Quick Links

PH domain leucine-rich repeat protein phosphatase 2 (PHLPP2) regulates G-protein-coupled receptor kinase 5 (GRK5)-induced cardia

Authors: Szu-Tsen Yeh|||Cristina M Zambrano|||Walter J Koch|||Nicole H Purcell

Journal: The Journal of biological chemistry

Publication Type: Journal Article

Date: 2018

DOI: PMC5971445

ID: 29628444

Affiliations:

Affiliations

    Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, California 92093.|||Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, California 92093.|||Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania 19140.|||Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, California 92093. Electronic address: npurcell@ucsd.edu.

Abstract

PH domain leucine-rich repeat protein phosphatase (PHLPP) is a serine/threonine phosphatase that has been shown to regulate cell growth and survival through dephosphorylation of several members of the AGC family of kinases. G-protein-coupled receptor kinase 5 (GRK5) is an AGC kinase that regulates phenylephrine (PE)-induced cardiac hypertrophy through its noncanonical function of directly targeting proteins to the nucleus to regulate transcription. Here we investigated the possibility that the PHLPP2 isoform can regulate GRK5-induced cardiomyocyte hypertrophy in neonatal rat ventricular myocytes (NRVMs). We show that removal of PHLPP2 by siRNA induces hypertrophic growth of NRVMs as measured by cell size changes at baseline, potentiated PE-induced cell size changes, and re-expression of fetal genes atrial natriuretic factor and brain natriuretic peptide. Endogenous GRK5 and PHLPP2 were found to interact in NRVMs, and PE-induced nuclear accumulation of GRK5 was enhanced upon down-regulation of PHLPP2. Conversely, overexpression of PHLPP2 blocked PE-induced hypertrophic growth, re-expression of fetal genes, and nuclear accumulation of GRK5, which depended on its phosphatase activity. Finally, using siRNA against GRK5, we found that GRK5 was necessary for the hypertrophic response induced by PHLPP2 knockdown. Our findings demonstrate for the first time a novel regulation of GRK5 by the phosphatase PHLPP2, which modulates hypertrophic growth. Understanding the signaling pathways affected by PHLPP2 has potential for new therapeutic targets in the treatment of cardiac hypertrophy and failure.


Chemical List

    Cardiotonic Agents|||Phenylephrine|||G-Protein-Coupled Receptor Kinase 5|||Grk5 protein, rat|||PHLPP2 protein, rat|||Phosphoprotein Phosphatases

