Selective vulnerability of GABAergic neurons in chronic migraine.
Authors:
Journal: The journal of headache and pain
Publication Type: Journal Article
Date: 2025
DOI: PMC12636155
ID: 41266979
Abstract
Migraine is the second leading cause of neurological disability and has a strong genetic component. Previous linkage studies have identified a candidate migraine susceptibility locus on chromosome Xq24-28, which harbors several GABA receptor subunit genes. Despite its inhibitory role in the central nervous system, the contribution of the GABAergic system to migraine pathophysiology remains insufficiently understood. This study elucidates the role of GABAergic neurons in chronic migraine using established rodent models. We induced basal hypersensitivity as a preclinical model of chronic migraine by administering repeated intraperitoneal injections of nitroglycerin, a well-established migraine trigger, every other day over a nine-day period. Mechanical hypersensitivity, a hallmark of migraine-associated allodynia, was assessed using von Frey filaments, before and after NTG treatment. NTG-treated animals exhibited a progressive increase in mechanical sensitivity compared to controls, consistent with the development of a chronic migraine-like state.
Chemical List
- Nitroglycerin
Reference List
- Lipton RB, Silberstein SD (2015) Episodic and chronic migraine headache: breaking down barriers to optimal treatment and prevention. Headache 55(Suppl 2):103–122 quiz 23–6. 10.1111/head.12505_2.|||Robbins MS (2021) Diagnosis and management of headache: A review. JAMA 325(18):1874–1885. 10.1001/jama.2021.1640.|||Rossi MF, Tumminello A, Marconi M, Gualano MR, Santoro PE, Malorni W et al (2022) Sex and gender differences in migraines: a narrative review. Neurol Sci 43(9):5729–5734. 10.1007/s10072-022-06178-6.|||Burch RC, Buse DC, Lipton RB, Migraine (2019) Epidemiology, Burden, and comorbidity. Neurol Clin 37(4):631–649. 10.1016/j.ncl.2019.06.001.|||Smitherman TA, Burch R, Sheikh H, Loder E (2013) The prevalence, impact, and treatment of migraine and severe headaches in the united states: a review of statistics from National surveillance studies. Headache 53(3):427–436. 10.1111/head.12074.|||Bigal ME, Lipton RB (2008) Concepts and mechanisms of migraine chronification. Headache 48(1):7–15. 10.1111/j.1526-4610.2007.00969.x.|||Bigal ME, Serrano D, Buse D, Scher A, Stewart WF, Lipton RB (2008) Acute migraine medications and evolution from episodic to chronic migraine: a longitudinal population-based study. Headache 48(8):1157–1168. 10.1111/j.1526-4610.2008.01217.x.|||Petrini L, Arendt-Nielsen L (2020) Understanding pain catastrophizing: putting pieces together. Front Psychol 11:603420. 10.3389/fpsyg.2020.603420.|||Seminowicz DA, Shpaner M, Keaser ML, Krauthamer GM, Mantegna J, Dumas JA et al (2013) Cognitive-behavioral therapy increases prefrontal cortex Gray matter in patients with chronic pain. J Pain 14(12):1573–1584. 10.1016/j.jpain.2013.07.020.|||May A (2008) Chronic pain May change the structure of the brain. Pain 137(1):7–15. 10.1016/j.pain.2008.02.034.|||Coppola G, Di Lorenzo C, Schoenen J, Pierelli F (2013) Habituation and sensitization in primary headaches. J Headache Pain 14(1):65. 10.1186/1129-2377-14-65.|||Coppola G, Schoenen J (2012) Cortical excitability in chronic migraine. Curr Pain Headache Rep 16(1):93–100. 10.1007/s11916-011-0231-1.|||Mutso AA, Petre B, Huang L, Baliki MN, Torbey S, Herrmann KM et al (2014) Reorganization of hippocampal functional connectivity with transition to chronic back pain. J Neurophysiol 111(5):1065–1076. 10.1152/jn.00611.2013.