Are there consistent abnormalities in event-related EEG oscillations in patients with Alzheimer's disease compared to other dise
Authors:
Journal: Psychophysiology
Publication Type: Journal Article
Date: 2022
DOI: 10.1111/psyp.13934
ID: 34460957
Abstract
Cerebrospinal and structural-molecular neuroimaging in-vivo biomarkers are recommended for diagnostic purposes in Alzheimer's disease (AD) and other dementias; however, they do not explain the effects of AD neuropathology on neurophysiological mechanisms underpinning cognitive processes. Here, an Expert Panel from the Electrophysiology Professional Interest Area of the Alzheimer's Association reviewed the field literature and reached consensus on the event-related electroencephalographic oscillations (EROs) that show consistent abnormalities in patients with significant cognitive deficits due to Alzheimer's, Parkinson's (PD), Lewy body (LBD), and cerebrovascular diseases. Converging evidence from oddball paradigms showed that, as compared to cognitively unimpaired (CU) older adults, AD patients had lower amplitude in widespread delta (>4 Hz) and theta (4-7 Hz) phase-locked EROs as a function of disease severity. Similar effects were also observed in PD, LBD, and/or cerebrovascular cognitive impairment patients. Non-phase-locked alpha (8-12 Hz) and beta (13-30 Hz) oscillations were abnormally reduced (event-related desynchronization, ERD) in AD patients relative to CU. However, studies on patients with other dementias remain lacking. Delta and theta phase-locked EROs during oddball tasks may be useful neurophysiological biomarkers of cognitive systems at work in heuristic and intervention clinical trials performed in AD patients, but more research is needed regarding their potential role for other dementias.
Chemical List
- Biomarkers
Reference List
- Adaikkan, C., Middleton, S. J., Marco, A., Pao, P.-C., Mathys, H., Kim, D.-W., Gao, F., Young, J. Z., Suk, H.-J., Boyden, E. S., McHugh, T. J., & Tsai, L.-H. (2019). Gamma entrainment binds higher-order brain regions and offers neuroprotection. Neuron, 102(5), 929-943. https://doi.org/10.1016/j.neuron.2019.04.011|||Adrian, E. D. (1942). Olfactory reactions in the brain of the hedgehog. The Journal of Physiology, 100(4), 459. https://doi.org/10.1113/jphysiol.1942.sp003955|||Aktürk, T., İşoğlu-Alkaç, Ü., Hanoğlu, L., & Güntekin, B. (2020). Age related differences in the recognition of facial expression: Evidence from EEG event-related brain oscillations. International Journal of Psychophysiology, 147, 244-256. https://doi.org/10.1016/j.ijpsycho.2019.11.013|||Albert, M. S., DeKosky, S. T., Dickson, D., Dubois, B., Feldman, H. H., Fox, N. C., Gamst, A., Holtzman, D. M., Jagust, W. J., Petersen, R. C., Snyder, P. J., Carrillo, M. C., Thies, B., & Phelps, C. H. (2011). The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's & Dementia, 7(3), 270-279. https://doi.org/10.1016/j.jalz.2011.03.008|||Arif, Y., Spooner, R. K., Wiesman, A. I., Embury, C. M., Proskovec, A. L., & Wilson, T. W. (2020). Modulation of attention networks serving reorientation in healthy aging. Aging (Albany NY), 12(13), 12582. https://doi.org/10.18632/aging.103515|||Atagün, M. İ., Güntekin, B., Maşalı, B., Tülay, E., & Başar, E. (2014). Decrease of event-related delta oscillations in euthymic patients with bipolar disorder. Psychiatry Research: Neuroimaging, 223(1), 43-48. https://doi.org/10.1016/j.pscychresns.2014.04.001|||Babiloni, C., Arakaki, X., Azami, H., Bennys, K., Blinowska, K., Bonanni, L., Bujan, A., Carrillo, M. C., Cichocki, A., Frutos-Lucas, J., Del Percio, C., Dubois, B., Edelmayer, R., Egan, G., Epelbaum, S., Escudero, J., Evans, A., Farina, F., Fargo, K., … Guntekin, B. (2021). Measures of resting state EEG rhythms for clinical trials in Alzheimer's disease: Recommendations of an expert panel. Alzheimer's & Dementia, 2021, 1-26. http://dx.doi.org/10.1002/alz.12311|||Babiloni, C., Babiloni, F., Carducci, F., Cincotti, F., Del Percio, C., De Pino, G., Maestrini, S., Priori, A., Tisei, P., Zanetti, O., & Rossini, P. M. (2000). Movement-related electroencephalographic reactivity in Alzheimer disease. NeuroImage, 12(2), 139-146. https://doi.org/10.1006/nimg.2000.0602|||Babiloni, C., Barry, R. J., Başar, E., Blinowska, K. J., Cichocki, A., Drinkenburg, W. H. I. M., Klimesch, W., Knight, R. T., Lopes da Silva, F., Nunez, P., Oostenveld, R., Jeong, J., Pascual-Marqui, R., Valdes-Sosa, P., & Hallett, M. (2020). International federation of clinical neurophysiology (IFCN)-EEG research workgroup: Recommendations on frequency and topographic analysis of resting state EEG rhythms. Part 1: Applications in clinical research studies. Clinical Neurophysiology, 131(1), 285-307. https://doi.org/10.1016/j.clinph.2019.06.234|||Babiloni, C., Binetti, G., Cassarino, A., Dal Forno, G., Del Percio, C., Ferreri, F., Ferri, R., Frisoni, G., Galderisi, S., Hirata, K., Lanuzza, B., Miniussi, C., Mucci, A., Nobili, F., Rodriguez, G., Luca Romani, G., & Rossini, P. M. (2006). Sources of cortical rhythms in adults during physiological aging: A multicentric EEG study. Human Brain Mapping, 27(2), 162-172. https://doi.org/10.1002/hbm.20175|||Babiloni, C., Binetti, G., Cassetta, E., Cerboneschi, D., Dal Forno, G., Del Percio, C., Ferreri, F., Ferri, R., Lanuzza, B., Miniussi, C., Moretti, D. V., Nobili, F., Pascual-Marqui, R. D., Rodriguez, G., Romani, G. L., Salinari, S., Tecchio, F., Vitali, P., Zanetti, O., … Rossini, P. M. (2004). Mapping distributed sources of cortical rhythms in mild Alzheimer's disease. A Multicentric EEG Study. Neuroimage, 22(1), 57-67. https://doi.org/10.1016/j.neuroimage.2003.09.028|||Babiloni, C., Blinowska, K., Bonanni, L., Cichocki, A., De Haan, W., Del Percio, C., Dubois, B., Escudero, J., Fernández, A., Frisoni, G., Guntekin, B., Hajos, M., Hampel, H., Ifeachor, E., Kilborn, K., Kumar, S., Johnsen, K., Johannsson, M., Jeong, J., … Randall, F. (2020). What electrophysiology tells us about Alzheimer's disease: A window into the synchronization and connectivity of brain neurons. Neurobiology of Aging, 85, 58-73. https://doi.org/10.1016/j.neurobiolaging.2019.09.008|||Babiloni, C., Cassetta, E., Chiovenda, P., Del Percio, C., Ercolani, M., Moretti, D. V., Moffa, F., Pasqualetti, P., Pizzella, V., Romani, G. L., Tecchio, F., Zappasodi, F., & Rossini, P. M. (2005). Alpha rhythms in mild dements during visual delayed choice reaction time tasks: A MEG study. Brain Research Bulletin, 65(6), 457-470. https://doi.org/10.1016/j.brainresbull.2005.01.014|||Babiloni, C., Ferri, R., Binetti, G., Vecchio, F., Frisoni, G. B., Lanuzza, B., Miniussi, C., Nobili, F., Rodriguez, G., Rundo, F., Cassarino, A., Infarinato, F., Cassetta, E., Salinari, S., Eusebi, F., & Rossini, P. M. (2009). Directionality of EEG synchronization in Alzheimer's disease subjects. Neurobiology of Aging, 30(1), 93-102. https://doi.org/10.1016/j.neurobiolaging.2007.05.007|||Babiloni, C., Frisoni, G., Pievani, M., Vecchio, F., Lizio, R., Buttiglione, M., Geroldi, C., Fracassi, C., Eusebi, F., & Ferri, R. (2009). Hippocampal volume and cortical sources of EEG alpha rhythms in mild cognitive impairment and Alzheimer disease. NeuroImage, 44(1), 123-135. https://doi.org/10.1016/j.neuroimage.2008.08.005|||Babiloni, C., Pascarelli, M. T., Lizio, R., Noce, G., Lopez, S., Rizzo, M., Ferri, R., Soricelli, A., Nobili, F., Arnaldi, D., Famà, F., Orzi, F., Buttinelli, C., Giubilei, F., Salvetti, M., Cipollini, V., Bonanni, L., Franciotti, R., Onofrj, M., … Del Percio, C. (2020). Abnormal cortical neural synchronization mechanisms in quiet wakefulness are related to motor deficits, cognitive symptoms, and visual hallucinations in Parkinson’s disease patients: An electroencephalographic study. Neurobiology of Aging. 