Quick Links

Genetic inhibition of cardiac ERK1/2 promotes stress-induced apoptosis and heart failure but has no effect on hypertrophy in viv

Authors: Nicole H Purcell|||Benjamin J Wilkins|||Allen York|||Marc K Saba-El-Leil|||Sylvain Meloche|||Jeffrey Robbins|||Jeffery D Molkentin

Journal: Proceedings of the National Academy of Sciences of the United States of America

Publication Type: Journal Article

Date: 2007

DOI: PMC1955824

ID: 17709754

Affiliations:

Affiliations

    Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.||||||||||||||||||

Abstract

MAPK signaling pathways function as critical regulators of cellular differentiation, proliferation, stress responsiveness, and apoptosis. One branch of the MAPK signaling pathway that culminates in ERK1/2 activation is hypothesized to regulate the growth and adaptation of the heart to both physiologic and pathologic stimuli, given its known activation in response to virtually every stress- and agonist-induced hypertrophic stimulus examined to date. Here we investigated the requirement of ERK1/2 signaling in mediating the cardiac hypertrophic growth response in Erk1(-/-) and Erk2(+/-) mice, as well as in transgenic mice with inducible expression of an ERK1/2-inactivating phosphatase in the heart, dual-specificity phosphatase 6. Although inducible expression of dual-specificity phosphatase 6 in the heart eliminated ERK1/2 phosphorylation at baseline and after stimulation without affecting any other MAPK, it did not diminish the hypertrophic response to pressure overload stimulation, neuroendocrine agonist infusion, or exercise. Similarly, Erk1(-/-) and Erk2(+/-) mice showed no reduction in pathologic or physiologic stimulus-induced cardiac growth in vivo. However, blockade or deletion of cardiac ERK1/2 did predispose the heart to decompensation and failure after long-term pressure overload in conjunction with an increase in myocyte TUNEL. Thus, ERK1/2 signaling is not required for mediating physiologic or pathologic cardiac hypertrophy in vivo, although it does play a protective role in response to pathologic stimuli.


Chemical List

    Mitogen-Activated Protein Kinase 1|||Mitogen-Activated Protein Kinase 3|||MAP Kinase Kinase 1|||Map2k1 protein, mouse|||Dual Specificity Phosphatase 6|||Dusp6 protein, mouse|||Protein Tyrosine Phosphatases

Reference List

    Ho KK, Levy D, Kannel WB, Pinsky JL. J Am Coll Cardiol. 1993;22:6–13.|||Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. N Engl J Med. 1990;322:1561–1566.|||Dickhuth HH, Lehmann M, Auch-Schwelk W, Meinertz T, Keul J. J Cardiovasc Pharmacol. 1987;10:S71–S78.|||Allen DL, Harrison BC, Maass A, Bell ML, Byrnes WC, Leinwand LA. J Appl Physiol. 2001;90:1900–1908.|||Heineke J, Molkentin JD. Nat Rev Mol Cell Biol. 2006;7:589–600.|||Garrington TP, Johnson GL. Curr Opin Cell Biol. 1999;11:211–218.|||Sugden PH, Clerk A. Circ Res. 1998;24:345–352.|||Nishimoto S, Nishida E. EMBO Rep. 2006;7:782–786.|||Farooq A, Zhou MM. Cell Signal. 2004;16:769–779.|||Bueno OF, Molkentin JD. Circ Res. 2002;91:776–781.|||Bueno OF, De Windt LJ, Tymitz KM, Witt SA, Kimball TR, Klevitsky R, Hewett TE, Jones SP, Lefer DJ, Peng CF, et al. EMBO J. 2000;19:6341–6350.|||Lips DJ, Bueno OF, Wilkins BJ, Purcell NH, Kaiser RA, Lorenz JN, Voisin L, Saba-El-Leil MK, Meloche S, Pouyssegur J, et al. Circulation. 2004;109:1938–1941.|||Fjeld CC, Rice AE, Kim Y, Gee KR, Denu JM. J Biol Chem. 2000;275:6749–6757.|||Zhang J, Zhou B, Zheng CF, Zhang ZY. J Biol Chem. 2003;278:29901–29912.|||Zhao Y, Zhang ZY. J Biol Chem. 2001;276:32382–32391.|||Zhou B, Wu L, Shen K, Zhang J, Lawrence DS, Zhang ZY. J Biol Chem. 2001;276:6506–6515.|||Liu S, Sun J-P, Zhou B, Zhang Z-Y. Proc Natl Acad Sci USA. 2006;103:5326–5331.|||Sanbe A, Gulick J, Hanks MC, Liang Q, Osinska H, Robbins J. Circ Res. 2003;92:609–616.|||Cheng M, Boulton TG, Cobb MH. J Biol Chem. 1996;271:8951–8958.|||Glennon PE, Kaddoura S, Sale EM, Sale GJ, Fuller SJ, Sugden PH. Circ Res. 1996;78:954–961.|||Clerk A, Michael A, Sugden PH. J Cell Biol. 1998;142:523–535.|||Ueyama T, Kawashima S, Sakoda T, Rikitake Y, Ishida T, Kawai M, Yamashita T, Ishido S, Hotta H, Yokoyama M. J Mol Cell Cardiol. 2000;32:947–960.|||Thorburn J, Frost JA, Thorburn A. J Cell Biol. 1994;126:1565–1572.|||Thorburn J, McMahon M, Thorburn A. J Biol Chem. 1994;269:30580–30586.|||Harris IS, Zhang S, Treskov I, Kovacs A, Weinheimer C, Muslin AJ. Circulation. 2004;110:718–723.|||Baccarini M. FEBS Lett. 2005;579:3271–3277.|||Hindley A, Kolch W. J Cell Sci. 2002;115:1575–1581.|||Saba-El-Leil MK, Vella FD, Vernay B, Voisin L, Chen L, Labrecque N, Ang SL, Meloche S. EMBO Rep. 2003;4:964–968.|||Pagès G, Guerin S, Grall D, Bonino F, Smith A, Anjuere F, Auberger P, Pouyssegur J. Science. 1999;286:1374–1377.|||Wilkins BJ, Dai YS, Bueno OF, Parsons SA, Xu J, Plank DM, Jones F, Kimball TR, Molkentin JD. Circ Res. 2004;94:110–118.|||Oka T, Maillet M, Watt AJ, Schwartz RJ, Aronow BJ, Duncan SA, Molkentin JD. Circ Res. 2006;98:837–845.|||Taigen T, De Windt LJ, Lim HW, Molkentin JD. Proc Natl Acad Sci USA. 2000;97:1196–1201.