|||Vachon-Presseau E, Centeno MV, Ren W, Berger SE, Tetreault P, Ghantous M et al (2016) The emotional brain as a predictor and amplifier of chronic pain. J Dent Res 95(6):605–612. 10.1177/0022034516638027.|||Neugebauer V, Li W, Bird GC, Han JS (2004) The amygdala and persistent pain. Neuroscientist 10(3):221–234. 10.1177/1073858403261077.|||Thompson JM, Neugebauer V (2017) Amygdala plasticity and pain. Pain Res Manag 2017:8296501. 10.1155/2017/8296501.|||Millan MJ (2002) Descending control of pain. Prog Neurobiol 66(6):355–474. 10.1016/s0301-0082(02)00009-6.|||Espana JC, Yasoda-Mohan A, Vanneste S The locus coeruleus in chronic pain. Int J Mol Sci. 2024;25(16). 10.3390/ijms25168636.|||Chattopadhyaya B, Cristo GD (2012) GABAergic circuit dysfunctions in neurodevelopmental disorders. Front Psychiatry 3:51. 10.3389/fpsyt.2012.00051.|||Ghosal S, Hare B, Duman RS (2017) Prefrontal cortex GABAergic deficits and circuit dysfunction in the pathophysiology and treatment of chronic stress and depression. Curr Opin Behav Sci 14:1–8. 10.1016/j.cobeha.2016.09.012.|||Fogaca MV, Duman RS (2019) Cortical GABAergic dysfunction in stress and depression: new insights for therapeutic interventions. Front Cell Neurosci 13:87. 10.3389/fncel.2019.00087.|||Wu X, Han S, Yang Y, Dai H, Wu P, Zhao H et al (2022) Decreased brain GABA levels in patients with migraine without aura: an exploratory proton magnetic resonance spectroscopy study. Neuroscience 488:10–19. 10.1016/j.neuroscience.2022.02.010.|||Ayata C (2010) Cortical spreading depression triggers migraine attack: pro. Headache 50(4):725–730. 10.1111/j.1526-4610.2010.01647.x.|||Burstein R, Noseda R, Borsook D (2015) Migraine: multiple processes, complex pathophysiology. J Neurosci 35(17):6619–6629. 10.1523/JNEUROSCI.0373-15.2015.|||Aguila ME, Lagopoulos J, Leaver AM, Rebbeck T, Hubscher M, Brennan PC et al (2015) Elevated levels of GABA + in migraine detected using (1) H-MRS. NMR Biomed 28(7):890–897. 10.1002/nbm.3321.|||Bridge H, Stagg CJ, Near J, Lau CI, Zisner A, Cader MZ (2015) Altered neurochemical coupling in the occipital cortex in migraine with visual aura. Cephalalgia 35(11):1025–1030. 10.1177/0333102414566860.|||Vieira DS, Naffah-Mazacoratti MG, Zukerman E, Senne Soares CA, Alonso EO, Faulhaber MH et al (2006) Cerebrospinal fluid GABA levels in chronic migraine with and without depression. Brain Res 1090(1):197–201. 10.1016/j.brainres.2006.03.051.|||Epi KC, Epilepsy Phenome/Genome P, Allen AS, Berkovic SF, Cossette P, Delanty N et al (2013) De Novo mutations in epileptic encephalopathies. Nature 501(7466):217–221. 10.1038/nature12439.|||Gormley P, Anttila V, Winsvold BS, Palta P, Esko T, Pers TH et al (2016) Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine. Nat Genet 48(8):856–866. 10.1038/ng.3598.|||Silberstein SD (2009) Preventive migraine treatment. Neurol Clin 27(2):429–443. 10.1016/j.ncl.2008.11.007.|||Tottene A, Conti R, Fabbro A, Vecchia D, Shapovalova M, Santello M et al (2009) Enhanced excitatory transmission at cortical synapses as the basis for facilitated spreading depression in Ca(v)2.1 knockin migraine mice. Neuron 61(5):762–773. 10.1016/j.neuron.2009.01.027.|||Vecchia D, Tottene A, van den Maagdenberg AM, Pietrobon D (2014) Mechanism underlying unaltered cortical inhibitory synaptic transmission in contrast with enhanced excitatory transmission in CaV2.1 knockin migraine mice. Neurobiol Dis 69(100):225–234. 10.1016/j.nbd.2014.05.035.|||Cottam JC, Smith SL, Hausser M (2013) Target-specific effects of somatostatin-expressing interneurons on neocortical visual processing. J Neurosci 33(50):19567–19578. 10.1523/JNEUROSCI.2624-13.2013.|||Nikolova S, Schwedt TJ (2022) Magnetic resonance spectroscopy studies in migraine. Neurobiol Pain 12:100102. 