91, 88-111. https://doi.org/10.1016/j.neurobiolaging.2020.02.029|||Bachman, M. D., & Bernat, E. M. (2018). Independent contributions of theta and delta time-frequency activity to the visual oddball P3b. International Journal of Psychophysiology, 128, 70-80. https://doi.org/10.1016/j.ijpsycho.2018.03.010|||Balconi, M., & Lucchiari, C. (2008). Consciousness and arousal effects on emotional face processing as revealed by brain oscillations. A gamma band analysis. International Journal of Psychophysiology, 67(1), 41-46. https://doi.org/10.1016/j.ijpsycho.2007.10.002|||Barr, M. S., Radhu, N., Guglietti, C. L., Zomorrodi, R., Rajji, T. K., Ritvo, P., & Daskalakis, Z. J. (2014). Age-related differences in working memory evoked gamma oscillations. Brain Research, 1576, 43-51. https://doi.org/10.1016/j.brainres.2014.05.043|||Başar, E. (1972). A study of the time and frequency characteristics of the potentials evoked in the acoustical cortex. Kybernetik, 10(2), 61-64. https://doi.org/10.1007/BF00292231|||Başar, E. (2013). A review of gamma oscillations in healthy subjects and in cognitive impairment. International Journal of Psychophysiology, 90(2), 99-117. https://doi.org/10.1016/j.ijpsycho.2013.07.005|||Başar, E., Başar-Eroglu, C., Karakaş, S., & Schürmann, M. (2001). Gamma, alpha, delta, and theta oscillations govern cognitive processes. International Journal of Psychophysiology, 39(2-3), 241-248. https://doi.org/10.1016/S0167-8760(00)00145-8|||Başar, E., Başar-Eroglu, C., Parnefjord, R., Rahn, E., & Schürmann, M. (1992). Evoked potentials: Ensembles of brain induced rhythmicities in the alpha, theta and gamma ranges. In E. Başar & T. Bullock (Eds.), Induced rhythms in the brain (pp. 155-181). Birkhäuser.|||Basar, E., Demiralp, T., Schürmann, M., Basar-Eroglu, C., & Ademoglu, A. (1999). Oscillatory brain dynamics, wavelet analysis, and cognition. Brain and Language, 66(1), 146-183. https://doi.org/10.1006/brln.1998.2029|||Başar, E., Emek-Savaş, D. D., Güntekin, B., & Yener, G. G. (2016). Delay of cognitive gamma responses in Alzheimer's disease. NeuroImage: Clinical, 11, 106-115. https://doi.org/10.1016/j.nicl.2016.01.015|||Başar, E., Femir, B., Emek-Savaş, D. D., Güntekin, B., & Yener, G. G. (2017). Increased long distance event-related gamma band connectivity in Alzheimer's disease. NeuroImage: Clinical, 14, 580-590. https://doi.org/10.1016/j.nicl.2017.02.021|||Başar, E., Gölbaşı, B. T., Tülay, E., Aydın, S., & Başar-Eroğlu, C. (2016). Best method for analysis of brain oscillations in healthy subjects and neuropsychiatric diseases. International Journal of Psychophysiology, 103, 22-42. https://doi.org/10.1016/j.ijpsycho.2015.02.017|||Başar, E., Gönder, A., Ozesmi, C., & Ungan, P. (1975). Dynamics of brain rhythmic and evoked potentials. II. Studies in the auditory pathway, reticular formation, and hippocampus during the waking stage. Biological Cybernetics, 20(3-4), 145-160. https://doi.org/10.1007/BF00342635|||Başar, E., Güntekin, B., Tülay, E., & Yener, G. G. (2010). Evoked and event related coherence of Alzheimer patients manifest differentiation of sensory-cognitive networks. Brain Research, 1357, 79-90. https://doi.org/10.1016/j.brainres.2010.08.054|||Basar, E., & Stampfer, H. G. (1985). Important associations among EEG-dynamics, event-related potentials, short-term memory and learning. International Journal of Neuroscience, 26(3-4), 161-180. https://doi.org/10.3109/00207458508985615|||Başar-Eroglu, C., & Başar, E. (1991). A compound P300-40Hz response of the cat hippocampus. International Journal of Neuroscience, 60(3-4), 227-237. https://doi.org/10.3109/00207459109167035|||Başar-Eroglu, C., Strüber, D., Schürmann, M., Stadler, M., & Başar, E. (1996). Gamma-band responses in the brain: A short review of psychophysiological correlates and functional significance. International Journal of Psychophysiology, 24(1-2), 101-112. https://doi.org/10.1016/S0167-8760(96)00051-7|||Bates, A. T., Kiehl, K. A., Laurens, K. R., & Liddle, P. F. (2009). Low-frequency EEG oscillations associated with information processing in schizophrenia. Schizophrenia Research, 115(2-3), 222-230. https://doi.org/10.1016/j.schres.2009.09.036|||Benussi, A., Cantoni, V., Cotelli, M. S., Cotelli, M., Brattini, C., Datta, A., Thomas, C., Santarnecchi, E., Pascual-Leone, A., & Borroni, B. (2021). Exposure to gamma tACS in Alzheimer’s disease: A randomized, double-blind, sham-controlled, crossover, pilot study. Brain Stimulation, 14(3), 531-540. https://doi.org/10.1016/j.brs.2021.03.007|||Berger, H. (1929). Über das Elektrenkephalogramm des Menschen. I. Bericht. Archiv Für Psychiatrie Und Nervenkrankheiten, 87, 527-570. https://doi.org/10.1007/BF01797193|||Bobes, M. A., García, Y. F., Lopera, F., Quiroz, Y. T., Galán, L., Vega, M., Trujillo, N., Valdes-Sosa, M., & Valdes-Sosa, P. (2010). ERP generator anomalies in presymptomatic carriers of the Alzheimer's disease E280APS-1mutation. Human Brain Mapping, 31(2), 247-265. http://dx.doi.org/10.1002/hbm.20861|||Böttger, D., Herrmann, C. S., & von Cramon, D. Y. (2002). Amplitude differences of evoked alpha and gamma oscillations in two different age groups. International Journal of Psychophysiology, 45(3), 245-251. https://doi.org/10.1016/S0167-8760(02)00031-4|||Bruns, A., Eckhorn, R., Jokeit, H., & Ebner, A. (2000). Amplitude envelope correlation detects coupling among incoherent brain signals. NeuroReport, 11(7), 1509-1514. https://doi.org/10.1097/00001756-200005150-00029|||Canolty, R. T., Edwards, E., Dalal, S. S., Soltani, M., Nagarajan, S. S., Kirsch, H. E., Berger, M. S., Barbaro, N. M., & Knight, R. T. (2006). High gamma power is phase-locked to theta oscillations in human neocortex. Science, 313(5793), 1626-1628. https://doi.org/10.1126/science.1128115|||Canolty, R. T., & Knight, R. T. (2010). The functional role of cross-frequency coupling. Trends in Cognitive Sciences, 14(11), 506-515. https://doi.org/10.1016/j.tics.2010.09.001|||Caravaglios, G., Castro, G., Costanzo, E., Di Maria, G., Mancuso, D., & Muscoso, E. G. (2010). Theta power responses in mild Alzheimer’s disease during an auditory oddball paradigm: Lack of theta enhancement during stimulus processing. Journal of Neural Transmission, 117(10), 1195-1208. https://doi.org/10.1007/s00702-010-0488-2|||Caravaglios, G., Castro, G., Muscoso, E. G., Crivelli, D., & Balconi, M. (2018). Beta responses in healthy elderly and in patients with amnestic mild cognitive impairment during a task of temporal orientation of attention. Clinical EEG and Neuroscience, 49(4), 258-271. https://doi.org/10.1177/1550059416676144|||Caravaglios, G., Costanzo, E., Palermo, F., & Muscoso, E. G. (2008). Decreased amplitude of auditory event-related delta responses in Alzheimer's disease. International Journal of Psychophysiology, 70(1), 23-32. https://doi.org/10.1016/j.ijpsycho.2008.04.004|||Caravaglios, G., Muscoso, E. G., Di Maria, G., & Costanzo, E. (2013). Theta responses are abnormal in mild cognitive impairment: Evidence from analysis of theta event-related synchronization during a temporal expectancy task. Journal of Neural Transmission, 120(7), 1093-1107. https://doi.org/10.1007/s00702-012-0921-9|||Caravaglios, G., Muscoso, E. G., Di Maria, G., & Costanzo, E. (2015). Patients with mild cognitive impairment have an abnormal upper-alpha event-related desynchronization/synchronization (ERD/ERS) during a task of temporal attention. Journal of Neural Transmission, 122(3), 441-453. https://doi.org/10.1007/s00702-014-1262-7|||Cavanagh, J. F., & Frank, M. J. (2014). Frontal theta as a mechanism for cognitive control. Trends in Cognitive Sciences, 18(8), 414-421. https://doi.org/10.1016/j.tics.2014.04.012|||Cespon, J., Rodella, C., Miniussi, C., & Pellicciari, M. C. (2019). Behavioural and electrophysiological modulations induced by transcranial direct current stimulation in healthy elderly and Alzheimer’s disease patients: A pilot study. Clinical Neurophysiology, 130(11), 2038-2052. https://doi.org/10.1016/j.clinph.2019.08.016|||Christov, M., & Dushanova, J. (2016). Functional correlates of brain aging: Beta and gamma components of event-related band responses. Acta Neurobiologiae Experimentalis, 76(2), 98-109. https://doi.org/10.21307/ane-2017-009|||Cohen, M. X. (2008). Assessing transient cross-frequency coupling in EEG data. Journal of Neuroscience Methods, 168(2), 494-499. https://doi.org/10.1016/j.jneumeth.2007.10.012|||Cohen, M. X. (2014). Analyzing neural time series data: Theory and practice. MIT press.