch. J. Mol. Cell. Cardiol. 33:1637-1648.|||Tian, J., and M. Karin. 1999. Stimulation of Elk1 transcriptional activity by mitogen-activated protein kinases is negatively regulated by protein phosphatase 2B (calcineurin). J. Biol. Chem. 274:15173-15180.|||Ueyama, T., S. Kawashima, T. Sakoda, Y. Rikitake, T. Ishida, M. Kawai, T. Yamashita, S. Ishido, H. Hotta, and M. Yokoyama. 2000. Requirement of activation of the extracellular signal-regulated kinase cascade in myocardial cell hypertrophy. J. Mol. Cell. Cardiol. 32:947-960.|||Wang, L., I. Gout, and C. G. Proud. 2001. Cross-talk between the ERK and p70 S6 kinase (S6K) signaling pathways. MEK-dependent activation of S6K2 in cardiomyocytes. J. Biol. Chem. 276:32670-32677.|||Wei, Y., C.-A. Renard, C. Labalette, Y. Wu, L. Levy, C. Neuvent, S. Prieur, and M.-A. Buendia. 2003. Identification of the LIM protein FHL2 as a coactivator of β-catenin. J. Biol. Chem. 278:5188-5194.|||Widmann, C., S. Gibson, M. B. Jarpe, and G. L. Johnson. 1999. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol. Rev. 79:143-180.|||Yamazaki, T., K. Tobe, E. Hoh, K. Maemura, T. Kaida, I. Komuro, H. Tamemoto, T. Kadowaki, R. Nagai, and Y. Yazaki. 1993. Mechanical loading activates mitogen-activated protein kinase and S6 peptide kinase in cultured rat cardiac myocytes. J. Biol. Chem. 268:12069-12076.|||Yue, T. L., J. L. Gu, C. Wang, A. D. Reith, J. C. Lee, R. C. Mirabile, R. Kreutz, Y. Wang, B. Maleeff, A. A. Parsons, and E. H. Ohlstein. 2000. Extracellular signal-regulated kinase plays an essential role in hypertrophic agonists, endothelin-1 and phenylephrine-induced cardiomyocyte hypertrophy. J. Biol. Chem. 275:37895-37901.|||Zou, Y., I. Komuro, T. Yamazaki, R. Aikawa, S. Kudoh, I. Shiojima, Y. Hiroi, T. Mizuno, and Y. Yazaki. 1996. Protein kinase C, but not tyrosine kinases or Ras, plays a critical role in angiotensin II-induced activation of Raf-1 kinase and extracellular signal-regulated protein kinases in cardiac myocytes. J. Biol. Chem. 271:33592-33597.