10.1016/j.ynpai.2022.100102.|||Paungarttner J, Quartana M, Patti L, Sklenarova B, Farham F, Jimenez IH et al (2024) Migraine - a borderland disease to epilepsy: near it but not of it. J Headache Pain 25(1):11. 10.1186/s10194-024-01719-0.|||Zhang X, Wang W, Bai X, Zhang Y, Yuan Z, Tang H et al (2023) Changes in gamma-aminobutyric acid and glutamate/glutamine levels in the right thalamus of patients with episodic and chronic migraine: A proton magnetic resonance spectroscopy study. Headache 63(1):104–113. 10.1111/head.14449.|||Bigal ME, Hetherington H, Pan J, Tsang A, Grosberg B, Avdievich N et al (2008) Occipital levels of GABA are related to severe headaches in migraine. Neurology 70(22):2078–2080. 10.1212/01.wnl.0000313376.07248.28.|||Storer RJ, Akerman S, Goadsby PJ (2001) GABA receptors modulate trigeminovascular nociceptive neurotransmission in the trigeminocervical complex. Br J Pharmacol 134(4):896–904. 10.1038/sj.bjp.0704325.|||Iversen HK, Olesen J, Tfelt-Hansen P (1989) Intravenous nitroglycerin as an experimental model of vascular headache. Basic characteristics. Pain 38(1):17–24. 10.1016/0304-3959(89)90067-5.|||Bates EA, Nikai T, Brennan KC, Fu YH, Charles AC, Basbaum AI et al (2010) Sumatriptan alleviates nitroglycerin-induced mechanical and thermal allodynia in mice. Cephalalgia 30(2):170–178. 10.1111/j.1468-2982.2009.01864.x.|||Ben Aissa M, Tipton AF, Bertels Z, Gandhi R, Moye LS, Novack M et al (2018) Soluble Guanylyl cyclase is a critical regulator of migraine-associated pain. Cephalalgia 38(8):1471–1484. 10.1177/0333102417737778.|||Pradhan AA, Smith ML, McGuire B, Tarash I, Evans CJ, Charles A (2014) Characterization of a novel model of chronic migraine. Pain 155(2):269–274. 10.1016/j.pain.2013.10.004.|||Moye LS, Pradhan AAA Animal model of chronic migraine-associated pain. Curr Protoc Neurosci. 2017;80:9601–9699. 10.1002/cpns.33.|||Lopez-Bendito G, Sturgess K, Erdelyi F, Szabo G, Molnar Z, Paulsen O (2004) Preferential origin and layer destination of GAD65-GFP cortical interneurons. Cereb Cortex 14(10):1122–1133. 10.1093/cercor/bhh072.|||Won C, Lin Z, Kumar TP, Li S, Ding L, Elkhal A et al (2013) Autonomous vascular networks synchronize GABA neuron migration in the embryonic forebrain. Nat Commun 4:2149. 10.1038/ncomms3149.|||Xia C, Dai W, Carreno J, Rogando A, Wu X, Simmons D et al (2024) Higher sodium in older individuals or after stroke/reperfusion, but not in migraine or alzheimer’s disease - a study in different preclinical models. Sci Rep 14(1):21636. 10.1038/s41598-024-72280-8.|||Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21. 10.1093/bioinformatics/bts635.|||Mudge JM, Harrow J (2015) Creating reference gene annotation for the mouse C57BL6/J genome assembly. Mamm Genome 26(9–10):366–378. 10.1007/s00335-015-9583-x.|||Love MI, Huber W, Anders S (2014) Moderated Estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550. 10.1186/s13059-014-0550-8.|||Park JH, Kim TK, Kim HK, Baik SW (2009) Apoptosis of the GABAergic interneuron in the dorsal Horn of the chronic post-ischemic pain model. Korean J Anesthesiol 57(3):350–357. 10.4097/kjae.2009.57.3.350.|||Meisner JG, Marsh AD, Marsh DR (2010) Loss of GABAergic interneurons in laminae I-III of the spinal cord dorsal Horn contributes to reduced GABAergic tone and neuropathic pain after spinal cord injury. J Neurotrauma 27(4):729–737. 10.1089/neu.2009.1166.|||Yowtak J, Wang J, Kim HY, Lu Y, Chung K, Chung JM (2013) Effect of antioxidant treatment on spinal GABA neurons in a neuropathic pain model in the mouse. Pain 154(11):2469–2476. 10.1016/j.pain.2013.07.024.