|||Cohen, M. X., & Cavanagh, J. F. (2011). Single-trial regression elucidates the role of prefrontal theta oscillations in response conflict. Frontiers in Psychology, 2, 30. https://doi.org/10.3389/fpsyg.2011.00030|||Colclough, G. L., Woolrich, M. W., Tewarie, P. K., Brookes, M. J., Quinn, A. J., & Smith, S. M. (2016). How reliable are MEG resting-state connectivity metrics? NeuroImage, 138, 284-293. https://doi.org/10.1016/j.neuroimage.2016.05.070|||Crunelli, V., David, F., Lőrincz, M. L., & Hughes, S. W. (2015). The thalamocortical network as a single slow wave-generating unit. Current Opinion in Neurobiology, 31, 72-80. https://doi.org/10.1016/j.conb.2014.09.001|||Cummins, T. D., Broughton, M., & Finnigan, S. (2008). Theta oscillations are affected by amnestic mild cognitive impairment and cognitive load. International Journal of Psychophysiology, 70(1), 75-81. https://doi.org/10.1016/j.ijpsycho.2008.06.002|||Cummins, T. D., & Finnigan, S. (2007). Theta power is reduced in healthy cognitive aging. International Journal of Psychophysiology, 66(1), 10-17. https://doi.org/10.1016/j.ijpsycho.2007.05.008|||de Haan, W., Pijnenburg, Y. A., Strijers, R. L., van der Made, Y., van der Flier, W. M., Scheltens, P., & Stam, C. J. (2009). Functional neural network analysis in frontotemporal dementia and Alzheimer's disease using EEG and graph theory. BMC Neuroscience, 10(1), 1-12. https://doi.org/10.1186/1471-2202-10-101|||Debener, S., Herrmann, C. S., Kranczioch, C., Gembris, D., & Engel, A. K. (2003). Top-down attentional processing enhances auditory evoked gamma band activity. NeuroReport, 14(5), 683-686. https://doi.org/10.1097/00001756-200304150-00005|||Deiber, M. P., Ibañez, V., Missonnier, P., Herrmann, F., Fazio-Costa, L., Gold, G., & Giannakopoulos, P. (2009). Abnormal-induced theta activity supports early directed-attention network deficits in progressive MCI. Neurobiology of Aging, 30(9), 1444-1452. https://doi.org/10.1016/j.neurobiolaging.2007.11.021|||Deiber, M.-P., Meziane, H. B., Hasler, R., Rodriguez, C., Toma, S., Ackermann, M., Herrmann, F., & Giannakopoulos, P. (2015). Attention and working memory-related EEG markers of subtle cognitive deterioration in healthy elderly individuals. Journal of Alzheimer's Disease, 47(2), 335-349. https://doi.org/10.3233/JAD-150111|||Deiber, M.-P., Rodriguez, C., Jaques, D., Missonnier, P., Emch, J., Millet, P., Gold, G., Giannakopoulos, P., & Ibañez, V. (2010). Aging effects on selective attention-related electroencephalographic patterns during face encoding. Neuroscience, 171(1), 173-186. https://doi.org/10.1016/j.neuroscience.2010.08.051|||del Val, L. P., Cantero, J. L., & Atienza, M. (2016). Atrophy of amygdala and abnormal memory-related alpha oscillations over posterior cingulate predict conversion to Alzheimer’s disease. Scientific Reports, 6, 31859. https://doi.org/10.1038/srep31859|||Del Val, L. P., Cantero, J. L., Baena, D., & Atienza, M. (2018). Damage of the temporal lobe and APOE status determine neural compensation in mild cognitive impairment. Cortex, 101, 136-153. https://doi.org/10.1016/j.cortex.2018.01.018|||Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9-21. https://doi.org/10.1016/j.jneumeth.2003.10.009|||Demiralp, T., Ademoglu, A., Istefanopulos, Y., Başar-Eroglu, C., & Başar, E. (2001). Wavelet analysis of oddball P300. International Journal of Psychophysiology, 39(2-3), 221-227. https://doi.org/10.1016/S0167-8760(00)00143-4|||Doege, K., Jansen, M., Mallikarjun, P., Liddle, E. B., & Liddle, P. F. (2010). How much does phase resetting contribute to event-related EEG abnormalities in schizophrenia? Neuroscience Letters, 481(1), 1-5. https://doi.org/10.1016/j.neulet.2010.06.008|||Doege, K., Kumar, M., Bates, A. T., Das, D., Boks, M. P. M., & Liddle, P. F. (2010). Time and frequency domain event-related electrical activity associated with response control in schizophrenia. Clinical Neurophysiology, 121(10), 1760-1771. https://doi.org/10.1016/j.clinph.2010.03.049|||Donchin, E., Kubovy, M., Kutas, M., Johnson, R., & Tterning, R. I. (1973). Graded changes in evoked response (P300) amplitude as a function of cognitive activity. Perception & Psychophysics, 14(2), 319-324. https://doi.org/10.3758/BF03212398|||Drinkenburg, W. H., Ruigt, G. S., & Ahnaou, A. (2015). Pharmaco-EEG studies in animals: An overview of contemporary translational applications. Neuropsychobiology, 72(3-4), 151-164. https://doi.org/10.1159/000442210|||Dunkin, J. J., Leuchter, A. F., Newton, T. F., & Cook, I. A. (1994). Reduced EEG coherence in dementia: State or trait marker? Biological Psychiatry, 35(11), 870-879. https://doi.org/10.1016/0006-3223(94)90023-X|||Dushanova, J., & Christov, M. (2014). The effect of aging on EEG brain oscillations related to sensory and sensorimotor functions. Advances in Medical Sciences, 59(1), 61-67. https://doi.org/10.1016/j.advms.2013.08.002|||Emek-Savaş, D. D., Güntekin, B., Yener, G. G., & Başar, E. (2016). Decrease of delta oscillatory responses is associated with increased age in healthy elderly. International Journal of Psychophysiology, 103, 103-109. https://doi.org/10.1016/j.ijpsycho.2015.02.006|||Emek-Savaş, D. D., Özmüş, G., Güntekin, B., Dönmez Çolakoğlu, B., Çakmur, R., Başar, E., & Yener, G. G. (2017). Decrease of delta oscillatory responses in cognitively normal Parkinson’s disease. Clinical EEG and Neuroscience, 48(5), 355-364. https://doi.org/10.1177/1550059416666718|||Engel, A. K., & Fries, P. (2010). Beta-band oscillations-signalling the status quo? Current Opinion in Neurobiology, 20(2), 156-165. https://doi.org/10.1016/j.conb.2010.02.015|||Ergen, M., Marbach, S., Brand, A., Başar-Eroğlu, C., & Demiralp, T. (2008). P3 and delta band responses in visual oddball paradigm in schizophrenia. Neuroscience Letters, 440(3), 304-308. https://doi.org/10.1016/j.neulet.2008.05.054|||Fodor, Z., Sirály, E., Horváth, A., Salacz, P., Hidasi, Z., Csibri, É., Szabó, Á., & Csukly, G. (2018). Decreased event-related beta synchronization during memory maintenance marks early cognitive decline in mild cognitive impairment. Journal of Alzheimer's Disease, 63(2), 489-502. https://doi.org/10.3233/JAD-171079|||Ford, J. M., Roach, B. J., Hoffman, R. S., & Mathalon, D. H. (2008). The dependence of P300 amplitude on gamma synchrony breaks down in schizophrenia. Brain Research, 1235, 133-142. https://doi.org/10.1016/j.brainres.2008.06.048|||Fraga, F. J., Ferreira, L. A., Falk, T. H., Johns, E., & Phillips, N. D. (2017, March). Event-related synchronisation responses to N-back memory tasks discriminate between healthy ageing, mild cognitive impairment, and mild Alzheimer's disease. In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 964-968). IEEE. https://doi.org/10.1109/ICASSP.2017.7952299|||Fraga, F. J., Mamani, G. Q., Johns, E., Tavares, G., Falk, T. H., & Phillips, N. A. (2018). Early diagnosis of mild cognitive impairment and Alzheimer’s with event-related potentials and event-related desynchronization in N-back working memory tasks. Computer Methods and Programs in Biomedicine, 164, 1-13. https://doi.org/10.1016/j.cmpb.2018.06.011|||Freeman, W. J. (1975). Mass action in the nervous system (Vol. 2004). Academic Press.|||Friston, K. J. (1997). Another neural code? NeuroImage, 5(3), 213-220. https://doi.org/10.1006/nimg.1997.0260|||Gaetz, W., Roberts, T. P., Singh, K. D., & Muthukumaraswamy, S. D. (2012). Functional and structural correlates of the aging brain: Relating visual cortex (V1) gamma band responses to age-related structural change. Human Brain Mapping, 33(9), 2035-2046. https://doi.org/10.1002/hbm.21339|||Gevins, A., Smith, M. E., McEvoy, L., & Yu, D. (1997). High-resolution EEG mapping of cortical activation related to working memory: Effects of task difficulty, type of processing, and practice. Cerebral Cortex (New York, NY: 1991), 7(4), 374-385. https://doi.org/10.1093/cercor/7.4.374|||Golob, E. J., Irimajiri, R., & Starr, A. (2007). Auditory cortical activity in amnestic mild cognitive impairment: Relationship to subtype and conversion to dementia. Brain, 130(3), 740-752. https://doi.org/10.1093/brain/awl375|||Goodman, M. S., Kumar, S., Zomorrodi, R., Ghazala, Z., Cheam, A. S. M., Barr, M. S., Daskalakis, Z. J., Blumberger, D. M., Fischer, C., Flint, A., Mah, L., Herrmann, N., Bowie, C. R., Mulsant, B. H., & Rajji, T. K. (2018). Theta-gamma coupling and working memory in Alzheimer’s dementia and mild cognitive impairment. Frontiers in Aging Neuroscience, 10, 101. http://dx.doi.org/10.3389/fnagi.2018.00101|||Goodman, M. S., Zomorrodi, R., Kumar, S., Barr, M. S., Daskalakis, Z. J., Blumberger, D. M., Fischer, C. E., Flint, A., Mah, L., Herrmann, N., Pollock, B. G., Bowie, C. R., Mulsant, B. H., & Rajji, T. K. (2019). Changes in theta but not alpha modulation are associated with impairment in working memory in Alzheimer’s disease and mild cognitive impairment. Journal of Alzheimer's Disease, 68(3), 1085-1094. https://doi.org/10.3233/JAD-181195|||Goossens, T., Vercammen, C., Wouters, J., & Wieringen, A. V. (2016). Aging affects neural synchronization to speech-related acoustic modulations. Frontiers in Aging Neuroscience, 8, 133. https://doi.org/10.3389/fnagi.2016.00133|||Grace, A. A. (1995). The tonic/phasic model of dopamine system regulation: Its relevance for understanding how stimulant abuse can alter basal ganglia function. Drug and Alcohol Dependence, 37(2), 111-129. https://doi.org/10.1016/0376-8716(94)01066-T|||Gray, C. M., & Singer, W. (1989). Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proceedings of the National Academy of Sciences, 86(5), 1698-1702. https://doi.org/10.1073/pnas.86.5.1698|||Gruber, M. J., Hsieh, L. T., Staresina, B. P., Elger, C. E., Fell, J., Axmacher, N., & Ranganath, C. (2018). Theta phase synchronization between the human hippocampus and pre- frontal cortex increases during encoding of unexpected information: A case study. Journal of Cognitive Neuroscience, 30(11), 1646-1656. https://doi.org/10.1162/jocn_a_01302|||Gruber, T., Müller, M. M., & Keil, A. (2002). Modulation of induced gamma band responses in a perceptual learning task in the human EEG. Journal of Cognitive Neuroscience, 14(5), 732-744. https://doi.org/10.1162/08989290260138636|||Güntekin, B., Aktürk, T., Yıldırım, E., Yılmaz, N. H., Hanoğlu, L., & Yener, G. (2020). Abnormalities in auditory and visual cognitive processes are differentiated with theta responses in patients with Parkinson's disease with and without dementia. International Journal of Psychophysiology, 153, 65-79. https://doi.org/10.1016/j.ijpsycho.2020.04.016|||Güntekin, B., & Basar, E. (2007). Emotional face expressions are differentiated with brain oscillations. International Journal of Psychophysiology, 64(1), 91-100. https://doi.org/10.1016/j.ijpsycho.2006.07.003|||Güntekin, B., & Başar, E. (2009). Facial affect manifested by multiple oscillations. International Journal of Psychophysiology, 71(1), 31-36. https://doi.org/10.1016/j.ijpsycho.2008.07.019|||Güntekin, B., & Başar, E. (2010). Event-related beta oscillations are affected by emotional eliciting stimuli. Neuroscience Letters, 483(3), 173-178. https://doi.org/10.1016/j.neulet.2010.08.002|||Güntekin, B., & Başar, E. (2016). Review of evoked and event-related delta responses in the human brain. International Journal of Psychophysiology, 103, 43-52. https://doi.org/10.1016/j.ijpsycho.2015.02.001|||Güntekin, B., & Emek-Savaş, D. D. (2019). Fonksiyon Değerlendirme ve Görüntüleme Teknikleri, Elektroensefalografi ve Beyin Osilasyonları: Farklı Fonksiyonel ve Kognitif Durumların Analizi. In H. Biçeroğlu (Ed.), Fonksiyonun Cerrahi Anatomisi (pp. 1111-1133). Istanbul, Turkey: Us Akademi.|||Güntekin, B., Emek-Savaş, D. D., Kurt, P., Yener, G. G., & Başar, E. (2013). Beta oscillatory responses in healthy subjects and subjects with mild cognitive impairment. NeuroImage: Clinical, 3, 39-46. https://doi.org/10.1016/j.nicl.2013.07.003|||Güntekin, B., Hanoğlu, L., Aktürk, T., Fide, E., Emek-Savaş, D. D., Ruşen, E., Yıldırım, E., & Yener, G. G. (2019). Impairment in recognition of emotional facial expressions in Alzheimer's disease is represented by EEG theta and alpha responses. Psychophysiology, 56(11), e13434. https://doi.org/10.1111/psyp.13434|||Güntekin, B., Hanoğlu, L., Güner, D., Yılmaz, N. H., Çadırcı, F., Mantar, N., Aktürk, T., Emek-Savaş, D. D., Özer, F. F., Yener, G., & Başar, E. (2018). Cognitive impairment in Parkinson’s disease is reflected with gradual decrease of EEG delta responses during auditory discrimination. Frontiers in Psychology, 9, 170. https://doi.org/10.3389/fpsyg.2018.00170|||Güntekin, B., Saatçi, E., & Yener, G. (2008). Decrease of evoked delta, theta and alpha coherences in Alzheimer patients during a visual oddball paradigm. Brain Research, 1235, 109-116. https://doi.org/10.1016/j.brainres.2008.06.028|||Güntekin, B., & Tülay, E. (2014). Event related beta and gamma oscillatory responses during perception of affective pictures. Brain Research, 1577, 45-56. https://doi.org/10.1016/j.brainres.2014.06.029|||Hashemi, A., Pino, L. J., Moffat, G., Mathewson, K. J., Aimone, C., Bennett, P. J., Schmidt, L. A., & Sekuler, A. B. (2016). Characterizing population EEG dynamics throughout adulthood. Eneuro, 3(6), 1-13. https://doi.org/10.1523/ENEURO.0275-16.2016|||Haufe, S., Nikulin, V. V., Müller, K. R., & Nolte, G. (2013). A critical assessment of connectivity measures for EEG data: A simulation study. NeuroImage, 64, 120-133. https://doi.org/10.1016/j.neuroimage.2012.09.036|||Helfrich, R. F., & Knight, R. T. (2019). Cognitive neurophysiology: Event-related potentials. Handbook of Clinical Neurology, 160, 543-558. https://doi.org/10.1016/B978-0-444-64032-1.00036-9|||Herrmann, C. S., & Demiralp, T. (2005). Human EEG gamma oscillations in neuropsychiatric disorders. Clinical Neurophysiology, 116(12), 2719-2733. https://doi.org/10.1016/j.clinph.2005.07.007|||Herrmann, C. S., Fründ, I., & Lenz, D. (2010). Human gamma-band activity: A review on cognitive and behavioral correlates and network models. Neuroscience & Biobehavioral Reviews, 34(7), 981-992. https://doi.org/10.1016/j.neubiorev.2009.09.001|||Herrmann, C. S., & Knight, R. T. (2001). Mechanisms of human attention: Event-related potentials and oscillations. Neuroscience & Biobehavioral Reviews, 25(6), 465-476. https://doi.org/10.1016/S0149-7634(01)00027-6|||Herrmann, C. S., Munk, M. H., & Engel, A. K. (2004). Cognitive functions of gamma-band activity: Memory match and utilization. Trends in Cognitive Sciences, 8(8), 347-355. https://doi.org/10.1016/j.tics.2004.06.006|||Herrmann, C. S., Rach, S., Vosskuhl, J., & Strüber, D. (2014). Time-frequency analysis of event-related potentials: A brief tutorial. Brain Topography, 27(4), 438-450. https://doi.org/10.1007/s10548-013-0327-5|||Hogan, M., Collins, P., Keane, M., Kilmartin, L., Kaiser, J., Kenney, J., Lai, R., & Upton, N. (2011). Electroencephalographic coherence, aging, and memory: Distinct responses to background context and stimulus repetition in younger, older, and older declined groups. Experimental Brain Research, 212(2), 241-255. https://doi.org/10.1007/s00221-011-2726-8|||Hogan, M. J., Swanwick, G. R., Kaiser, J., Rowan, M., & Lawlor, B. (2003). Memory-related EEG power and coherence reductions in mild Alzheimer's disease. International Journal of Psychophysiology, 49(2), 147-163. https://doi.org/10.1016/S0167-8760(03)00118-1|||Horvath, A., Szucs, A., Csukly, G., Sakovics, A., Stefanics, G., & Kamondi, A. (2018). EEG and ERP biomarkers of Alzheimer's disease: A critical review. Frontiers in Bioscience (Landmark edition), 23, 183-220. https://doi.org/10.2741/4587|||Hsieh, L. T., & Ranganath, C. (2014). Frontal midline theta oscillations during working memory maintenance and episodic encoding and retrieval. NeuroImage, 85, 721-729. https://doi.org/10.1016/j.neuroimage.2013.08.003|||Iaccarino, H. F., Singer, A. C., Martorell, A. J., Rudenko, A., Gao, F., Gillingham, T. Z., Mathys, H., Seo, J., Kritskiy, O., Abdurrob, F., Adaikkan, C., Canter, R. G., Rueda, R., Brown, E. N., Boyden, E. S., & Tsai, L.-H. (2016). Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature, 540(7632), 230-235. https://doi.org/10.1038/nature20587|||Ishii, R., Canuet, L., Aoki, Y., Hata, M., Iwase, M., Ikeda, S., Nishida, K., & Ikeda, M. (2017). Healthy and pathological brain aging: From the perspective of oscillations, functional connectivity, and signal complexity. Neuropsychobiology, 75(4), 151-161. https://doi.org/10.1159/000486870|||Ismail, R., Hansen, A. K., Parbo, P., Braendgaard, H., Gottrup, H., Brooks, D. J., & Borghammer, P. (2018). The effect of 40-Hz light therapy on amyloid load in patients with prodromal and clinical Alzheimer’s disease. International Journal of Alzheimer’s Disease, 2018, 6852303. https://doi.org/10.1155/2018/6852303|||Jack, C. R., Bennett, D. A., Blennow, K., Carrillo, M. C., Dunn, B., Haeberlein, S. B., Holtzman, D. M., Jagust, W., Jessen, F., Karlawish, J., Liu, E., Molinuevo, J. L., Montine, T., Phelps, C., Rankin, K. P., Rowe, C. C., Scheltens, P., Siemers, E., Snyder, H. M., … Silverberg, N. (2018). NIA-AA research framework: Toward a biological definition of Alzheimer's disease. Alzheimer's & Dementia, 14(4), 535-562. https://doi.org/10.1016/j.jalz.2018.02.018|||Jensen, O., Kaiser, J., & Lachaux, J. P. (2007). Human gamma-frequency oscillations associated with attention and memory. Trends in Neurosciences, 30(7), 317-324. https://doi.org/10.1016/j.tins.2007.05.001|||Jensen, O., & Tesche, C. D. (2002). Frontal theta activity in humans increases with memory load in a working memory task. European Journal of Neuroscience, 15(8), 1395-1399. https://doi.org/10.1046/j.1460-9568.2002.01975.x|||Jones, K. A., Porjesz, B., Chorlian, D., Rangaswamy, M., Kamarajan, C., Padmanabhapillai, A., Stimus, A., & Begleiter, H. (2006). S-transform time-frequency analysis of P300 reveals deficits in individuals diagnosed with alcoholism. Clinical Neurophysiology, 117(10), 2128-2143. https://doi.org/10.1016/j.clinph.2006.02.028|||Jones, M., McDermott, B., Oliveira, B. L., O’Brien, A., Coogan, D., Lang, M., Moriarty, N., Dowd, E., Quinlan, L., Mc Ginley, B., Dunne, E., Newell, D., Porter, E., Elahi, M. A., O’ Halloran, M., & Shahzad, A. (2019). Gamma band light stimulation in human case studies: Groundwork for potential Alzheimer’s disease treatment. Journal of Alzheimer's Disease, 70(1), 171-185. https://doi.org/10.3233/JAD-190299|||Kaiser, J., Ripper, B., Birbaumer, N., & Lutzenberger, W. (2003). Dynamics of gamma-band activity in human magnetoencephalogram during auditory pattern working memory. NeuroImage, 20(2), 816-827. https://doi.org/10.1016/S1053-8119(03)00350-1|||Kamarajan, C., Porjesz, B., Jones, K. A., Choi, K., Chorlian, D. B., Padmanabhapillai, A., Rangaswamy, M., Stimus, A. T., & Begleiter, H. (2004). The role of brain oscillations as functional correlates of cognitive systems: A study of frontal inhibitory control in alcoholism. International Journal of Psychophysiology, 51(2), 155-180. https://doi.org/10.1016/j.ijpsycho.2003.09.004|||Karakaş, S., Erzengin, Ö. U., & Başar, E. (2000). A new strategy involving multiple cognitive paradigms demonstrates that ERP components are determined by the superposition of oscillatory responses. Clinical Neurophysiology, 111(10), 1719-1732. https://doi.org/10.1016/S1388-2457(00)00418-1|||Karamacoska, D., Barry, R. J., Steiner, G. Z., Coleman, E. P., & Wilson, E. J. (2018). Intrinsic EEG and task-related changes in EEG affect Go/NoGo task performance. International Journal of Psychophysiology, 125, 17-28. https://doi.org/10.1016/j.ijpsycho.2018.01.015|||Kardos, Z., Tóth, B., Boha, R., File, B., & Molnár, M. (2014). Age-related changes of frontal-midline theta is predictive of efficient memory maintenance. Neuroscience, 273, 152-162. https://doi.org/10.1016/j.neuroscience.2014.04.071|||Karrasch, M., Laine, M., Rapinoja, P., & Krause, C. M. (2004). Effects of normal aging on event-related desynchronization/synchronization during a memory task in humans. Neuroscience Letters, 366(1), 18-23. https://doi.org/10.1016/j.neulet.2004.05.010|||Karrasch, M., Laine, M., Rinne, J. O., Rapinoja, P., Sinervä, E., & Krause, C. M. (2006). Brain oscillatory responses to an auditory-verbal working memory task in mild cognitive impairment and Alzheimer's disease. International Journal of Psychophysiology, 59(2), 168-178. https://doi.org/10.1016/j.ijpsycho.2005.04.006|||Keil, A., Müller, M. M., Gruber, T., Wienbruch, C., Stolarova, M., & Elbert, T. (2001). Effects of emotional arousal in the cerebral hemispheres: A study of oscillatory brain activity and event-related potentials. Clinical Neurophysiology, 112(11), 2057-2068. https://doi.org/10.1016/S1388-2457(01)00654-X|||Keil, A., Müller, M. M., Ray, W. J., Gruber, T., & Elbert, T. (1999). Human gamma band activity and perception of a gestalt. Journal of Neuroscience, 19(16), 7152-7161. https://doi.org/10.1523/JNEUROSCI.19-16-07152.1999|||Keil, A., Stolarova, M., Moratti, S., & Ray, W. J. (2007). Adaptation in human visual cortex as a mechanism for rapid discrimination of aversive stimuli. NeuroImage, 36(2), 472-479. https://doi.org/10.1016/j.neuroimage.2007.02.048|||Klass, D. W., & Brenner, R. P. (1995). Electroencephalography of the elderly. Journal of Clinical Neurophysiology, 12(2), 116-131. https://doi.org/10.1097/00004691-199503000-00002|||Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research Reviews, 29(2-3), 169-195. https://doi.org/10.1016/S0165-0173(98)00056-3|||Kober, S. E., Reichert, J. L., Neuper, C., & Wood, G. (2016). Interactive effects of age and gender on EEG power and coherence during a short-term memory task in middle-aged adults. Neurobiology of Aging, 40, 127-137. https://doi.org/10.1016/j.neurobiolaging.2016.01.015|||Koch, G., Bonnì, S., Pellicciari, M. C., Casula, E. P., Mancini, M., Esposito, R., Ponzo, V., Picazio, S., Di Lorenzo, F., Serra, L., Motta, C., Maiella, M., Marra, C., Cercignani, M., Martorana, A., Caltagirone, C., & Bozzali, M. (2018). Transcranial magnetic stimulation of the precuneus enhances memory and neural activity in prodromal Alzheimer's disease. NeuroImage, 169, 302-311. https://doi.org/10.1016/j.neuroimage.2017.12.048|||Kolev, V., Beste, C., Falkenstein, M., & Yordanova, J. (2009). Error-related oscillations: Effects of aging on neural systems for behavioral monitoring. Journal of Psychophysiology, 23(4), 216-223. https://doi.org/10.1027/0269-8803.23.4.216|||Kolev, V., Yordanova, J., Basar-Eroglu, C., & Basar, E. (2002). Age effects on visual EEG responses reveal distinct frontal alpha networks. Clinical Neurophysiology, 113(6), 901-910. https://doi.org/10.1016/S1388-2457(02)00106-2|||Kurimoto, R., Ishii, R., Canuet, L., Ikezawa, K., Iwase, M., Azechi, M., Aoki, Y., Ikeda, S., Yoshida, T., Takahashi, H., Nakahachi, T., Kazui, H., & Takeda, M. (2012). Induced oscillatory responses during the Sternberg’s visual memory task in patients with Alzheimer's disease and mild cognitive impairment. NeuroImage, 59(4), 4132-4140. https://doi.org/10.1016/j.neuroimage.2011.10.061|||Kurt, P., Emek-Savaş, D. D., Batum, K., Turp, B., Güntekin, B., Karşıdağ, S., & Yener, G. G. (2014). Patients with mild cognitive impairment display reduced auditory event-related delta oscillatory responses. Behavioural Neurology, 2014, 1-11. https://doi.org/10.1155/2014/268967|||Lambertz, M., & Langhorst, P. (1998). Simultaneous changes of rhythmic organization in brainstem neurons, respiration, cardiovascular system and EEG between 0.05 Hz and 0.5 Hz. Journal of the Autonomic Nervous System, 68(1-2), 58-77. https://doi.org/10.1016/s0165-1838(97)00126-4|||Lavin, A., & Grace, A. A. (1996). Physiological properties of rat ventral pallidal neurons recorded intracellularly in vivo. Journal of Neurophysiology, 75(4), 1432-1443. https://doi.org/10.1152/jn.1996.75.4.1432|||Lejko, N., Larabi, D. I., Herrmann, C. S., Aleman, A., & Curcic-Blake, B. (2020). Alpha power and functional connectivity in cognitive decline: A systematic review and meta-analysis. Journal of Alzheimer's Disease, 78, 1047-1088. https://doi.org/10.3233/JAD-200962|||Leuchter, A. F., Spar, J. E., Walter, D. O., & Weiner, H. (1987). Electroencephalographic spectra and coherence in the diagnosis of Alzheimer's-type and multi-infarct dementia: A pilot study. Archives of General Psychiatry, 44(11), 993-998. https://doi.org/10.1001/archpsyc.1987.01800230073012|||Leung, L. S., & Yim, C. C. (1993). Rhythmic delta-frequency activities in the nucleus accumbens of anesthetized and freely moving rats. Canadian Journal of Physiology and Pharmacology, 71(5-6), 311-320. https://doi.org/10.1139/y93-049|||Liu, C.-J., Huang, C.-F., Chou, C.-Y., Kuo, W.-J., Lin, Y.-T., Hung, C.-M., Chen, T.-C., & Ho, M.