Reference List

    Frey N., and Olson E. N. (2003) Cardiac hypertrophy: the good, the bad and the ugly. Annu. Rev. Physiol. 65, 45–79 10.1146/annurev.physiol.65.092101.142243|||Grzechnik A. T., and Newton A. C. (2016) PHLPPing through history: a decade in the life of PHLPP phosphatases. Biochem. Soc. Trans. 44, 1675–1682 10.1042/BST20160170|||Kehat I., and Molkentin J. D. (2010) Molecular pathways underlying cardiac remodeling during pathophysiological stimulation. Circulation 122, 2727–2735 10.1161/CIRCULATIONAHA.110.942268|||Molkentin J. D., Lu J. R., Antos C. L., Markham B., Richardson J., Robbins J., Grant S. R., and Olson E. N. (1998) A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93, 215–228 10.1016/S0092-8674(00)81573-1|||Bossuyt J., Helmstadter K., Wu X., Clements-Jewery H., Haworth R. S., Avkiran M., Martin J. L., Pogwizd S. M., and Bers D. M. (2008) Ca2+/calmodulin-dependent protein kinase IIdelta and protein kinase D overexpression reinforce the histone deacetylase 5 redistribution in heart failure. Circ. Res. 102, 695–702 10.1161/CIRCRESAHA.107.169755|||Zhang T., Kohlhaas M., Backs J., Mishra S., Phillips W., Dybkova N., Chang S., Ling H., Bers D. M., Maier L. S., Olson E. N., and Brown J. H. (2007) CaMKII isoforms differentially affect calcium handling but similarly regulate HDAC/MEF2 transcriptional responses. J. Biol. Chem. 282 35078–35087|||Kehat I., Davis J., Tiburcy M., Accornero F., Saba-El-Leil M. K., Maillet M., York A. J., Lorenz J. N., Zimmermann W. H., Meloche S., and Molkentin J. D. (2011) Extracellular signal-regulated kinases 1 and 2 regulate the balance between eccentric and concentric cardiac growth. Circ. Res. 108 176–183|||Purcell N. H., Wilkins B. J., York A., Saba-El-Leil M. K., Meloche S., Robbins J., and Molkentin J. D. (2007) Genetic inhibition of cardiac ERK1/2 promotes stress-induced apoptosis and heart failure but has no effect on hypertrophy in vivo. Proc. Natl. Acad. Sci. U.S.A. 104, 14074–14079 10.1073/pnas.0610906104|||Kim Y. K., Seo D. W., Kang D. W., Lee H. Y., Han J. W., and Kim S. N. (2006) Involvement of HDAC1 and the PI3K/PKC signaling pathways in NF-κB activation by the HDAC inhibitor apicidin. Biochem. Biophys. Res. Commun. 347, 1088–1093 10.1016/j.bbrc.2006.06.196|||Traynham C. J., Hullmann J., and Koch W. J. (2016) Canonical and non-canonical actions of GRK5 in the heart. J. Mol. Cell. Cardiol. 92, 196–202 10.1016/j.yjmcc.2016.01.027|||Shioi T., McMullen J. R., Kang P. M., Douglas P. S., Obata T., Franke T. F., Cantley L. C., and Izumo S. (2002) Akt/protein kinase B promotes organ growth in transgenic mice. Mol. Cell. Biol. 22, 2799–2809 10.1128/MCB.22.8.2799-2809.2002|||Sussman M. A., Völkers M., Fischer K., Bailey B., Cottage C. T., Din S., Gude N., Avitabile D., Alvarez R., Sundararaman B., Quijada P., Mason M., Konstandin M. H., Malhowski A., Cheng Z., et al. (2011) Myocardial AKT: the omnipresent nexus. Physiol. Rev. 91, 1023–1070 10.1152/physrev.00024.2010|||Newton A. C., and Trotman L. C. (2014) Turning off AKT: PHLPP as a drug target. Annu. Rev. Pharmacol. Toxicol. 54, 537–558 10.1146/annurev-pharmtox-011112-140338|||Brognard J., Sierecki E., Gao T., and Newton A. C. (2007) PHLPP and a second isoform, PHLPP2, differentially attenuate the amplitude of Akt signaling by regulating distinct Akt isoforms. Mol. Cell 25, 917–931 10.1016/j.molcel.2007.02.017|||Gao T., Brognard J., and Newton A. C. (2008) The phosphatase PHLPP controls the cellular levels of protein kinase C. J. Biol. Chem. 283, 6300–6311 10.1074/jbc.M707319200|||Gao T., Furnari F., and Newton A. C. (2005) PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol. Cell 18, 13–24 10.1016/j.molcel.2005.03.008|||Liu J., Stevens P. D., Li X., Schmidt M. D., and Gao T. (2011) PHLPP-mediated dephosphorylation of S6K1 inhibits protein translation and cell growth. Mol. Cell. Biol. 31, 4917–4927 10.1128/MCB.05799-11|||Miyamoto S., Purcell