|||Jones AF, Sheets PL (2020) Sex-Specific disruption of distinct mPFC inhibitory neurons in Spared-Nerve injury model of neuropathic pain. Cell Rep 31(10):107729. 10.1016/j.celrep.2020.107729.|||Dedek A, Xu J, Lorenzo LE, Godin AG, Kandegedara CM, Glavina G et al (2022) Sexual dimorphism in a neuronal mechanism of spinal hyperexcitability across rodent and human models of pathological pain. Brain 145(3):1124–1138. 10.1093/brain/awab408.|||Herrera DG, Robertson HA (1996) Activation of c-fos in the brain. Prog Neurobiol 50(2–3):83–107. 10.1016/s0301-0082(96)00021-4.|||Nestler EJ, Barrot M, Self DW (2001) DeltaFosB: a sustained molecular switch for addiction. Proc Natl Acad Sci U S A 98(20):11042–11046. 10.1073/pnas.191352698.|||Clasadonte J, Deprez T, Stephens GS, Mairet-Coello G, Cortin PY, Boutier M et al (2023) DeltaFosB is part of a homeostatic mechanism that protects the epileptic brain from further deterioration. Front Mol Neurosci 16:1324922. 10.3389/fnmol.2023.1324922.|||Nestler EJ (2015) ∆FosB: a transcriptional regulator of stress and antidepressant responses. Eur J Pharmacol 753:66–72. 10.1016/j.ejphar.2014.10.034.|||Pollema-Mays SL, Centeno MV, Chang Z, Apkarian AV, Martina M (2019) Reduced DeltaFosB expression in the rat nucleus accumbens has causal role in the neuropathic pain phenotype. Neurosci Lett 702:77–83. 10.1016/j.neulet.2018.11.036.|||Wang H, Tao X, Huang ST, Wu L, Tang HL, Song Y et al (2016) Chronic stress is associated with pain precipitation and elevation in DeltaFosb expression. Front Pharmacol 7:138. 10.3389/fphar.2016.00138.|||Neugebauer V (2015) Amygdala pain mechanisms. Handb Exp Pharmacol 227:261–284. 10.1007/978-3-662-46450-2_13.|||Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz O et al (2009) Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev 61(3):283–357. 10.1124/pr.109.001370.|||Jiang SZ, Zhang HY, Eiden LE (2023) PACAP controls endocrine and behavioral stress responses via separate brain circuits. Biol Psychiatry Glob Open Sci 3(4):673–685. 10.1016/j.bpsgos.2023.04.001.|||Hammack SE, May V (2015) Pituitary adenylate cyclase activating polypeptide in stress-related disorders: data convergence from animal and human studies. Biol Psychiatry 78(3):167–177. 10.1016/j.biopsych.2014.12.003.|||Zhou CJ, Shioda S, Yada T, Inagaki N, Pleasure SJ, Kikuyama S (2002) PACAP and its receptors exert pleiotropic effects in the nervous system by activating multiple signaling pathways. Curr Protein Pept Sci 3(4):423–439. 10.2174/1389203023380576.|||Winters SJ, Moore JP (2020) Jr. PACAP: A regulator of mammalian reproductive function. Mol Cell Endocrinol 518:110912. 10.1016/j.mce.2020.110912.|||Lehmann ML, Mustafa T, Eiden AM, Herkenham M, Eiden LE (2013) PACAP-deficient mice show attenuated corticosterone secretion and fail to develop depressive behavior during chronic social defeat stress. Psychoneuroendocrinology 38(5):702–715. 10.1016/j.psyneuen.2012.09.006.|||Grafer CM, Halvorson LM (2013) Androgen receptor drives transcription of rat PACAP in gonadotrope cells. Mol Endocrinol 27(8):1343–1356. 10.1210/me.2012-1378.|||Hammack SE, Cheung J, Rhodes KM, Schutz KC, Falls WA, Braas KM et al (2009) Chronic stress increases pituitary adenylate cyclase-activating peptide (PACAP) and brain-derived neurotrophic factor (BDNF) mRNA expression in the bed nucleus of the stria terminalis (BNST): roles for PACAP in anxiety-like behavior. Psychoneuroendocrinology 34(6):833–843. 10.1016/j.psyneuen.2008.12.013.|||Roman CW, Lezak KR, Hartsock MJ, Falls WA, Braas KM, Howard AB et al (2014) PAC1 receptor antagonism in the bed nucleus of the stria terminalis (BNST) attenuates the endocrine and behavioral consequences of chronic stress. Psychoneuroendocrinology 47:151–165. 