-C. (2012). Age-and disease-related features of task-related brain oscillations by using mutual information. Brain and Behavior, 2(6), 754-762. https://doi.org/10.1002/brb3.93|||Locatelli, T., Cursi, M., Liberati, D., Franceschi, M., & Comi, G. (1998). EEG coherence in Alzheimer's disease. Electroencephalography and Clinical Neurophysiology, 106(3), 229-237. https://doi.org/10.1016/S0013-4694(97)00129-6|||Lopez, M. E., Bruna, R., Aurtenetxe, S., Pineda-Pardo, J. A., Marcos, A., Arrazola, J., Reinoso, A. I., Montejo, P., Bajo, R., & Maestu, F. (2014). Alpha-band hypersynchronization in progressive mild cognitive impairment: A magnetoencephalography study. Journal of Neuroscience, 34(44), 14551-14559. https://doi.org/10.1523/JNEUROSCI.0964-14.2014|||Lou, W., Xu, J., Sheng, H., & Zhao, S. (2011). Multichannel linear descriptors analysis for event-related EEG of vascular dementia patients during visual detection task. Clinical Neurophysiology, 122(11), 2151-2156. https://doi.org/10.1016/j.clinph.2011.03.021|||Luck, S. J. (2014). An introduction to the event-related potential technique. MIT press.|||Lundin, N. B., Bartolomeo, L. A., O’Donnell, B. F., & Hetrick, W. P. (2018). Reduced EEG responses to standard and target auditory stimuli in bipolar disorder and the impact of psychotic features: Analysis of ERPs, spectral power, and inter-trial coherence. Bipolar Disorders, 20(1), 49. https://doi.org/10.1111/bdi.12561|||Luo, Q., Holroyd, T., Jones, M., Hendler, T., & Blair, J. (2007). Neural dynamics for facial threat processing as revealed by gamma band synchronization using MEG. NeuroImage, 34(2), 839-847. https://doi.org/10.1016/j.neuroimage.2006.09.023|||Luo, Q., Mitchell, D., Cheng, X., Mondillo, K., Mccaffrey, D., Holroyd, T., Carver, F., Coppola, R., & Blair, J. (2009). Visual awareness, emotion, and gamma band synchronization. Cerebral Cortex, 19(8), 1896-1904. https://doi.org/10.1093/cercor/bhn216|||Maffei, A. (2020). Spectrally resolved EEG intersubject correlation reveals distinct cortical oscillatory patterns during free-viewing of affective scenes. Psychophysiology, 57(11), e13652. https://doi.org/10.1111/psyp.13652|||Mahjoory, K., Nikulin, V. V., Botrel, L., Linkenkaer-Hansen, K., Fato, M. M., & Haufe, S. (2017). Consistency of EEG source localization and connectivity estimates. NeuroImage, 152, 590-601. https://doi.org/10.1016/j.neuroimage.2017.02.076|||Marcuse, L. V., Schneider, M., Mortati, K. A., Donnelly, K. M., Arnedo, V., & Grant, A. C. (2008). Quantitative analysis of the EEG posterior-dominant rhythm in healthy adolescents. Clinical Neurophysiology, 119(8), 1778-1781. https://doi.org/10.1016/j.clinph.2008.02.023|||Martínez-Cancino, R., Heng, J., Delorme, A., Kreutz-Delgado, K., Sotero, R. C., & Makeig, S. (2019). Measuring transient phase-amplitude coupling using local mutual information. NeuroImage, 185, 361-378. https://doi.org/10.1016/j.neuroimage.2018.10.034|||Martini, N., Menicucci, D., Sebastiani, L., Bedini, R., Pingitore, A., Vanello, N., Milanesi, M., Landini, L., & Gemignani, A. (2012). The dynamics of EEG gamma responses to unpleasant visual stimuli: From local activity to functional connectivity. NeuroImage, 60(2), 922-932. https://doi.org/10.1016/j.neuroimage.2012.01.060|||Martorell, A. J., Paulson, A. L., Suk, H.-J., Abdurrob, F., Drummond, G. T., Guan, W., Young, J. Z., Kim, D.-W., Kritskiy, O., Barker, S. J., Mangena, V., Prince, S. M., Brown, E. N., Chung, K., Boyden, E. S., Singer, A. C., & Tsai, L.-H. (2019). Multi-sensory gamma stimulation ameliorates Alzheimer’s-associated pathology and improves cognition. Cell, 177(2), 256-271. https://doi.org/10.1016/j.cell.2019.02.014|||Mazaheri, A., Segaert, K., Olichney, J., Yang, J. C., Niu, Y. Q., Shapiro, K., & Bowman, H. (2018). EEG oscillations during word processing predict MCI conversion to Alzheimer's disease. NeuroImage: Clinical, 17, 188-197. https://doi.org/10.1016/j.nicl.2017.10.009|||McKhann, G. M., Knopman, D. S., Chertkow, H., Hyman, B. T., Jack, C. R., Kawas, C. H., Klunk, W. E., Koroshetz, W. J., Manly, J. J., Mayeux, R., Mohs, R. C., Morris, J. C., Rossor, M. N., Scheltens, P., Carrillo, M. C., Thies, B., Weintraub, S., & Phelps, C. H. (2011). The diagnosis of dementia due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's & Dementia, 7(3), 263-269. https://doi.org/10.1016/j.jalz.2011.03.005|||Michalopoulos, K., Zervakis, M., Bourbakis, N., Giannakopoulos, P., & Deiber, M. P. (2012, November). Decomposition and evaluation of activity in multiple event-related trials. In 2012 IEEE 12th International Conference on Bioinformatics & Bioengineering (BIBE) (pp. 374-379). IEEE. https://doi.org/10.1109/BIBE.2012.6399653|||Miltner, W. H., Braun, C., Arnold, M., Witte, H., & Taub, E. (1999). Coherence of gamma-band EEG activity as a basis for associative learning. Nature, 397(6718), 434-436. https://doi.org/10.1038/17126|||Mishra, J., Zanto, T., Nilakantan, A., & Gazzaley, A. (2013). Comparable mechanisms of working memory interference by auditory and visual motion in youth and aging. Neuropsychologia, 51(10), 1896-1906. https://doi.org/10.1016/j.neuropsychologia.2013.06.011|||Missonnier, P., Deiber, M.-P., Gold, G., Herrmann, F. R., Millet, P., Michon, A., Fazio-Costa, L., Ibañez, V., & Giannakopoulos, P. (2007). Working memory load-related electroencephalographic parameters can differentiate progressive from stable mild cognitive impairment. Neuroscience, 150(2), 346-356. https://doi.org/10.1016/j.neuroscience.2007.09.009|||Missonnier, P., Gold, G., Herrmann, F. R., Fazio-Costa, L., Michel, J.-P., Deiber, M.-P., Michon, A., & Giannakopoulos, P. (2006). Decreased theta event-related synchronization during working memory activation is associated with progressive mild cognitive impairment. Dementia and Geriatric Cognitive Disorders, 22(3), 250-259. https://doi.org/10.1159/000094974|||Missonnier, P., Herrmann, F. R., Michon, A., Fazio-Costa, L., Gold, G., & Giannakopoulos, P. (2010). Early disturbances of gamma band dynamics in mild cognitive impairment. Journal of Neural Transmission, 117(4), 489-498. https://doi.org/10.1007/s00702-010-0384-9|||Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49-100. https://doi.org/10.1006/cogp.1999.0734|||Mudar, R. A., Nguyen, L. T., Eroh, J., Chiang, H. S., Rackley, A., & Chapman, S. B. (2019). Event-related neural oscillation changes following reasoning training in individuals with mild cognitive impairment. Brain Research, 1704, 229-240. https://doi.org/10.1016/j.brainres.2018.10.017|||Müller, M. M., Keil, A., Gruber, T., & Elbert, T. (1999). Processing of affective pictures modulates right-hemispheric gamma band EEG activity. Clinical Neurophysiology, 110(11), 1913-1920. https://doi.org/10.1016/S1388-2457(99)00151-0|||Müller, V., Gruber, W., Klimesch, W., & Lindenberger, U. (2009). Lifespan differences in cortical dynamics of auditory perception. Developmental Science, 12(6), 839-853. https://doi.org/10.1111/j.1467-7687.2009.00834.x|||Murty, D. V. P. S., Manikandan, K., Kumar, W. S., Ramesh, R. G., Purokayastha, S., Javali, M., Rao, N. P., & Ray, S. (2020). Gamma oscillations weaken with age in healthy elderly in human EEG. NeuroImage, 215, 116826. https://doi.org/10.1016/j.neuroimage.2020.116826|||Neuper, C., & Klimesch, W. (Eds.). (2006). Event-related dynamics of brain oscillations. Elsevier.