N. H., Smith J. M., Gao T., Whittaker R., Huang K., Castillo R., Glembotski C. C., Sussman M. A., Newton A. C., and Brown J. H. (2010) PHLPP-1 negatively regulates Akt activity and survival in the heart. Circ. Res. 107, 476–484 10.1161/CIRCRESAHA.109.215020|||Liu J., Weiss H. L., Rychahou P., Jackson L. N., Evers B. M., and Gao T. (2009) Loss of PHLPP expression in colon cancer: role in proliferation and tumorigenesis. Oncogene 28, 994–1004 10.1038/onc.2008.450|||Lv D., Yang H., Wang W., Xie Y., Hu W., Ye M., and Chen X. (2015) High PHLPP expression is associated with better prognosis in patients with resected lung adenocarcinoma. BMC Cancer 15, 687 10.1186/s12885-015-1711-1|||Mathur A., Pandey V. K., and Kakkar P. (2017) PHLPP: a putative cellular target during insulin resistance and type 2 diabetes. J. Endocrinol. 233, R185–R198 10.1530/JOE-17-0081|||Li X., Liu J., and Gao T. (2009) β-TrCP-mediated ubiquitination and degradation of PHLPP1 are negatively regulated by Akt. Mol. Cell. Biol. 29, 6192–6205 10.1128/MCB.00681-09|||Warfel N. A., and Newton A. C. (2012) Pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP): a new player in cell signaling. J. Biol. Chem. 287, 3610–3616 10.1074/jbc.R111.318675|||Matsui T., Li L., Wu J. C., Cook S. A., Nagoshi T., Picard M. H., Liao R., and Rosenzweig A. (2002) Phenotypic spectrum caused by transgenic overexpression of activated Akt in the heart. J. Biol. Chem. 277 22896–22901|||Shiojima I., Sato K., Izumiya Y., Schiekofer S., Ito M., Liao R., Colucci W. S., and Walsh K. (2005) Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. J. Clin. Invest. 115, 2108–2118 10.1172/JCI24682|||Moc C., Taylor A. E., Chesini G. P., Zambrano C. M., Barlow M. S., Zhang X., Gustafsson Å. B., and Purcell N. H. (2015) Physiological activation of Akt by PHLPP1 deletion protects against pathological hypertrophy. Cardiovasc. Res. 105, 160–170 10.1093/cvr/cvu243|||Brognard J., and Newton A. C. (2008) PHLiPPing the switch on Akt and protein kinase C signaling. Trends Endocrinol. Metab. 19, 223–230 10.1016/j.tem.2008.04.001|||Chen B., Van Winkle J. A., Lyden P. D., Brown J. H., and Purcell N. H. (2013) PHLPP1 gene deletion protects the brain from ischemic injury. J. Cereb. Blood Flow Metab. 33, 196–204 10.1038/jcbfm.2012.150|||Pearce L. R., Komander D., and Alessi D. R. (2010) The nuts and bolts of AGC protein kinases. Nat. Rev. Mol. Cell Biol. 11, 9–22 10.1038/nrn2754,10.1038/nrm2822|||Martini J. S., Raake P., Vinge L. E., DeGeorge B. Jr., Chuprun J. K., Harris D. M., Gao E., Eckhart A. D., Pitcher J. A., and Koch W. J. (2008) Uncovering G protein-coupled receptor kinase-5 as a histone deacetylase kinase in the nucleus of cardiomyocytes. Proc. Natl. Acad. Sci. U.S.A. 105, 12457–12462 10.1073/pnas.0803153105|||Zhang Y., Matkovich S. J., Duan X., Gold J. I., Koch W. J., and Dorn G. W. 2nd. (2011) Nuclear effects of G-protein receptor kinase 5 on histone deacetylase 5-regulated gene transcription in heart failure. Circ. Heart Fail. 4, 659–668 10.1161/CIRCHEARTFAILURE.111.962563|||Gold J. I., Martini J. S., Hullmann J., Gao E., Chuprun J. K., Lee L., Tilley D. G., Rabinowitz J. E., Bossuyt J., Bers D. M., and Koch W. J. (2013) Nuclear translocation of cardiac G protein-coupled receptor kinase 5 downstream of select Gq-activating hypertrophic ligands is a calmodulin-dependent process. PLoS One 8, e57324 10.1371/journal.pone.0057324|||Hullmann J., Traynham C. J., Coleman R. C., and Koch W. J. (2016) The expanding GRK interactome: implications in cardiovascular disease and potential for therapeutic development. Pharmacol. Res. 110, 52–64 10.1016/j.phrs.2016.05.008|||Islam K. N., Bae J. W., Gao E., and Koch W. J. (2013) Regulation of nuclear factor κB (NF-κB) in the nucleus of cardiomyocytes by G protein-coupled receptor kinase 5 (GRK5). J. Biol. Chem. 288, 35683–35689 10.1074/jbc.M113.529347|||Islam K. N., and Koch W. J. (2012) Involvement of nuclear factor κB (NF-κB) signaling pathway in regulation of cardiac G protein-coupled receptor kinase 5 (GRK5) expression. J. Biol. Chem. 287, 12771–12778 10.1074/jbc.M111.324566|||Catalucci D., Latronico M. V., Ellingsen O., and Condorelli G. (2008) Physiological myocardial hypertrophy: how and why? Front. Biosci. 