10.1016/j.psyneuen.2014.05.014.|||Bangasser DA, Wicks B (2017) Sex-specific mechanisms for responding to stress. J Neurosci Res 95(1–2):75–82. 10.1002/jnr.23812.|||King SB, Toufexis DJ, Hammack SE (2017) Pituitary adenylate cyclase activating polypeptide (PACAP), stress, and sex hormones. Stress 20(5):465–475. 10.1080/10253890.2017.1336535.|||MacAulay N, Keep RF, Zeuthen T (2022) Cerebrospinal fluid production by the choroid plexus: a century of barrier research revisited. Fluids Barriers CNS 19(1):26. 10.1186/s12987-022-00323-1.|||Thompson D, Brissette CA, Watt JA (2022) The choroid plexus and its role in the pathogenesis of neurological infections. Fluids Barriers CNS 19(1):75. 10.1186/s12987-022-00372-6.|||Saunders NR, Dziegielewska KM, Fame RM, Lehtinen MK, Liddelow SA (2023) The choroid plexus: a missing link in our Understanding of brain development and function. Physiol Rev 103(1):919–956. 10.1152/physrev.00060.2021.|||Xiong J, Liu M, Li X, Chen Z (2025) Choroid plexus volume and association with migraine pathophysiology. Eur J Radiol 188:112135. 10.1016/j.ejrad.2025.112135.|||Charles AC, Baca SM (2013) Cortical spreading depression and migraine. Nat Rev Neurol 9(11):637–644. 10.1038/nrneurol.2013.192.|||Lee HJ, Lee DA, Park KM Choroid plexus enlargement in patients with chronic migraine: implications for glymphatic system dysfunction. Can J Neurol Sci. 2025;1–7. 10.1017/cjn.2025.21.|||Tochitani S, Kondo S, Immunoreactivity for GABA (2013) GAD65, GAD67 and Bestrophin-1 in the meninges and the choroid plexus: implications for non-neuronal sources for GABA in the developing mouse brain. PLoS ONE 8(2):e56901. 10.1371/journal.pone.0056901.|||Ben-Ari Y (2002) Excitatory actions of Gaba during development: the nature of the nurture. Nat Rev Neurosci 3(9):728–739. 10.1038/nrn920.|||Ganguly K, Schinder AF, Wong ST, Poo M (2001) GABA itself promotes the developmental switch of neuronal GABAergic responses from excitation to Inhibition. Cell 105(4):521–532. 10.1016/s0092-8674(01)00341-5.|||Kaila K, Ruusuvuori E, Seja P, Voipio J, Puskarjov M (2014) GABA actions and ionic plasticity in epilepsy. Curr Opin Neurobiol 26:34–41. 10.1016/j.conb.2013.11.004.|||Cherubini E, Di Cristo G, Avoli M (2021) Dysregulation of GABAergic signaling in neurodevelomental disorders: targeting Cation-Chloride Co-transporters to Re-establish a proper E/I balance. Front Cell Neurosci 15:813441. 10.3389/fncel.2021.813441.|||Xu H, Fame RM, Sadegh C, Sutin J, Naranjo C, Della S et al (2021) Choroid plexus NKCC1 mediates cerebrospinal fluid clearance during mouse early postnatal development. Nat Commun 12(1):447. 10.1038/s41467-020-20666-3.|||Sorge RE, Mapplebeck JC, Rosen S, Beggs S, Taves S, Alexander JK et al (2015) Different immune cells mediate mechanical pain hypersensitivity in male and female mice. Nat Neurosci 18(8):1081–1083. 10.1038/nn.4053.|||Mapplebeck JCS, Dalgarno R, Tu Y, Moriarty O, Beggs S, Kwok CHT et al (2018) Microglial P2X4R-evoked pain hypersensitivity is sexually dimorphic in rats. Pain 159(9):1752–1763. 10.1097/j.pain.0000000000001265.|||Dart AM, Du XJ, Kingwell BA (2002) Gender, sex hormones and autonomic nervous control of the cardiovascular system. Cardiovasc Res 53(3):678–687. 10.1016/s0008-6363(01)00508-9.|||Simerly RB, Chang C, Muramatsu M, Swanson LW (1990) Distribution of androgen and Estrogen receptor mRNA-containing cells in the rat brain: an in situ hybridization study. J Comp Neurol 294(1):76–95. 10.1002/cne.902940107.|||Guidetti D, Rota E, Morelli N, Immovilli P (2014) Migraine and stroke: vascular comorbidity. Front Neurol 5:193. 10.3389/fneur.2014.00193.