|||Neuper, C., Scherer, R., Wriessnegger, S., & Pfurtscheller, G. (2009). Motor imagery and action observation: Modulation of sensorimotor brain rhythms during mental control of a brain-computer interface. Clinical Neurophysiology, 120(2), 239-247. https://doi.org/10.1016/j.clinph.2008.11.015|||Nguyen, L. T., Marini, F., Shende, S. A., Llano, D. A., & Mudar, R. A. (2020). Investigating EEG theta and alpha oscillations as measures of value-directed strategic processing in cognitively normal younger and older adults. Behavioural Brain Research, 391, 112702. https://doi.org/10.1016/j.bbr.2020.112702|||O'Connell, R. G., Balsters, J. H., Kilcullen, S. M., Campbell, W., Bokde, A. W., Lai, R., Upton, N., & Robertson, I. H. (2012). A simultaneous ERP/fMRI investigation of the P300 aging effect. Neurobiology of Aging, 33(10), 2448-2461. https://doi.org/10.1016/j.neurobiolaging.2011.12.021|||Olichney, J. M., Iragui, V. J., Salmon, D. P., Riggins, B. R., Morris, S. K., & Kutas, M. (2006). Absent event-related potential (ERP) word repetition effects in mild Alzheimer’s disease. Clinical Neurophysiology, 117(6), 1319-1330. https://doi.org/10.1016/j.clinph.2006.02.022|||Olichney, J. M., Morris, S. K., Ochoa, C., Salmon, D. P., Thal, L. J., Kutas, M., & Iragui, V. J. (2002). Abnormal verbal event related potentials in mild cognitive impairment and incipient Alzheimer's disease. Journal of Neurology, Neurosurgery & Psychiatry, 73(4), 377-384. https://doi.org/10.1136/jnnp.73.4.377|||Olichney, J. M., Yang, J. C., Taylor, J., & Kutas, M. (2011). Cognitive event-related potentials: Biomarkers of synaptic dysfunction across the stages of Alzheimer's disease. Journal of Alzheimer's Disease, 26(s3), 215-228. https://doi.org/10.3233/JAD-2011-0047|||Osipova, D., Pekkonen, E., & Ahveninen, J. (2006). Enhanced magnetic auditory steady-state response in early Alzheimer’s disease. Clinical Neurophysiology, 117(9), 1990-1995. https://doi.org/10.1016/j.clinph.2006.05.034|||Park, J. Y., Lee, K. S., An, S. K., Lee, J., Kim, J. J., Kim, K. H., & Namkoong, K. (2012). Gamma oscillatory activity in relation to memory ability in older adults. International Journal of Psychophysiology, 86(1), 58-65. https://doi.org/10.1016/j.ijpsycho.2012.08.002|||Penny, W. D., Duzel, E., Miller, K. J., & Ojemann, J. G. (2008). Testing for nested oscillation. Journal of Neuroscience Methods, 174(1), 50-61. https://doi.org/10.1016/j.jneumeth.2008.06.035|||Pfurtscheller, G., & Andrew, C. (1999). Event-related changes of band power and coherence: Methodology and interpretation. Journal of Clinical Neurophysiology, 16(6), 512. https://doi.org/10.1097/00004691-199911000-00003|||Pfurtscheller, G., & Da Silva, F. L. (1999). Event-related EEG/MEG synchronization and desynchronization: Basic principles. Clinical Neurophysiology, 110(11), 1842-1857. https://doi.org/10.1016/S1388-2457(99)00141-8|||Pfurtscheller, G., Stancak, A. Jr, & Neuper, C. (1996). Post-movement beta synchronization. A correlate of an idling motor area? Electroencephalography and Clinical Neurophysiology, 98(4), 281-293. https://doi.org/10.1016/0013-4694(95)00258-8|||Pievani, M., de Haan, W., Wu, T., Seeley, W. W., & Frisoni, G. B. (2011). Functional network disruption in the degenerative dementias. The Lancet Neurology, 10(9), 829-843. https://doi.org/10.1016/S1474-4422(11)70158-2|||Polich, J., & Corey-Bloom, J. (2005). Alzheimer's disease and P300: Review and evaluation of task and modality. Current Alzheimer Research, 2(5), 515-525. https://doi.org/10.2174/156720505774932214|||Polich, J., & Kok, A. (1995). Cognitive and biological determinants of P300: An integrative review. Biological Psychology, 41(2), 103-146. https://doi.org/10.1016/0301-0511(95)05130-9|||Prieto del Val, L., Cantero, J. L., & Atienza, M. (2015). APOE ɛ4 constrains engagement of encoding-related compensatory networks in amnestic mild cognitive impairment. Hippocampus, 25(9), 993-1007. https://doi.org/10.1002/hipo.22422|||Pugnetti, L., Baglio, F., Farina, E., Alberoni, M., Calabrese, E., Gambini, A., Di Bella, E., Garegnani, M., Deleonardis, L., & Nemni, R. (2010). EEG evidence of posterior cortical disconnection in PD and related dementias. International Journal of Neuroscience, 120(2), 88-98. https://doi.org/10.3109/00207450903436346|||Quiroz, Y. T., Ally, B. A., Celone K., McKeever, J., Ruiz-Rizzo, A. L., Lopera, F., Stern, C. E., & Budson, A. E. (2011). Event-related potential markers of brain changes in preclinical familial Alzheimer disease. Neurology, 77(5), 469-475. http://dx.doi.org/10.1212/wnl.0b013e318227b1b0|||Rangaswamy, M., Jones, K. A., Porjesz, B., Chorlian, D. B., Padmanabhapillai, A., Kamarajan, C., Kuperman, S., Rohrbaugh, J., O'Connor, S. J., Bauer, L. O., Schuckit, M. A., & Begleiter, H. (2007). Delta and theta oscillations as risk markers in adolescent offspring of alcoholics. International Journal of Psychophysiology, 63(1), 3-15. https://doi.org/10.1016/j.ijpsycho.2006.10.003|||Röschke, J., & Fell, J. (1997). Spectral analysis of P300 generation in depression and schizophrenia. Neuropsychobiology, 35(2), 108-114. https://doi.org/10.1159/000119400|||Rosenblum, Y., Maidan, I., Fahoum, F., Giladi, N., Bregman, N., Shiner, T., & Mirelman, A. (2020). Differential changes in visual and auditory event-related oscillations in dementia with Lewy bodies. Clinical Neurophysiology, 131(10), 2357-2366. https://doi.org/10.1016/j.clinph.2020.06.029|||Ross, B., Schneider, B., Snyder, J. S., & Alain, C. (2010). Biological markers of auditory gap detection in young, middle-aged, and older adults. PLoS One, 5(4), e10101. https://doi.org/10.1371/journal.pone.0010101|||Ross, B., Tremblay, K. L., & Alain, C. (2020). Simultaneous EEG and MEG recordings reveal vocal pitch elicited cortical gamma oscillations in young and older adults. NeuroImage, 204, 116253. https://doi.org/10.1016/j.neuroimage.2019.116253|||Rossini, P. M., Di Iorio, R., Vecchio, F., Anfossi, M., Babiloni, C., Bozzali, M., Bruni, A. C., Cappa, S. F., Escudero, J., Fraga, F. J., Giannakopoulos, P., Guntekin, B., Logroscino, G., Marra, C., Miraglia, F., Panza, F., Tecchio, F., Pascual-Leone, A., & Dubois, B. (2020). Early diagnosis of Alzheimer’s disease: The role of biomarkers including advanced EEG signal analysis. Report from the IFCN-sponsored panel of experts. Clinical Neurophysiology, 131(6), 1287-1310. https://doi.org/10.1016/j.clinph.2020.03.003|||Rossini, P. M., Rossi, S., Babiloni, C., & Polich, J. (2007). Clinical neurophysiology of aging brain: From normal aging to neurodegeneration. Progress in Neurobiology, 83(6), 375-400. https://doi.org/10.1016/j.pneurobio.2007.07.010|||Ruiz-Gómez, S. J., Hornero, R., Poza, J., Maturana-Candelas, A., Pinto, N., & Gómez, C. (2019). Computational modeling of the effects of EEG volume conduction on functional connectivity metrics. Application to Alzheimer’s disease continuum. Journal of Neural Engineering, 16(6), 066019. https://doi.org/10.1088/1741-2552/ab4024|||Sato, W., Kochiyama, T., Uono, S., Matsuda, K., Usui, K., Inoue, Y., & Toichi, M. (2011). Rapid amygdala gamma oscillations in response to fearful facial expressions. Neuropsychologia, 49(4), 612-617. https://doi.org/10.1016/j.neuropsychologia.2010.12.025|||Sauseng, P., Griesmayr, B., Freunberger, R., & Klimesch, W. (2010). Control mechanisms in working memory: A possible function of EEG theta oscillations. Neuroscience & Biobehavioral Reviews, 34(7), 1015-1022. https://doi.org/10.1016/j.neubiorev.2009.12.006|||Sauseng, P., Klimesch, W., Gruber, W. R., Hanslmayr, S., Freunberger, R., & Doppelmayr, M. (2007). Are event-related potential components generated by phase resetting of brain oscillations? A Critical Discussion. Neuroscience, 146(4), 1435-1444. https://doi.org/10.1016/j.neuroscience.2007.03.014|||Schmiedt-Fehr, C., & Basar-Eroglu, C. (2011). Event-related delta and theta brain oscillations reflect age-related changes in both a general and a specific neuronal inhibitory mechanism. Clinical Neurophysiology, 122(6), 1156-1167. https://doi.org/10.1016/j.clinph.2010.10.045|||Schmiedt-Fehr, C., Mathes, B., & Basar-Eroglu, C. (2009). Alpha brain oscillations and inhibitory control: A partially preserved mechanism in healthy aging? Journal of Psychophysiology, 23(4), 208. https://doi.org/10.1027/0269-8803.23.4.208|||Schmiedt-Fehr, C., Mathes, B., Kedilaya, S., Krauss, J., & Basar-Eroglu, C. (2016). Aging differentially affects alpha and beta sensorimotor rhythms in a go/nogo task. Clinical Neurophysiology, 127(10), 3234-3242. https://doi.org/10.1016/j.clinph.2016.07.008|||Schmiedt-Fehr, C., Schwendemann, G., Herrmann, M., & Basar-Eroglu, C. (2007). Parkinson’s disease and age-related alterations in brain oscillations during a Simon task. NeuroReport, 18(3), 277-281. https://doi.org/10.1097/WNR.0b013e32801421e3|||Serrano, N., López-Sanz, D., Bruña, R., Garcés, P., Rodríguez-Rojo, I. C., Marcos, A., Crespo, D. P., & Maestú, F. (2020). Spatiotemporal oscillatory patterns during working memory maintenance in mild cognitive impairment and subjective cognitive decline. International Journal of Neural Systems, 30(1), 1950019. https://doi.org/10.1142/S0129065719500199|||Singer, W. (1999). Neuronal synchrony: A versatile code for the definition of relations? Neuron, 24(1), 49-65. https://doi.org/10.1016/s0896-6273(00)80821-1|||Stam, C. J., Nolte, G., & Daffertshofer, A. (2007). Phase lag index: Assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Human Brain Mapping, 28(11), 1178-1193. https://doi.org/10.1002/hbm.20346|||Stampfer, H. G., & Başar, E. (1985). Does frequency analysis lead to better understanding of human event related potentials. International Journal of Neuroscience, 26(3-4), 181-196. https://doi.org/10.3109/00207458508985616|||Steriade, M. (1993). Cellular substrates of brain rhythms. In E. Niedermeyer, & F. Lopez Da Silva (Eds.), Electroencephalography: Basic principles, clinical application, and related fields (pp. 27-62). Williams, Wilkins.