13, 312–324 10.2741/2681|||Cittadini A., Monti M. G., Iaccarino G., Di Rella F., Tsichlis P. N., Di Gianni A., Stromer H., Sorriento D., Peschle C., Trimarco B., Saccà L., and Condorelli G. (2006) Adenoviral gene transfer of Akt enhances myocardial contractility and intracellular calcium handling. Gene Ther. 13, 8–19 10.1038/sj.gt.3302589|||Cook S. A., Matsui T., Li L., and Rosenzweig A. (2002) Transcriptional effects of chronic Akt activation in the heart. J. Biol. Chem. 277, 22528–22533 10.1074/jbc.M201462200|||Gold J. I., Gao E., Shang X., Premont R. T., and Koch W. J. (2012) Determining the absolute requirement of G protein-coupled receptor kinase 5 for pathological cardiac hypertrophy: short communication. Circ. Res. 111, 1048–1053 10.1161/CIRCRESAHA.112.273367|||Johnson L. R., Robinson J. D., Lester K. N., and Pitcher J. A. (2013) Distinct structural features of G protein-coupled receptor kinase 5 (GRK5) regulate its nuclear localization and DNA-binding ability. PLoS One 8, e62508 10.1371/journal.pone.0062508|||Yang Z. Z., Tschopp O., Baudry A., Dümmler B., Hynx D., and Hemmings B. A. (2004) Physiological functions of protein kinase B/Akt. Biochem. Soc. Trans. 32, 350–354 10.1042/bst0320350|||Newton A. C., Antal C. E., and Steinberg S. F. (2016) Protein kinase C mechanisms that contribute to cardiac remodelling. Clin. Sci. 130, 1499–1510 10.1042/CS20160036|||Liao Y., Deng Y., Liu J., Ye Z., You Z., Yao S., and He S. (2016) MiR-760 overexpression promotes proliferation in ovarian cancer by downregulation of PHLPP2 expression. Gynecol. Oncol. 143, 655–663 10.1016/j.ygyno.2016.09.010|||Sallese M., Iacovelli L., Cumashi A., Capobianco L., Cuomo L., and De Blasi A. (2000) Regulation of G protein-coupled receptor kinase subtypes by calcium sensor proteins. Biochim. Biophys. Acta 1498, 112–121 10.1016/S0167-4889(00)00088-4|||Pronin A. N., Satpaev D. K., Slepak V. Z., and Benovic J. L. (1997) Regulation of G protein-coupled receptor kinases by calmodulin and localization of the calmodulin binding domain. J. Biol. Chem. 272, 18273–18280 10.1074/jbc.272.29.18273|||Pronin A. N., and Benovic J. L. (1997) Regulation of the G protein-coupled receptor kinase GRK5 by protein kinase C. J. Biol. Chem. 272 3806–3812|||Zhang Y., Matkovich S. J., Duan X., Diwan A., Kang M. Y., and Dorn G. W. 2nd (2011) Receptor-independent protein kinase Cα (PKCα) signaling by calpain-generated free catalytic domains induces HDAC5 nuclear export and regulates cardiac transcription. J. Biol. Chem. 286, 26943–26951 10.1074/jbc.M111.234757|||Schumacher S. M., and Koch W. J. (2017) Noncanonical roles of G protein-coupled receptor kinases in cardiovascular signaling. J. Cardiovasc. Pharmacol. 70, 129–141 10.1097/FJC.0000000000000483|||Hogan P. G., Chen L., Nardone J., and Rao A. (2003) Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev. 17, 2205–2232 10.1101/gad.1102703|||Macian F. (2005) NFAT proteins: key regulators of T-cell development and function. Nat. Rev. Immunol. 5, 472–484 10.1038/nri1632|||Hullmann J. E., Grisanti L. A., Makarewich C. A., Gao E., Gold J. I., Chuprun J. K., Tilley D. G., Houser S. R., and Koch W. J. (2014) GRK5-mediated exacerbation of pathological cardiac hypertrophy involves facilitation of nuclear NFAT activity. Circ. Res. 115, 976–985 10.1161/CIRCRESAHA.116.304475|||Dusaban S. S., Purcell N. H., Rockenstein E., Masliah E., Cho M. K., Smrcka A. V., and Brown J. H. (2013) Phospholipase Cϵ links G protein-coupled receptor activation to inflammatory astrocytic responses. Proc. Natl. Acad. Sci. U.S.A. 110, 3609–3614 10.1073/pnas.1217355110