|||Steriade, M., & Buzsaki, G. (1990). Parallel activation of thalamic and cortical neurons by brainstem and basal forebrain cholinergic systems. In M. Steriade, & D. Biesold (Eds.), Brain cholinergic systems (pp. 3-62). Oxford University Press.|||Steriade, M., Gloor, P. L. R. R., Llinas, R. R., Da Silva, F. L., & Mesulam, M. M. (1990). Basic mechanisms of cerebral rhythmic activities. Electroencephalography and Clinical Neurophysiology, 76(6), 481-508. https://doi.org/10.1016/0013-4694(90)90001-Z|||Stroganova, T. A., Orekhova, E. V., & Posikera, I. N. (1999). EEG alpha rhythm in infants. Clinical Neurophysiology, 110, 997-1012. https://doi.org/10.1016/S1388-2457(98)00009-1|||Strüber, D., & Herrmann, C. S. (2020). Modulation of gamma oscillations as a possible therapeutic tool for neuropsychiatric diseases: A review and perspective. International Journal of Psychophysiology, 152, 15-25. https://doi.org/10.1016/j.ijpsycho.2020.03.003|||Strunk, J., James, T., Arndt, J., & Duarte, A. (2017). Age-related changes in neural oscillations supporting context memory retrieval. Cortex, 91, 40-55. https://doi.org/10.1016/j.cortex.2017.01.020|||Sweeney-Reed, C. M., Riddell, P. M., Ellis, J. A., Freeman, J. E., & Nasuto, S. J. (2012). Neural correlates of true and false memory in mild cognitive impairment. PLoS One, 7(10), e48357. https://doi.org/10.1371/journal.pone.0048357|||Tafuro, A., Ambrosini, E., Puccioni, O., & Vallesi, A. (2019). Brain oscillations in cognitive control: A cross-sectional study with a spatial stroop task. Neuropsychologia, 133, 107190. https://doi.org/10.1016/j.neuropsychologia.2019.107190|||Tallon-Baudry, C., & Bertrand, O. (1999). Oscillatory gamma activity in humans and its role in object representation. Trends in Cognitive Sciences, 3(4), 151-162. https://doi.org/10.1016/S1364-6613(99)01299-1|||Tallon-Baudry, C., Bertrand, O., Peronnet, F., & Pernier, J. (1998). Induced γ-band activity during the delay of a visual short-term memory task in humans. Journal of Neuroscience, 18(11), 4244-4254. https://doi.org/10.1523/JNEUROSCI.18-11-04244.1998|||Teipel, S., Grothe, M. J., Zhou, J., Sepulcre, J., Dyrba, M., Sorg, C., & Babiloni, C. (2016). Measuring cortical connectivity in Alzheimer’s disease as a brain neural network pathology: Toward clinical applications. Journal of the International Neuropsychological Society, 22(2), 138-163. https://doi.org/10.1017/S1355617715000995|||Tort, A. B., Komorowski, R., Eichenbaum, H., & Kopell, N. (2010). Measuring phase-amplitude coupling between neuronal oscillations of different frequencies. Journal of Neurophysiology, 104(2), 1195-1210. https://doi.org/10.1152/jn.00106.2010|||Tülay, E. E., Güntekin, B., Yener, G., Bayram, A., Başar-Eroğlu, C., & Demiralp, T. (2020). Evoked and induced EEG oscillations to visual targets reveal a differential pattern of change along the spectrum of cognitive decline in Alzheimer’s disease. International Journal of Psychophysiology, 155, 41-48. https://doi.org/10.1016/j.ijpsycho.2020.06.001|||van de Vijver, I., Cohen, M. X., & Ridderinkhof, K. R. (2014). Aging affects medial but not anterior frontal learning-related theta oscillations. Neurobiology of Aging, 35(3), 692-704. https://doi.org/10.1016/j.neurobiolaging.2013.09.006|||Van Deursen, J. A., Vuurman, E. F. P. M., van Kranen-Mastenbroek, V. H. J. M., Verhey, F. R. J., & Riedel, W. J. (2011). 40-Hz steady state response in Alzheimer’s disease and mild cognitive impairment. Neurobiology of Aging, 32(1), 24-30. https://doi.org/10.1016/j.neurobiolaging.2009.01.002|||Van Deursen, J. A., Vuurman, E. F. P. M., Verhey, F. R. J., van Kranen-Mastenbroek, V. H. J. M., & Riedel, W. J. (2008). Increased EEG gamma band activity in Alzheimer’s disease and mild cognitive impairment. Journal of Neural Transmission, 115(9), 1301-1311. https://doi.org/10.1007/s00702-008-0083-y|||Venturella, I., Crivelli, D., Fossati, M., Fiorillo, F., & Balconi, M. (2019). EEG and autonomic responses to nociceptive stimulation in disorders of consciousness. Journal of Clinical Neuroscience, 60, 101-106. https://doi.org/10.1016/j.jocn.2018.09.020|||Voytek, B., D'Esposito, M., Crone, N., & Knight, R. T. (2013). A method for event-related phase/amplitude coupling. NeuroImage, 64, 416-424. https://doi.org/10.1016/j.neuroimage.2012.09.023|||Wang, C., Xu, J., Lou, W., & Zhao, S. (2014). Dynamic information flow analysis in vascular dementia patients during the performance of a visual oddball task. Neuroscience Letters, 580, 108-113. https://doi.org/10.1016/j.neulet.2014.07.056|||Wang, C., Xu, J., Zhao, S., & Lou, W. (2016). Graph theoretical analysis of EEG effective connectivity in vascular dementia patients during a visual oddball task. Clinical Neurophysiology, 127(1), 324-334. https://doi.org/10.1016/j.clinph.2015.04.063|||Wang, L., Wang, W., Yan, T., Song, J., Yang, W., Wang, B., Go, R., Huang, Q., & Wu, J. (2017). Beta-band functional connectivity influences audiovisual integration in older age: An EEG study. Frontiers in Aging Neuroscience, 9, 239. https://doi.org/10.3389/fnagi.2017.00239|||Wiesman, A. I., & Wilson, T. W. (2019). The impact of age and sex on the oscillatory dynamics of visuospatial processing. NeuroImage, 185, 513-520. https://doi.org/10.1016/j.neuroimage.2018.10.036|||Wróbel, A. (2000). Beta activity: A carrier for visual attention. Acta Neurobiologiae Experimentalis, 60(2), 247-260.|||Xu, J., Lou, W., Zhao, S., & Wang, C. (2015). Altered directed connectivity in patients with early vascular dementia during a visual oddball task. Brain Topography, 28(2), 330-339. https://doi.org/10.1007/s10548-014-0385-3|||Xu, J., Zhao, S., Zhang, H., & Zheng, C. (2011). Decreased delta event-related synchronization in patients with early vascular dementia. Clinical EEG and Neuroscience, 42(1), 53-58. https://doi.org/10.1177/155005941104200111|||Yener, G. G., & Başar, E. (2010). Sensory evoked and event related oscillations in Alzheimer’s disease: A short review. Cognitive Neurodynamics, 4(4), 263-274. https://doi.org/10.1007/s11571-010-9138-5|||Yener, G. G., & Başar, E. (2013). Biomarkers in Alzheimer’s disease with a special emphasis on event-related oscillatory responses. In Supplements to clinical neurophysiology (Vol. 62, pp. 237-273). Elsevier. https://doi.org/10.1016/B978-0-7020-5307-8.00020-X|||Yener, G. G., Emek-Savaş, D. D., Güntekin, B., & Başar, E. (2014). The visual cognitive network, but not the visual sensory network, is affected in amnestic mild cognitive impairment: A study of brain oscillatory responses. Brain Research, 1585, 141-149. https://doi.org/10.1016/j.brainres.2014.08.038|||Yener, G. G., Emek-Savaş, D. D., Lizio, R., Çavuşoğlu, B., Carducci, F., Ada, E., Güntekin, B., Babiloni, C. C., & Başar, E. (2016). Frontal delta event-related oscillations relate to frontal volume in mild cognitive impairment and healthy controls. International Journal of Psychophysiology, 103, 110-117. https://doi.org/10.1016/j.ijpsycho.2015.02.005|||Yener, G. G., Fide, E., Özbek, Y., Emek-Savaş, D. D., Aktürk, T., Çakmur, R., & Güntekin, B. (2019). The difference of mild cognitive impairment in Parkinson’s disease from amnestic mild cognitive impairment: Deeper power decrement and no phase-locking in visual event-related responses. International Journal of Psychophysiology, 139, 48-58. https://doi.org/10.1016/j.ijpsycho.2019.03.002|||Yener, G., Güntekin, B., & Başar, E. (2008). Event-related delta oscillatory responses of Alzheimer patients. European Journal of Neurology, 15(6), 540-547. https://doi.org/10.1111/j.1468-1331.2008.02100.x|||Yener, G. G., Güntekin, B., Öniz, A., & Başar, E. (2007). Increased frontal phase-locking of event-related theta oscillations in Alzheimer patients treated with cholinesterase inhibitors. International